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Abstract. Now the world is becoming more sophisticated and networked, and a massive amount of data is
being generated daily. For energy management in residential and commercial properties, it is essential to
know how much energy each appliance uses. The forecast would be more clear and practical if the task is
based purely on energy usage data. But in the real world, it’s not the case, energy consumption is strongly
dependent on weather and surroundings also. In a home appliances network when measured/observed data
is available then algorithms of supervised-based machine learning provide an immeasurable alternative to
the annoyance associated with many engineering and data mining methodologies. The patterns of household
energy consumption are changing based on temperature, humidity, hour of the day, etc. For predicting
household energy consumption feature engineering is performed, and models are trained by using different
machine learning algorithms such as Linear Regression, Lasso Regression, Random Forest, Extra Tree
Regressor, XG Boost, etc.. To evaluate the models R square is used as the forecasting is based on time. R
square tells how much percentage of variance in the dependent variable can be predicted. Finally, it is
suggested that tree-based models are giving best results.

1 Introduction
In recent decades, studying energy consumption issues
has been a popular academic area. Energy issues are
critical to society's security and well-being [1].
Predicting energy consumption in industry and the
energy sector is an essential part of macro-planning in
the industry sector, according to economic theories. [2].
Energy supply-demand planning on a long-term basis
must meet the needs of countries' long-term development.
Making accurate estimates about future energy usage can
help decision-makers plan and schedule supply system
operations more effectivel. Forecasting the energy
consumption load is a key aspect of power distribution
systems' economic and safe operations planning.
According to the forecasting horizon, there are primarily
three types of energy consumption studies in the
literature [3]. Resource management and development
spending account for the majority of long-term forecasts
(5–20 years). The distribution network's scheduling and
analysis are frequently aided by short-term forecasting
(for periods ranging from an hour to a week), where as
mid-term forecasting (a month to 5 years) is mostly used
for planning power production resources and rates [4][5].
The focus of the paper is on short-term forecasting.
Because energy demand is affected by a variety of
factors such as time, climate, socio economic, and
demographic factors, precisely anticipating consumption
is both crucial and difficult.

Regression models, as well as ANNs and time-series
forecasting, are the most widely utilized methods. The
focus of this study is primarily on regression models
[6][7]. This study uses regression models such as linear
regression, lasso regression, ridge regression, random
forest, XGBoost, and Extra tree regressor [8].

The dataset contains measurements of house
temperatures and humidity recorded at 10-minute
intervals over 4.5 months using a ZigBee Wireless
sensor network; the entire experiment is based on this
dataset. Our experiment is anticipating the following
instances energy usage based on the previous data and
providing it to the power plant for generating reasons [3].
It would be simple to anticipate energy use if energy
consumption was just based on the appliances in the
home. However, the amount of energy used in the home
is often determined by the temperature and humidity of
the day [7]. As a result, to create good predictions with
the data given, these experiments are carried out to find
the optimal model with the best attributes. The basic
goal is to anticipate the energy consumption of a future
instance using current and historical data on
temperatures, humidity, and other environmental
variables.

The second section of the paper is dedicated to data
collection and analysis of study area. The research
provides answers to inquiries about how energy
consumption varies hourly, day by day, and month by
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month. The third section would concentrate on feature
engineering and selection. The fourth section would
involve modeling and comparing many models to
choose the best one. The dataset is good enough and
only requires scaling for data processing [9].

2 Study Area and Data Analysis
The average temperature outside is about 7.5 degrees
centigrade. The temperature fluctuates from -6 to 28
degrees centigrade. Inside the building, the average
temperature has been approximately 20 degrees
centigrade in all rooms. It has a temperature range of 14
to 30 degrees centigrade. Warming appliances have been
put in place to keep the insides of the building warm,
according to this. As a result, there would be a link
between indoor temperature and energy use. Outside the
building, the average humidity has been higher than
within. The average humidity in the children's and
parent's rooms is significantly higher, indicating that the
residents of this building spend most of their time in
these areas. Because the humidity levels are so high,
some appliances, such as dehumidifiers, may be
necessary. As a result, there would be a link between
humidity and energy use.

There are two instances of peak hour activity. The
first is at 11 a.m., and the second is at 6 p.m. The peak at
11 a.m. is shallow and low, whereas the peak at 6 p.m. is
taller and sharper. The energy usage of appliances is
roughly 50Wh during the sleeping hours (10 PM - 6
AM). After 6 a.m., energy use gradually increases until
11 a.m. (probably due to morning chores). At roughly 3
p.m., it progressively drops to around 100 Wh. After that,
until 6 p.m., energy use skyrockets (probably due to
requirement lights in rooms). However, as night falls and
everybody in the house retires to bed around 10 p.m.,
appliance energy consumption drops to 50 Wh. In
Belgium, it appears that the month has no impact on
energy use. However, due to the warm weather, may
month's energy use may be lower. Energy trend over
months for every hour are shown in figure 1.

Fig. 1. Energy trend over months for every hour in Belgium
Weekend energy use is higher than weekday energy

usage.
This could be because weekends are holidays, and

most of the building residents stay at home and use
appliances. Hourly energy trend on weekdays and
weekends are depicted in figure 2.

Fig. 2. Hourly energy trend on weekdays and weekends in
Belgium

The data does not follow a normal distribution.
Because the data is skewed, log10 is used. Because
many models have the underlying assumption of normal
distribution, this type of transformation has a positive
impact on modeling.

The Pearson correlation is used to determine how
interdependent the features are. It has been discovered
that characteristics have a range of -0.09 to 0.02 with
energy, which is lower than expected. This necessitates a
concentration on feature engineering to obtain a greater
number of linked features with the dependent feature for
modelling purposes. Energy distribution before and after
log transformation respectively are shown in figure 3.

Fig. 3. Energy distribution before and after log transformation
respectively in Belgium

3 Feature Engineering
According to the above analysis, we discuss about
feature engineering. Different significant features are
retrieved from the features provided in this section.
Because the data is skewed, a new feature named log
energy is added to the energy feature by performing the
log10 transformation to the energy feature. Temperature
and humidity features are highly reliant on their own
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features, thus by averaging them, a new feature is
created from one of the temperature features and one
from the humidity features. Temperature and humidity
are also inversely connected, according to the data
analysis. This reason can be used to multiply each of the
temperature and humidity features of the same room,
yielding an additional 9 features. Apart from features
like temperature and humidity levels in rooms and
outside, there is another crucial column date, which
contains timestamps for each of the sensor data samples.
The hour data for each sample is derived from the
timestamps, and the goal is to see if there is a pattern of
energy usage over a day. For 4.5 months, the figure 4
below depicts the average energy usage of appliances at
a given hour of the day.

Fig. 4. Average hourly energy consumption trend

Hours and their relationship with energy
consumption were explored in the analysis section. The
24 hour day can be divided into three classes based on
energy consumption patterns: Class 1: 10 PM - 6 AM,
Class 2: 6 AM - 3 PM, and Class 3: 3 PM - 10 PM so
that the model can learn from multi-class classifier [10].

An additional 13 features are retrieved by feature
engineering, and observed characteristics are now more
dependent on energy use, with correlations ranging from
-0.21 to 0.55.

4 Modelling
Now having good features, The next stage is to model
using different regression models and compare them to
find the optimum regression model for energy prediction.
Because this is a regression problem, the metric utilized
will be R2 (R squared), which gives a measure of the
variance of the target to a variable that can be explained
using the given characteristics. It is a measure of how
well the model fits the data in a practical sense. It can be
expressed numerically as equation (1):

The percentage of R2 score is
R2 = (1 − SSRegression

SSTotal
)*100 (1)

where,
������������ = Total Residual Sum of Squares

computed from the best fit line

SSTotal = Total residual sum of squares measured
from the mean

Using the ‘r2_score()’ function of the metrics
module of the scikit-learn library.

4.1 Linear Models

Linear Regression is the most basic Regression
algorithm. There is no need for further complexity if a
Linear model can adequately describe the facts[11]. We
can use Regularization approaches to penalize the
coefficient values of the features as a modification to the
original Least Squares Regression because higher values
contribute to over fitting and loss of generalization.
Linear models benefit tremendously from regularization
approaches. In addition, there are only a few
circumstances in which a Linear model may fit the data
effectively without Regularization. Regularization
transforms the problem of Linear Regression into Lasso
or Ridge Regression, depending on whether we add the
absolute values of coefficients or their squares to our
loss function. The R2 score of linear regression without
feature engineering, which is used as a baseline model, is
17%.

4.1.1 Linear Regression :

The bias term is added to the weighted sum of the input
features in a linear model to produce a forecast in
equation (2) (also called the intercept term)[12]

Model prediction
ŷ = �0 + �1�1 + �2�2 +…...���� (2)
ŷ = predicted value.
n = number of features.
xi = ith feature value.
θj= jth model parameter (including the bias term θ0

and the feature weightsθ1, θ2, ⋯ , θn )
Setting the parameters of a model so that it best fits

the training set is referred to as training it. To do so, we'll
need a metric to determine how well (or poorly) the
model matches the training data.

Since it may be used to a wide range of problems,
Gradient Descent is an extremely versatile optimization
technique. Gradient Descent's general concept is to
iteratively change parameters to minimize additional cost
functions. The learning rate hyper parameter determines
the size of the steps, which is an important parameter in
Gradient Descent [12].

Regularization of a linear model is often
accomplished by restricting the model's weights. Ridge
Regression, Lasso Regression, and which implement
alternative techniques to restrict the weights.

4.1.2. Ridge Regression

Ridge Regression (also known as Tikhonov
regularization) is a regularized variant of Linear
Regression in which the cost function is given a
regularization term of equation (3)

� �=1
� ��

2� (3)
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Learning algorithms are compelled to adjust to the
data and keep weights as low as feasible when this is
enforced. Remember that the cost function should only
be subjected to regularisation when it is being trained.
To evaluate the model's performance using the
unregularized performance metric once it's been trained
from equation (4).
F(θ) = MSE(θ) + � 1

2 �=1
� ��

2� (4)
The type of regularization term to utilize is

determined by the penalty hyper parameter. When you
choose "l2," SGD will add a regularization term to the
cost function equal to half the square of the l2. Ridge
Regression is simply the norm of the weight vector
[12][13].

4.1.3. Lasso Regression

Least Absolute Shrinkage and Selection Operator
Regression (also known as Lasso Regression) is another
regularized variant of Linear Regression: it adds a
regularization factor to the cost function, same as Ridge
Regression, but it employs the l1 norm instead of half
the square of the l2 norm, uses the weight vector. The
fact that Lasso Regression tries to fully exclude the
weights of the least significant variables is a key aspect
from equation (5) (i.e., set them to zero) [13].
F(θ) = MSE(θ) + � �=1

� ��� (5)

4.2 Models based on trees

Tree-based Regression models are the next type of
method [12]. When compared to Linear models, Tree-
based models have a significant advantage in terms of
robustness against outliers. Because no linear link has
been found between any attribute and the target variable,
regression trees are likely to outperform linear models.

Given a large number of characteristics, a Decision
Tree will almost certainly overfit the data. As a result, it
could be skipped and instead go straight to the ensemble
methods listed below, which include building multiple
regressors on copies of the same training data and
combining their output either through mean, median,
mode (Bagging), or growing trees sequentially (i.e. each
tree is built from the data of the previous tree) and using
a weighted average of these weak learners (a learner that
performs just as well as the strongest learner) [14].

Random Forests is a common Bagging technique that
works well with high-dimensional data like ours. Extra
Trees Regressor takes it a step further by randomizing
splits. A form of boosting approach is Gradient Boosting
Machines. It creates an additive model in which
performance is continually improving[13].

4.2.1 Random Forests

Using the bagging method (or occasionally pasting),
Random Forests are an ensemble of Decision Trees with
maximum samples set to the training set's size.[15][16].
Instead of searching for the best feature, the Random
Forest approach introduces additional randomization by

searching for the best feature among a random collection
of features. As a result, there is a greater variety of trees,
which reduces the variance while increasing the bias.

4.2.2 Extra-Trees

When building a tree in a Random Forest, only a random
subset of the characteristics are examined for splitting at
each node (as discussed earlier). Instead of searching for
the best possible thresholds, it is feasible to make trees
even more random by employing random thresholds for
each feature (like regular Decision Trees do) . Extremely
Randomized is the name given to a forest made up of
such extremely random trees (or Extra-Trees for short)
[17]. Once again, higher bias is exchanged for reduced
variance. It also makes Extra-Trees significantly faster to
train than standard Random Forests, because one of the
most time-consuming jobs of tree growth is determining
the best feasible threshold for each feature at each node.
The ExtraTreesRedgressor class in Scikit-Learn can be
used to generate an Extra-Trees classifier. It has the
same API as the RandomForestRegressor class.

4.2.3 Gradient Boosting

Gradient Boosting is another prominent boosting
strategy. Gradient Boosting, like Ada Boost, operates by
successively adding predictors to an ensemble, with each
one correcting the one before it. Unlike Ada Boost, this
method seeks to adapt the new predictor to the residual
errors created by the prior predictor rather than
modifying the instance weights at each iteration. The
paper [18] has clearly shown the mathematical procedure
behind gradient boosting. A subsample hyper parameter
is also supported by the Gradient Boosting Regressor
class, which sets the fraction of training instances to be
used for each tree's training. If subsample=0.25, for
example, each tree is trained on 25% of the training
cases, chosen at random. As you would have guessed, a
bigger bias is exchanged for lower variance. It also
makes training much more efficient [19][20].

4.2.4 XG Boost

XGBoost is a machine learning method that has recently
won Kaggle contests for structured or tabular data.
XGBoost is a high-speed and high-performance
implementation of gradient boosted decision trees.

Along with these models neural networks can also be
used. With the help of PCA dimensional reduction can
be done. [22] address PCA to select the transformed
features that can be more related to the target variable.
The discipline of tweaking the hyper parameters of these
algorithms to achieve optimal performance is known as
hyper parameter optimization. One of the most obvious
methods to perform is manually selecting hyper
parameters but it is not feasible as we cannot select
values that would help in the optimization. Because there
are so many choices and options, this technique does not
scalable [23]. Many strategies for hyper parameter
optimization have been proposed. Grid search, Random
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search, and Bayesian optimization are three well-known
strategies .
All of the models are modeled using the steps below:

The final set of features used are really important.
These features are solely responsible for the better
performance of the model [24[25]]. With the help of a
correlation plot, these features are chosen. These are the
final set of features taken into consideration for
modeling.

final_features = ['th_kitchen', 'th_living',
'th_laundry','th_office', 'session', 'th_teen', 'th_parents',
'press_mm_hg', 'windspeed', 'avg_house_temp', 'hour',
'avg_house_hum', 'temp_outside', 'humid_outside',
'weekday', 'month','log_energy']. Here for the train-test
split 80-20 is used.Steps for modeling of ML algorithm
are shown in figure 5.

Fig. 5. Flow chart for modeling of ML algorithm

5 Result Analysis

5.1 Case1: Results for Baseline model

Table-1 shows the baseline model results. For the
baseline model, the selected models are linear models
and the modelling is done before feature engineering
with the raw data. When the modelling is done with raw
data only 17% of variance is only predicted.
Table 1. R2 score of Linear Models before feature engineering

Name Train_Time Train_R2_Score Test_R2_Score

Lasso 0.00996 0.0000 -0.0777

Linear 0.021046 16.9169 16.9655

Ridge 0.008213 16.9168 16.9659

Fig 6. Shows the prediction graph for 100 samples.
Blue colour line indicates the target value which is actual
value and the prediction done with linear regression
algorithm is shown by yellow line. It is observed that the
model was not able to perform well.

Fig. 6. Energy Prediction of Baseline model(Linear Regression)
before feature engineering

5.2 Case2: Results after feature engineering
without hyper parameter tuning

Table 2. shows the results for different algorithms after
feature engineering. Linear and Ridge has 28% of R2
score on test data. Random forest has 67% and Extra-tree
regressor has 71%. of line.

Table 2. R2 score of different algorithms after feature
engineering

Name Train_Time Train_R2_Score Test_R2_Score

Lasso 0.010408 0.0000 -0.0110

Linear 0.017416 30.0561 28.7402

Ridge 0.007331 30.0561 28.7407

K-
Neighbors 0.250363 75.7320 61.0030

Random
Forest 22.978521 95.6592 67.4624

Extra
Trees

6.360532 100.0000 71.000213
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Regressor

Gradient
Boosting 7.515340 47.1071 42.2821

XGBoost 1.823460 46.9366 42.1626

Fig. 7. Demonstrates the bar plot visualizing the results.

It can be seen that extra-trees is performing high than
all other algorithms. It can be seen that linear and
ridgeare having very close test and train scores. Fig 8.
Illustrates the prediction graph for 100 samples. Blue
colour line indicates the target value which is actual
value. The prediction done with extra tree algorithm is
shown by green and random forest with red color. It can
observed that extra tree algorithm is able to mimic the
original values and was able generalize more than all the
other models.

Fig. 7. R2 score for train and test sets before hyper parameter
tuning

Fig. 8. Energy Prediction for Extra Trees and Random forest
algorithms.

5.3 Case 3: Results with Hyper parameter tuning

The results for different algorithms after feature
engineering and hyper parameter tuning are
demonstrated as shownin the table 5. Linear and Ridge
has 27% R2 score on test data. Random forest has 70%
and Extra-tree regressor has 74% of scores.

Table 3. R2 score of different algorithms after hyper parameter
tuning

Name Train_Time Train_R2_Score Test_R2_Score

Lasso 0.013325 0.0000 -0.0110

Linear 0.01014 26.9782 27.1519

Ridge 0.007331 26.9782 27.1520

K-Neighbors 0.035377 77.3739 64.0166

Random Forest 15.88206 95.7882 70.1538

Extra Trees
Regressor 4.9309 100.0000 74.4962

Gradient
Boosting 5.104979 43.06144 40.2229

XGBoost 1.23693 43.13197 39.9348

The bar plot visualizing the results are illustrated
inFig. 9. It can be seen that extra-trees is performing
high than all other algorithms. It can be seen that linear
and ridges are having very close test and train scores.
After hyper parameter tuning it is observed that the test
and train scores have come slightly closer. It seems the
models more promising now than before.
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Fig. 9. R2 score for train and test sets after hyper parameter
tuning

Fig 10 shows the prediction graph for 100 samples.
Blue color line indicates the target value which is actual
value. The prediction done with extra tree algorithm is
shown by green and random forest with red color. It can
observed that extra tree algorithm is able to mimic the
original values and was able generalize more than all the
other models. The winner model is extra-tree regressor.
The prediction rate has increased by 4% after hyper
parameter tuning. However, the sudden peaks are
difficult to predict as they are not happening in general

Fig. 10. Energy Prediction for Extra tree and Random forest
algorithms after tuning.

Features important here are average house humidity
and multiplicative features engineered to have more
importance as shown in Fig. 11.Extra tree regressor is
performing incredibly well, and Random forest regressor
is also working well, as shown in the table above.
Additional hyper parameter tuning was done on the
Extra tree regressor, which resulted in an �� score of
74.5%of which utilising the optimal parameters as
{'max_depth': 80, 'max_features': 'sqrt', 'n_estimators':
250}. As a result, predictions can be made using these
models.

Lasso is at worst in this case this might be because
features that are highly correlated are discarded by

making the coefficients zero except only the one which
is selected. As a result, the model is not at all able to
capture the pattern here.

Fig. 11. Feature importance for Extra Trees regressor model

6 Conclusion
Despite being substantially linearly associated within
themselves, the temperature/humidity features exhibited
little to no linear (Pearson) connection with the objective
variable. Although fascinating characteristics were
engineered by modifying features, when it comes to
energy use, the time of day is crucial. Extra Trees
Regressor is the best algorithm to deploy for this dataset
(tree-based algorithm). The untuned model could explain
71% of the variance (�2 score = 0.710) ) on the test set,
while the tuned model could explain 74.5% of the
variance (�2 score = 0.7449). Average house humidity
and other features which are engineered are showing
more feature importance. When dealing with a data set
with most of its features having no linear correlation
with the objective variable, tree-based models are by far
the best model.
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