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Abstract. Fluid dynamics plays an important role in many Renewable 
energies studies, i.e. wind and tidal turbines, wave energy geothermal and 
solar power, …). Friction factor 𝑓𝑓 is an important parameter for the 
determination of pressure drop in different processes and systems. In this 
study, we use DNS data of turbulent smooth channels to evaluate different 
methods. First, a recalibration of Dean’s correlation (Dean, 1978) is 
proposed. The aim of the study is to obtain accurate wall friction factors 
from velocity profiles. On the one hand, we obtained two implicit analytical 
relations based on the law-of-the-wall: a logarithmic friction relation similar 
to that of pipes and a linear-logarithmic friction relation. On the other hand, 
we obtained 𝑓𝑓 from the computation of the average velocity. It is first 
calculated from the law-of-the-wall and allows a good prediction of 𝑓𝑓 for 
𝑅𝑅𝑅𝑅𝜏𝜏 > 395 but presents a gap for low 𝑅𝑅𝑅𝑅𝜏𝜏which is related to inaccurate 
velocities. Low-Reynolds number effect in channel flows has been 
previously observed in different experimental and computational studies. In 
order to provide suitable friction factor values, it is important to predict 
velocities accurately on the overall channel height. We used therefore a more 
appropriate method which consists to use for 𝑦𝑦+ < 20 the momentum 
equation with an eddy viscosity formulation (Absi, 2019) and the log-wake 
law for high 𝑦𝑦+ values. This method provides accurate friction factor values 
and allows good agreement with DNS data.  

1 Introduction  
Computational fluid dynamics (CFD) represents an effective and usefull tool in many 
Renewable energies studies, (i.e. wind and tidal turbines, wave energy geothermal and solar 
power,…). Different processes and systems need the evaluation of energy losses. The 
pressure drop is involved in heat exchangers, chemical and petroleum processes, nuclear, 
refrigerating system, ventilation, heating [16]. It is also important in hydraulic engineering 
for the design of water systems. Relations were developed to provide the friction factor 𝑓𝑓. 
Some of them are empirical and others are based on more theoretical considerations. For 
pipes, the well-known Prandtl equation or PKN (Prandtl-Karman-Nikuradse) correlation for 
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smooth turbulent pipes is based on the logarithmic velocity profile. However, it is possible 
to find different coefficients for this equation related to the used friction factor (Darcy or 
Fanning) and/or logarithm (base ten or e). Several authors proposed more accurate correlation 
based on recent experiments [10] [21] [23-24-25]. More advanced methods were used to 
propose accurate friction factor relations as artificial neural network [11]. The study of 
friction factor for channel flows is still lacking, contrary to pipe flows. We will consider the 
turbulent channel flow which is basically the flow between two horizontal plane plates 
located at 2ℎ from each other. This represents an ideal theoretical framework and is related 
to most of the industrial applications. It was already studied experimentally [28] [30], 
theoretically, and numerically [22] [14-15] [27] [9] [1-8]. Currently, “direct numerical 
simulation” (DNS) provides accurate results [26] [20] [19] which are used extensively to 
evaluate and validate the different proposed relations. It is possible to obtain the friction 
factor from DNS data, by Reynolds 𝑅𝑅𝑅𝑅 and Reynolds friction 𝑅𝑅𝑅𝑅𝜏𝜏 numbers, or through the 
average velocity based on velocity profiles. Reynolds numbers in many practical situations 
are several orders of magnitude higher than those from computational or laboratory 
experiments. Even for different data at different Reynolds numbers, when 
nondimensionalized using appropriate length and velocity scales, mean streamwise velocity 
profiles and other statistical turbulence quantities collapse to a single universal profile. In 
fully developed turbulent flows, we can distinguish the outer region from the inner or near-
wall region which is composed by the viscous sublayer, the buffer layer and the overlap or 
log-law layer.  

We will start the study by evaluating the Dean’s correlation [13]; which provides a 𝑅𝑅𝑅𝑅-
dependent friction factor. The aim of this note is to evaluate the accuracy of skin friction 
factors obtained from velocity profiles. On the one hand, we will use the log-law on the 
overall height ℎ, to obtain the logarithmic friction relation similar to that of pipes. Then, in 
order to improve this relation we will consider the linear profile in the viscous sublayer. On 
the other hand, the friction factor will be obtained from the average velocity based on the 
law-of-the-wall, the log-wake law [12] [18] or by solving the momentum equation. 

2 Friction factor and velocity profiles  

2.1 Friction factor  

Fanning’s friction factor is defined as:  

        (1) 
Where: τp is the wall shear stress, ρ the fluid density and umoy the fluid average velocity on 
the channel height. By using wall units, we write: 

        (2) 
With u+

moy=umoy/uτ and uτ=(τp/ ρ)0.5  is the friction velocity. The relation with the Darcy’s 

factor λ  

is given by: f=(1/4)λ. We can rewrite equation (2) as a function of Reynolds numbers: 
Re=(2humoy)/ν and the friction Reynolds number defined as Reτ = (h uτ)/ν. It is possible to 
write:  

 
By substituting in equation (2), we obtain:  
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By substituting in equation (2), we obtain:  

  

 
This relation allows obtaining the friction factor f from Reynolds numbers when they are 
known, without the need of average velocity based on velocity profiles.  
Dean [13] proposed a correlation which provides the friction factor as a function of the 
Reynolds number:  

 

2.2 Average or Bulk velocity  

The average velocity can be obtained by the following equations:  

 
With: u+=u/uτ, y+=(y uτ)/ν, for these equations we need to know the velocity profile which is 
given for the inner region by the law of the wall [17]:   

• The linear profile in the viscous sublayer where ν≫νt  
u+ = y+

              (7) 

• The logarithmic profile in the overlap or log-law layer where νt≫ν  

 

 
Fig. 1. Mean velocity profiles u+ = f(y+) for Re = 642.  

Figure (1) presents linear and logarithmic profiles (equations 7 and 8) with DNS data for a 
friction Reynolds number Reτ=642 [20]. For the logarithmic profile, we use κ=0.4 and B=5 
which seem to be suitable. These approximations (curves of equations 7 and 8) are very 
close to DNS data. However, the velocities are not accurate near the intersection between 
the two velocity curves and also in the outer region for high y+.   
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The aim of the study is to identify the most suitable method to obtain an accurate friction 
factor for different Reynolds numbers from velocity distribution. Different methods to obtain 
the friction factor based on equation (2) will be considered and evaluated by comparison with 
DNS data. These methods need the average velocity obtained from velocity profiles. 

3 Evaluation of Dean’s correlation by comparison with DNS data  
We evaluate the Dean’s correlation by comparison with the friction factor obtained from 
DNS data.  

3.1 Determination of friction factor from DNS data  

We obtain values of f from DNS by both Reynolds numbers (equation 4) or from the average 
velocity (equation 2).  

f values obtained from Reynolds numbers:   
In table (1), friction factor f is obtained from Re and Reτ of DNS data  (Iwamoto, 2002).  

Table 1. Friction factor from DNS based on Re et Reτ.  

Reτ  Re  f×10-3  

109  3220.38  9.237  

150  4586.21  8.612  

298  10039.1  7.044  

642  24272.2  5.606  
 

f values obtained from the average velocities:   
The trapezoidal rule solves the integral (equation 6) by approximating the region under the 
data and provides the area from elementary area for each Δy+, as: 

 
Table 2. Friction factor from DNS based on 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

+ .  

Reτ Total area u+moy Re f×10-3 

109 1610.02 14.77 3220.04 9.166 

150 2293 15.28 4586 8.558 

298 5010 16.82 10026.17 7.067 

642 12125.44 18.88 24250.88 5.606 

2003 43523.01 21.72 87046.03 4.235 
 
For each Reynolds number we obtained the area which provides the average velocities 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

+  
and therefore the friction factor (table 2).  
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This method is particularly interesting for Reτ=2003 [19] where the Reynolds number is 
not provided and therefore we are unable to use the first method. However, for Iwamoto’s 
data this second method allows a second estimation of f.  

3.1 Comparison and proposition of a new calibration for Dean’s correlation  

Figure (2) shows that Dean’s correlation (equation 5) does not provide accurate predictions 
of friction factor particularly for low Reynolds numbers. We will consider the DNS values 
in order to recalibrate this correlation which we write as: f = a Re-b  

 
Fig. 2. Friction factor from Dean’s correlation and DNS data.  

Different calibrations are proposed: In the first, we use the values of f obtained from Re  of 
Iwamoto until 642 (Table 1), the coefficients are a=0.0702 and b=0.25. In the second, the 
calibration is based on f obtained from the average velocity (Table 2), we obtain a=0.0652 
and b=0.241. Finally, the third calibration which seems the most adequate uses both the first 
for Iwamoto’s data and the second for Re=2300, we obtain a=0.065 and b=0.241. The 
relation is therefore:  
 
 
Figure (2) shows that this calibrated equation allows a more accurate prediction of the 
friction factor. Since equation (9) is an empirical relation, it is interesting to link the friction 
factor f to flow proprieties. In the following sections, we will find f from the velocity 
distribution.  

4 Analytical relations for friction factor based on velocity laws  

4.1 Logarithmic friction relation  

In this approach, for the average velocity we assume a logarithmic profile within the overall 
height. From equation (6):   
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After integrating we obtain:   

 
By this method, we obtain the friction factor from the average velocity as for pipes. Equations 
(2) and (4) provide 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

+ = (2/𝑓𝑓)0.5 and 𝑅𝑅𝑅𝑅𝜏𝜏 = (𝑓𝑓/8)0.5, we obtain therefore :  

 
We called equation (12) the logarithmic friction relation (LFR), with:   

 
With the values κ=0.4 et B=5, equation (12) can be expressed as a function of Re  

 
 

 
Fig. 3. Logarithmic friction factor and DNS data.  

In figure (3), the logarithmic friction relation is compared to DNS data. It shows that with 
LFR, we obtain accurate friction factor f values for intermediate Reτ. However, it presents a 
difference with DNS data for high and low Reτ. This gap can be related to the used 
assumption of a velocity logarithmic profile on the overall height. Indeed, the integration 
provides mistakes related to the inaccuracy of the logarithmic profile for both low and high 
values of y+ (figure 1). A more accurate average velocity needs more appropriate 
assumptions for velocity profile. In order to improve the logarithmic friction relation, it 
seems to be more suitable to take into account the linear profile in addition to the 
logarithmic profile (figure 1).  
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4.2 Linear-logarithmic friction relation  

In order to improve the former analytical relation for the friction factor, we assume a linear 
profile until y+ = 11.5 and the logarithmic profile for y+ > 11.5. The value of y+ = 11.5 
represents approximately the intersection between linear and logarithmic velocity profiles 
(figure 1). This assumption allows to obtain the average velocity and therefore the following 
equation for f:  
 

 
Equation (13) is the linear-logarithmic friction relation (LLFR), where the first term is the 
logarithmic friction relation and the second term results from the use of the linear profile for 
y+ > 11.5.   

 
Fig. 4. Logarithmic and Linear-Logarithmic friction relations and DNS data. 

Figure (4) shows an unexpected behavior: LLFR is more distant from the DNS data than LFR 
for low Reτ. Figure (5) presents an explanation through a comparison between the used 
assumptions for both friction relations (logarithmic and linear-logarithmic). The assumption 
of a logarithmic velocity profile on the overall height (figure 5.a) shows for Reτ=109 two 
potential mistakes: the first for y+<20 and the second for y+>20. The logarithmic velocity 
profile doesn’t take into account the region in figure (5.a) represented by vertical lines and 
considers the region with horizontal lines. However, this mistake seems to have little 
consequence since both effects are somewhat balanced.  
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(a)  

(b)  

Fig. 5. Comparison of the assumptions for both friction relations (logarithmic and linear-logarithmic); 
a) logarithmic velocity profile and DNS data, b) linear and logarithmic velocity profiles and DNS 
data.  

However, even if the linear-logarithmic relation is more realistic, the result is less accurate. 
This seems to be related to the region with horizontal lines for y+>11.5 (figure 5.b) which 
is not considered anymore. This reduces therefore the former balance with the region 
represented by vertical lines. 
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4.3 Summary of analytical relations  

These analytical relations present two shortcomings:  
o Both analytical relations are implicit  
o Results differ from DNS for low and high Reτ  

In order to improve the prediction of the friction factor and provide more accurate results, we 
will try to find it directly from a computation of average velocity instead of the analytical 
approach.  

5 Friction factor based on average velocity  

5.1 Law-of-the-wall method  

This method is based on linear and logarithmic velocity laws. The friction factor f is obtained 
by the average velocity (equation 2). The average velocity is obtained by integrating the 
linear profile until y+=11.5 and the logarithmic profile for y+>11.5. MATLAB provides the 
result directly with the “quad” function which uses recursive adaptive Simpson quadrature. 
Table (3) presents the results: q1 is the result of the first integral related to the linear profile 
and q2 the second one for the logarithmic velocity profile.  

Table 3. Friction factor obtained by the law-of-the-wall method.  

 
 
Figure (6) presents the friction factor as a function of the Reynolds number obtained by the 
law of-the-wall method. This result is compared to DNS data and the recalibrated Dean’s 
correlation. For Reτ>395, the results from the law-of-the-wall method are in good agreement 
with DNS data and therefore improve results from the former analytical methods. However 
for low Re, this method presents less accuracy (figure 6). This is probably due to the 
inaccurate prediction of the linear and logarithmic velocity profiles for low-Re (figure 5.b). 
For Reτ=109, the intersection of the DNS data and the log-profile seems about y+=20. It is 
possible to obtain a more accurate velocity profile for y+<20 by a method based on the 
momentum equation and a suitable eddy viscosity profile (Absi, 2009).  

 Reτ  q1  q2  q= q1+ q2  u+moy  Re  fx10-3  

109  66.12  1451.9  1518.02  13.92  3036.05  10.311  

150  66.12  2155  2221.12  14.80  4442.25  9.121  

298  66.12  4890.4  4956.52  16.63  9913.0296  7.229  

642  66.12  11882  11948.12  18.61  23896.25  5.774  

2003  66.12  42978  43044.12  21.48  86088.25  4.330  
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Fig. 6. Comparison of the law-of-the-wall method and DNS data.  

5.2 ODE-Log method  

In this method the friction factor f is obtained by the average velocity (equation 2) through 
two velocity profiles. The first until y+=20 is obtained by a method based on the momentum 
equation (14) and a suitable eddy viscosity profile [3] and the second by the log-law. 
 

 
 
In this equation, νt

+ represents the dimensionless eddy viscosity given by an analytical 
equation [5]. We can solve this equation by ODE45 function of MATLAB.  
Figure (7) presents the velocity profile (red solid line) obtained by the ordinary differential 
equation ODE (14) for y+<20 which is in very good agreement with DNS data. 
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Fig. 7. Mean streamwise velocity profile u+ = y+ for Reτ = 642. for Re = 642. solid line from equation 
(14).  

For the average velocity (equation 6), we use the trapezoidal rule for y+<20 and the “quad” 
function for the log-law. Table (4) presents the results of f obtained by equation (2). Reynolds 
numbers are obtained by equation (3).  

Table 4. Friction factor obtained by EDO-log.  

Reτ u+moy Re f×10-3 

109 13.82 3040.80 10.468 

150 14.71 4413 9.242 

298 16.46 9878 7.378 

642 18.58 23861.44 5.791 

2003 21.51 86051.79 4.321 
 
In order to evaluate the friction factor results obtained by the ODE-log method, we plot f = 
f(Re) with DNS data and the results from the law-of-the-wall method (figure 8). For Re>395, 
ODE-log and law-of-the-wall (linear-log) methods provide similar results. They are in good 
agreement with DNS data for intermediate Re numbers. For low-Re the result from ODE-log 
method seems somewhat less accurate. This result is unexpected because the velocity profile 
obtained by the momentum equation (equation 14) is more accurate for 0>y+>20 and 
therefore the average velocity and the friction factor f should be improved.  

11

E3S Web of Conferences 353, 02005 (2022) https://doi.org/10.1051/e3sconf/202235302005
EVF’2021



(a)  

(b)  

Fig. 8. Friction factor from ODE-Log and DNS data.  

Figure (9) provides an explanation of this unexpected result, where for low Re, ODE-log 
method  is somewhat less accurate than the law-of-the-wall method, through an analysis of 
the DNS data of mean velocities for 𝑅𝑅𝑅𝑅𝜏𝜏 = 109. Actually, both methods don’t allow the 
balance obtained with the logarithmic friction relation (figure 5). However, the average 
velocity over h seems less accurate with the ODE-log method because it doesn’t take into 
account the region represented by horizontal lines (figure 9).  
For low-Re, figure (9) shows that the log-law (with κ=0.4 and B=5) is unable to predict DNS 
data. This was also observed by Moser et al. for DNS where data at Reτ=180 has almost no 
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data. This was also observed by Moser et al. for DNS where data at Reτ=180 has almost no 

log layer (Moser, Kim, & Mansour, 1999). Therefore in order to provide accurate friction 
factor, it is important to predict velocities accurately on the overall height h. Accurate 
velocities for 0>y+>20 don’t allow appropriate values of f without a suitable velocity profile 
in other layers. For high Re, both velocities for 0>y+ >20 and log-law are suitable. However, 
the velocity profile is inaccurate in the outer region for high y+ (figures 1 and 7).   

 
Fig. 9. Analysis of mean streamwise velocity profile for Reτ=109  

5.3 ODE-wake method  

The results for 𝑓𝑓 presented in the former sections show that the accuracy of velocity profile 
affects directly the average velocity and therefore the friction factor values. Since, 
experiments and DNS show that the logarithmic law is not suitable in the outer region for 
high y+, it is important to use a more appropriate description of velocities. Log-wake law 
seems more suitable, the velocity profile is given by [12-18]:   
 

 
With п is the Coles’ parameter. Figure (10) shows that adding Coles wake function to the 
log-law allows a better description of DNS data for high y+. We use for the Coles’ parameter 
a value of п equal to 0.14 [13].  
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Fig. 10. Mean streamwise velocity profiles for Reτ=109; Solid line: Log-Wake Law 

For the average velocity (equation 6), we use the trapezoidal rule for y+<20 and the “quad” 
function for the log-wake law. Table (5) presents the results of f obtained by equation (2).  
Reynolds numbers are obtained by equation (3).  

Table 5. Friction factor obtained by EDO-wake.  

Reτ u+moy Re fx10-3 

109 14.16 3088.76 9.96264 

150 15.05 4517.60 8.81976 

298 16.92 10086.41 6.98312 

642 18.93 24309.44 5.57969 

2003 21.83 87451.79 4.19676 
 
With this correction, the friction factors obtained by both ODE (equation 14) and the log-
wake law (equation 15) present the better agreement with DNS data (figures 11 and 12). Even 
if we improve the friction factor, inaccurate values remain at low-Re. This is due to the 
velocity profile (figure 9), where classical laws seem unable to predict DNS data. Appropriate 
methods to predict velocity profiles at low-Re numbers are therefore needed.   
 

14

E3S Web of Conferences 353, 02005 (2022) https://doi.org/10.1051/e3sconf/202235302005
EVF’2021



 
Fig. 10. Mean streamwise velocity profiles for Reτ=109; Solid line: Log-Wake Law 

For the average velocity (equation 6), we use the trapezoidal rule for y+<20 and the “quad” 
function for the log-wake law. Table (5) presents the results of f obtained by equation (2).  
Reynolds numbers are obtained by equation (3).  

Table 5. Friction factor obtained by EDO-wake.  

Reτ u+moy Re fx10-3 

109 14.16 3088.76 9.96264 

150 15.05 4517.60 8.81976 

298 16.92 10086.41 6.98312 

642 18.93 24309.44 5.57969 

2003 21.83 87451.79 4.19676 
 
With this correction, the friction factors obtained by both ODE (equation 14) and the log-
wake law (equation 15) present the better agreement with DNS data (figures 11 and 12). Even 
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Fig. 11. Friction factors from the Log-Wake law and comparison with DNS and Law-of-the-wall 
method.  

 
Fig. 12. Friction factors from the Log-Wake law and comparison with DNS and Logarithmic friction 
relation.  

In order to improve inaccurate values for the friction factors at low-Re, we need a more 
appropriate description of velocities. Figure (13) shows that for 𝑅𝑅𝑅𝑅𝜏𝜏 = 109, ODE (equation 
14) and a log-law with  and a modified value of B equal to 6, allows better agreement 
with DNS data. We obtain from these velocities a very accurate value of the friction factor 
(red square in figure 14).  
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Fig. 13. Mean streamwise velocity profile for Reτ=109, ODE and Log-law with κ=0.4 and B=6.  

 
Fig. 14. Friction factor from ODE-Log with κ=0.4 and B=6 for Reτ=109 and DNS data.  

6 Conclusions  
We started this study by the evaluation of Dean’s correlation for the friction factor f  by DNS 
data. We observed that it presents a gap particularly for low-Re. We proposed therefore a 
new calibration by DNS data. The aim of the study was to obtain more accurate wall friction 
factors from velocity profiles.  On the one hand, we determined analytical relations for the 
friction factor based on velocity laws; on the other hand we obtained f from the average 
velocity. By assuming a logarithmic velocity profile on the overall height, we obtained a 
logarithmic friction relation similar to that of pipes. With this relation, f values are accurate 
for intermediate Re , however for low and high Re  we observed a gap with DNS data. In 
order to improve this relation, we took into account the linear profile for y+ <11.5, we 
obtained the linear-logarithmic friction relation. Nevertheless, for low-Reτ, the curve is more 
distant from the DNS data than the logarithmic friction relation. An explanation has been 
proposed based on the analysis of the velocity profile. The average velocity was first 
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Fig. 14. Friction factor from ODE-Log with κ=0.4 and B=6 for Reτ=109 and DNS data.  

6 Conclusions  
We started this study by the evaluation of Dean’s correlation for the friction factor f  by DNS 
data. We observed that it presents a gap particularly for low-Re. We proposed therefore a 
new calibration by DNS data. The aim of the study was to obtain more accurate wall friction 
factors from velocity profiles.  On the one hand, we determined analytical relations for the 
friction factor based on velocity laws; on the other hand we obtained f from the average 
velocity. By assuming a logarithmic velocity profile on the overall height, we obtained a 
logarithmic friction relation similar to that of pipes. With this relation, f values are accurate 
for intermediate Re , however for low and high Re  we observed a gap with DNS data. In 
order to improve this relation, we took into account the linear profile for y+ <11.5, we 
obtained the linear-logarithmic friction relation. Nevertheless, for low-Reτ, the curve is more 
distant from the DNS data than the logarithmic friction relation. An explanation has been 
proposed based on the analysis of the velocity profile. The average velocity was first 

calculated from the law-of-the-wall. The results allow a good prediction of f for Reτ > 395, it 
improves therefore the former results from the analytical methods. However, a gap remains 
for low-Re. It can be explained by a wrong description of the velocities from the linear and 
logarithmic laws for low-Re. Since it is possible to obtain a more 10 accurate velocity profile 
for y+ < 20 by solving the momentum equation, we used this method in 11 order to improve 
f. We obtained similar results than the law-of-the-wall method for Reτ>395. However, we 
observed a small gap for low-Re. We used the analysis of velocity profile again to explain 
this behavior. For low-Re, the log-law (with κ=0.4 and B=5) is unable to predict DNS data. 
Indeed, low-Reynolds number effect in channel flows has been observed previously in 
different experimental and computational studies. The results for f presented by these 
methods show that the accuracy of velocity profile affects directly the average velocity and 
therefore the friction factor values. In order to provide more suitable friction factor values, it 
is important to predict velocities accurately on the overall height h and not only for a given 
layer. For high-Re, the velocity profile is inaccurate particularly in the outer region for high 
y+. We used therefore a more appropriate method which consists to use for y+<20 the 
momentum equation with an eddy viscosity formulation and the log-wake law for high y+ 

values. Friction factors obtained by this method allow good agreement with DNS data. For 
Reτ = 109, a value of B = 6 improves the log-law. With 29 the momentum equation for y+ < 
20, the friction factor allows the better description of DNS data.  
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