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Abstract. The application of artificial neural networks (ANN) in several 
fields has shown considerable success for classification or regression. 
Learning algorithms such as artificial neural networks must constantly 
readjust during the learning phase. This requires a relatively long learning 
time compared to the size and dimension of the data used. Contrary to 
these considerations, a new neural network, such as Extreme Learning 
Machine (ELM) has recently been implemented. The ELM does not care 
much about the size of the neural network, the hidden layer parameters are 
randomly generated and remain constant instead of being adjusted during 
training. In this paper, we will present a comparison between two neural 
networks, namely ELM and MLP (Multilayer perceptron) implemented for 
the precipitation estimation from meteorological satellite data. The 
architecture chosen for the two neural networks consists of an input layer 
(7 neurons), a hidden layer (8 neurons) and an output layer (7 neurons). 
The MLP has undergone standard training as soon as the ELM is trained 
according to the characteristics mentioned above. The results show that 
MLP prevails over ELM. However, the time cost during learning is too 
high for MLP compared to ELM.  

1 Introduction 
Precipitation mapping is of great importance to farmers and hydrologists. Knowing the 
amounts of precipitation in time and space is valuable information for planning the 
management of water resources, especially in recent years when these resources are 
beginning to become scarce. However, the measurement of precipitation is a complex 
operation because, on the one hand, of the very great climatic variability accentuated by 
global warming, and on the other hand, of the insufficiency of spatial coverage by 
traditional measuring instruments based in ground, such as rain gauges and weather radar.  
Observations from space are massively used to remedy the lack of data on the ground. They 
can provide complete and regular coverage and continuous monitoring of precipitation 
clouds. Since the advent of weather satellites, many techniques have been developed to 
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attempt to link satellite information and precipitation rates [1-3]. due to the indirect 
character of these data, the results strongly depend on the methods used. Machine Learning 
(ML) algorithms have shown their effectiveness in this area. One of the most powerful 
models in Machine Learning is the artificial neural network (ANN), in particular the multi-
layer perceptron (MLP) which is very responsive and widely used [4].  

However, ANNs in general require iterative tuning of network parameters, especially 
those of the hidden layers. This leads to a relatively long learning due to iterative 
calculations of gradient   to adjust the parameters. Despite the level of precision provided 
by these neural networks using the gradient during learning, sometimes they do not always 
give the best overall solution. They depend on the complexity of the feature space and 
especially on the initialization of the network parameters. Therefore, the approximation 
solution can converge at local extrema. In contrast to these gradient-based techniques, the 
Extreme Learning Machine Neural Network proposed by Guang-Bin and Qin-Yu [5], aims 
to train single-layer hidden feedforward networks (SLFNs). It consists of randomly 
assigning coefficients to the weights between the input layer and the hidden layer and the 
biases in the hidden layer with nonlinear activation functions in the hidden layer. No 
adjustments are made during learning. The only parameter to learn for the network is the 
coefficient assigned to the weight between the hidden layer and the output layer.  

Thus, the ELM network which learns without iteration converges much faster unlike 
traditional neural networks. According to some works, this characteristic allows ELM to 
reach a global optimal solution [6]. The ELM benefits from a superior learning speed and a 
good ability to generalize [7] hence its use in a variety of learning problems, such as 
classification, regression… 

The ELM that overcomes the slow training speed and the over-adjustment problem, 
however, may cause the classification performance to fluctuate. Based on these two points, 
as part of this work, we will make a comparison between the two neural networks ELM and 
MLP in the classification and estimation of precipitation from MSG (Meteosat Second 
Generation) data. Training and validation of ELM and MLP is performed by comparing 
MSG data to radar data. 

The rest of the paper is organized as follows. Section 2 presents the study area and the 
data used. Section 3 briefly describes the mathematical concept of ELM and MLP. The 
classification and estimation results are presented in section 3. The conclusion and outlook 
are given in section 4.  

2 Study area and data 
As part of this work, rainfall was estimated over northern Algeria (see Fig.1) using data 
from the MSG satellite.  

We used MSG data for the classification and estimation of precipitation and radar data 
for learning and validation of the implemented model. MSG data are available as multi-
spectral images (12 channels) at a frequency of 15 minutes with a spatial resolution of 3km 
for 11 channels and 1km for a high resolution visible channel [8].  

As for the radar data, a radar image is provided every 15 minutes whose pixels can take 
16 levels of precipitation intensities in dBZ (04, 12, 18, 22, 26, 30, 34, 38, 42, 46, 50 , 54, 
58, 62, 66, 70). The spatial resolution is 1 km. For the spatial correspondence of the two 
types of data, we transformed the radar resolution from 1x1 km2 to 4x5 km2 by taking the 
average of the pixels. The 4 x 5 km2 resolution corresponds to the satellite resolution in the 
study region. 

 

2

E3S Web of Conferences 353, 01006 (2022) https://doi.org/10.1051/e3sconf/202235301006
EVF’2021



attempt to link satellite information and precipitation rates [1-3]. due to the indirect 
character of these data, the results strongly depend on the methods used. Machine Learning 
(ML) algorithms have shown their effectiveness in this area. One of the most powerful 
models in Machine Learning is the artificial neural network (ANN), in particular the multi-
layer perceptron (MLP) which is very responsive and widely used [4].  

However, ANNs in general require iterative tuning of network parameters, especially 
those of the hidden layers. This leads to a relatively long learning due to iterative 
calculations of gradient   to adjust the parameters. Despite the level of precision provided 
by these neural networks using the gradient during learning, sometimes they do not always 
give the best overall solution. They depend on the complexity of the feature space and 
especially on the initialization of the network parameters. Therefore, the approximation 
solution can converge at local extrema. In contrast to these gradient-based techniques, the 
Extreme Learning Machine Neural Network proposed by Guang-Bin and Qin-Yu [5], aims 
to train single-layer hidden feedforward networks (SLFNs). It consists of randomly 
assigning coefficients to the weights between the input layer and the hidden layer and the 
biases in the hidden layer with nonlinear activation functions in the hidden layer. No 
adjustments are made during learning. The only parameter to learn for the network is the 
coefficient assigned to the weight between the hidden layer and the output layer.  

Thus, the ELM network which learns without iteration converges much faster unlike 
traditional neural networks. According to some works, this characteristic allows ELM to 
reach a global optimal solution [6]. The ELM benefits from a superior learning speed and a 
good ability to generalize [7] hence its use in a variety of learning problems, such as 
classification, regression… 

The ELM that overcomes the slow training speed and the over-adjustment problem, 
however, may cause the classification performance to fluctuate. Based on these two points, 
as part of this work, we will make a comparison between the two neural networks ELM and 
MLP in the classification and estimation of precipitation from MSG (Meteosat Second 
Generation) data. Training and validation of ELM and MLP is performed by comparing 
MSG data to radar data. 

The rest of the paper is organized as follows. Section 2 presents the study area and the 
data used. Section 3 briefly describes the mathematical concept of ELM and MLP. The 
classification and estimation results are presented in section 3. The conclusion and outlook 
are given in section 4.  

2 Study area and data 
As part of this work, rainfall was estimated over northern Algeria (see Fig.1) using data 
from the MSG satellite.  

We used MSG data for the classification and estimation of precipitation and radar data 
for learning and validation of the implemented model. MSG data are available as multi-
spectral images (12 channels) at a frequency of 15 minutes with a spatial resolution of 3km 
for 11 channels and 1km for a high resolution visible channel [8].  

As for the radar data, a radar image is provided every 15 minutes whose pixels can take 
16 levels of precipitation intensities in dBZ (04, 12, 18, 22, 26, 30, 34, 38, 42, 46, 50 , 54, 
58, 62, 66, 70). The spatial resolution is 1 km. For the spatial correspondence of the two 
types of data, we transformed the radar resolution from 1x1 km2 to 4x5 km2 by taking the 
average of the pixels. The 4 x 5 km2 resolution corresponds to the satellite resolution in the 
study region. 

 

 
Fig. 1. Study area and radar coverage (circle). 

 
To better establish the relationship between the satellite data and the precipitation 

intensities, we have chosen the combinations given in Table 1 providing the information on 
the optical and microphysical properties of the clouds from the different channels of MSG 
[9-11]. Target output classes are also given in Table 1.  

Table 1. Input and output parameters for the two models (MLP and ELM). 

Input Cloud Optical and 
Microphysical Properties 

Output (dBZ) Average rate 
(mm/h) 

Τ10.8 (Kelvin) CTH (Cloud Top High) 
CTT (Cloud Top Temperature) 

 
62  Class(1)  70 

 
54  Class(2)  58 

 
42  Class(3) 50 

 
34  Class(4)  38 

 
22  Class(5)  30 

 
12  Class(6)  18 

 
Class(7) = 04 

 

 
09.32 

 
07.14 

 
06.41 

 
03.60 

 
02.02 

 
00.89 

 
00.00 

ΔΤ10.8–12.0 (Kelvin) Cloud Phase (CP) 

ΔT8.7–10.8   (Kelvin) Cloud Phase (CP) 

ΔT6.2–10.8   (Kelvin) CTH (Cloud Top High) 
CTT (Cloud Top Temperature) 

ΔT7.3-12.1   (Kelvin) CTH (Cloud Top High) 
CTT (Cloud Top Temperature) 

R0.6 (µm)     
Daytime  

Cloud Water Path (CWP) 

R1.6 (µm)     
Daytime 

Cloud Water Path (CWP) 

ΔT3.9-10.8   (Kelvin) 
Nighttime 

Cloud Water Path (CWP) 

ΔT3.9-7.3    (Kelvin)   
Nighttime 

Cloud Water Path (CWP) 
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3 Mathematical concept of MLP and ELM 

3.1 Multilayer perceptron (MLP) 

The MLP type neural network consists of a structure of successive layers including an input 
layer and an output layer connected one after the other [12]. Between the input layer and 
the output layer, the MLP can have one or more hidden layers. A layer is a set of neurons 
that feed the neurons of the next layer through their outputs. To work, each input xi of a 
neuron j is multiplied by an adaptive coefficient wij (synaptic weight). Then, the nonlinear 
activation function is applied at the level of the output neurons. This function usually takes 
the form of a sigmoid ∅. Thus, the output of the jth neuron, oj, is given by: 
 
                                                 𝑂𝑂𝑗𝑗 = ∅(∑ 𝑤𝑤𝑖𝑖𝑗𝑗. 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=0 )                                                                         (1) 

 
where n is the number of variables in the dataset. The learning process consists of 

adjusting the synaptic weights of the MLP. In our case, we used the Levenberg-Marquardt 
and Gauss-Newton learning algorithms. This algorithm allows a stable and fast 
convergence [13]. 

3.2 Extreme Learning Machine (ELM) 

The Extreme Learning Machine (ELM) is an extremely fast learning neural network [5], 
which can be an advantage for some applications. ELM is a feed-forward type algorithm 
whose architecture is identical to MLP with a single hidden layer. The main difference is 
the learning operation. Indeed, unlike MLP, the hidden layer parameters of ELM are 
randomly generated and remain constant instead of being readjusted. 

The input layer is a passage of the input data inside the network where the number of 
neurons in this layer is in general the same as the size of the feature vector. The number of 
neurons in the output layer is equal to the number of output target classes in the 
classification case. As for the number of neurons in the hidden layer, it is variable. As part 
of this study, we will see its influence on the quality of the classification. Fig. 2 presents the 
general structure of an ELM network.  

 

 
Fig. 2. General architecture of a neural network (ELM type) 
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The wi represent the link weights between the input layer and the hidden layer. The βi  
are the weights assigned to the link between the hidden layer and the output layer. The bi 
are the biases of the hidden layer. 

The Algorithm produces a random connection weight between N arbitrary input samples 
and the L hidden layer nodes. To activate this function, it is necessary to give the number of 
hidden neurons. Mathematically, the ELM model can be expressed according to the 
equation 2: 

                              ∑ 𝛽𝛽𝑖𝑖𝑔𝑔(𝑥𝑥𝑛𝑛; 𝑏𝑏𝑖𝑖, 𝑤𝑤𝑖𝑖) = 𝑦𝑦𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛 = 1,2, … , 𝑁𝑁𝑀𝑀
𝑖𝑖=1                                            (2) 

 
The g(xn; bi,wi) is the output result of the input sample xn related to the ith hidden node. 

All inputs are randomly distributed to nodes in the hidden layer of the ELM. Which gives 
the following expression: 
 
                             𝐻𝐻𝛽𝛽 = 𝑌𝑌                                                                                                    (3) 
Where 

                            𝐻𝐻 =

[
 
 
 
 𝑔𝑔

(𝑥𝑥1; 𝑏𝑏1, 𝑤𝑤1) …  𝑔𝑔(𝑥𝑥1; 𝑏𝑏𝑀𝑀, 𝑤𝑤𝑀𝑀)
.
.
.

𝑔𝑔(𝑥𝑥𝑁𝑁; 𝑏𝑏1, 𝑤𝑤1) …  𝑔𝑔(𝑥𝑥𝑁𝑁; 𝑏𝑏𝑀𝑀, 𝑤𝑤𝑀𝑀)]
 
 
 
 
                                                  (4) 

 
The H is the matrix of size N*M 
                            𝐻𝐻𝛽𝛽 = (𝛽𝛽1

𝑇𝑇, 𝛽𝛽2
𝑇𝑇, … , 𝛽𝛽𝐿𝐿

𝑇𝑇)𝑚𝑚×𝑀𝑀                                                                       (5) 
 

And the output (Y) is given by  
                             𝑌𝑌 = (𝑤𝑤1𝑇𝑇, 𝑤𝑤2𝑇𝑇, … , 𝑤𝑤𝐿𝐿𝑇𝑇)𝑚𝑚×𝑀𝑀

𝑇𝑇                                                                            (6) 
 

According to Zhen et al. [14], "H" is the hidden layer output matrix and "T" is the label 
matrix. 

The β is the output weights, which are obtained by determining the least-squares 
solutions to the linear system described above [15]: 
                            𝛽𝛽 = 𝐻𝐻+𝑌𝑌                                                                                                  (7) 

 
Deo and Sahin [15] define "H+" as the generalized inverse of the Moore-Penrose H 

matrix. 
For the learning of ELM, we carried out the following steps: 
 

 Training set :  
         S = [(xi, yi)| xi ∈ Rn, yi ∈ Rm, i =1,…, N]                                                  (8) 

 Initialization : 
Random assignment of values to the hidden layer weights wi and bias bi and calculation of 
the hidden layer output matrix H from training set. 

 Analytical solution 
Obtain β from Hβ=T by Moore Penrose inverse. The β=H+T, where H+ is the Moore-
Penrose generalized inverse of matrix H. 

For the classification and estimation of precipitation, we applied the two types of neural 
networks, namely MLP and ELM. The inputs of both models are MSG data (see Table 1) 
and the target outputs are classes of precipitation intensities. Both models are trained by 
comparing the MSG input data to the Radar output data for the rainy season period from 
October 2007 to March 2008. We varied the number of neurons in the hidden layer for the 
ELM and the number of layers hidden for MLP.  
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4 Results 

4.1 Precipitation classification 

In this section, we will give classification results and precipitation estimates by applying 
ELM and MLP neural networks. Thus, the precipitation scenes collected during the period 
from October 2008 to March 2009 are classified. The classification accuracy is calculated 
by comparing the classification results with the reference data from the radar. For both 
models, we used the same architecture, namely 7 nodes for the input layer, 8 nodes for the 
hidden layer and 7 nodes for the output layer. We calculated the classification accuracy for 
the two models for the different classes (see Fig. 3). 
 

 
Fig. 3. Classification accuracy for MLP and ELM 

As shown in Figure 3, the MLP neural network gives the best good classification rates 
for all classes. For visual illustration, we have classified an instantaneous precipitation 
scene taken on January 24, 2009 at 3 p.m. (see Fig. 4). 
 

 
Fig. 4. Classification results, a) Reference image from radar, b) Original IR10.8 image, c) Classified    
            image using MLP, d) Classified image using ELM 
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The number of misclassified pixels is very present in the classification results obtained 
by applying ELM compared to the result obtained by MLP. 

To see the influence of the number of hidden layers on the results for MLP and the 
influence of the number of hidden neurons for ELM, we varied these parameters. The 
results are shown in Fig. 5.  

 

 
Fig. 5. Classification accuracy, a) depending to number of hidden layers performed by MLP, 
           b) depending to number of hidden neurons performed by ELM 

As shown in Fig. 5, for the MLP (see Fig.5.a), the increase in the number of hidden 
layers has practically no effect on the classification, even from the third hidden layer, the 
rate of good classification has experienced a decrease. In the case of ELM (see fig.5.b), the 
number of hidden neurons can influence the results. We noted an improvement in the 
quality of classification. However, from 7 to 8 hidden neurons, the results deteriorate.  

4.2 Precipitation estimates 

In this part, we present the results of precipitation estimates from MLP and ELM 
classifications using the equation: 
 
                               𝑅𝑅𝑅𝑅(𝑚𝑚𝑚𝑚) = 1

4
∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖) × 𝑅𝑅(𝑖𝑖)7
𝑖𝑖=1                                                    (9) 

 
RR(mm) is the precipitation rate for a given period. Nclass(i) is the number of 

occurrences of class(i) during the period and R(i) (mm/h) is the average precipitation 
intensity of class(i). 

In order to compare the estimation results between MLP and ELM, the same 
architecture was used for both models. The results in the form of a fluctuation diagram are 
given in fig.6. Evaluation parameters, such as Bias, root mean square error (RMSE) and 
correlation coefficient (CC) are calculated using the equations (10), (11) and (12) (see 
Table 2) 
 
                              Bias = 1

N
∑ (Ei − Vi)N
i=1                                                                         (10) 

                             RMSE = √1
N
∑ (Ei − Vi)2N
i=1                                                                  (11) 

                             CC = ∑[(𝐸𝐸𝑖𝑖−�̅�𝐸)∗(𝑉𝑉𝑖𝑖−𝑉𝑉)]

√∑(𝐸𝐸𝑖𝑖−�̅�𝐸)2∗∑(𝑉𝑉𝑖𝑖−𝑉𝑉)
2
                                                                        (12) 

 
Where Ei is the estimated value, and Vi is the actual values obtained from data Radar.  
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Fig. 6. Rain estimation versus radar measurements, (left) using ELM, (right) using MLP. 

Table 2. Statistical scores 

 CC RMSE (mm) Bias (mm) 
MLP 0.81 24 -5.1 
ELM 0.73 31 -7.2 

Optimal 1 0 0 
 

The results clearly show that:  
 The MLP wins over ELM. Indeed, the estimates by MLP are well correlated 

with the radar measurements for the MLP compared to ELM. The CC shows 
0.81 and 0.73 for MLP and ELM respectively. In RMSE terms, the error is 
larger in the case of ELM (31mm) versus MLP (24mm). Both models show an 
underestimation of precipitation. It is -7.2mm for ELM against -5.1mm for 
MLP. 

 Nevertheless, MLP has a disadvantage regarding its a high computational cost 
during learning. We noted the average time required for learning 33254 to 
40241 seconds for the MLP against 4120 to 7542 seconds for the ELM. A 
compromise can be found between the quality of the results and the learning 
time, depending on the type of applications.  

5 Conclusion 
The purpose of this work is, on the one hand, to estimate rainfall from satellite data in 
northern Algeria, and on the other hand to test the contribution of ELM compared to MLP. 
Both models were therefore implemented and used for precipitation classification and 
estimation. Each of the architectures of the two models consists of an input layer, a hidden 
layer and an output layer. For the implementation of this study, multi-spectral images from 
MSG satellites and their correspondences in radar images are combined and used. MSG 
data provide information on the optical and microphysical properties of clouds. From these 
data, seven input parameters are obtained and at the output seven target classes are selected. 

The classification results showed the superiority for the MLP against the ELM. For the 
different classes, the classification accuracy for MLP exceeds that of ELM. In the case of 
the precipitation estimate, the same trend was observed. The different evaluation 
parameters, such as CC, Bias and RMSE show that MLP is better than ELM. However, the 
learning time for the MLP is a major drawback, especially for certain applications operating 
in real time and their readjustment must be done regularly. ELM may be an adequate 
solution in the near future as many variants of ELM are proposed to further improve its 
stability and generalization for specific applications. 
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learning time for the MLP is a major drawback, especially for certain applications operating 
in real time and their readjustment must be done regularly. ELM may be an adequate 
solution in the near future as many variants of ELM are proposed to further improve its 
stability and generalization for specific applications. 
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