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Abstract. In recent years, the scientific community has been concerned about the threat of global warming. 

This phenomenon is due to the increase of greenhouse gas emissions greenhouse gas emissions due to human 

activity. Renewable energies present themselves as a potential solution to reduce to reduce greenhouse gas 

emissions. Among the promising means of production As part of its policy of promoting renewable energy, 

the Cameroonian government launches each year projects in this area, hence the need to study the various 

sites and according to the parameters that are most often stochastic, hence the problem of choosing the type 

of wind power choose and implement. Thus this paper proposes a method of estimating the power produced 

according to the wind speed data of the scale coefficient and the shape on the station P/30 of Douala of the 

site of ASECNA - Douala Cameroon over a period of one year which presents different characteristics on 

the four seasons of the coastal areas of Cameroon by using the distribution of Weibull and by proposing 

another method using artificial intelligence ; This instability offers the opportunity to study other methods 

of power estimation using, as in this work, a multilayer perceptron type neural network. Based on the 

Weibull parameters, the power estimation is done by both approaches according to the different coastal 

seasons: hard dry season, short rainy season, short dry season and long rainy season. In addition, the form 

factor and scale factor fluctuated over the year from 1.36 to 1.94 and from 2.74 m/s to 3.80 m/s for different 

periods respectively. It was found that the average wind speed is 1.309 m/s, the average power for this site 

is 289.46 MW, and the months of March and July have high powers because the winds are warmer in these 

periods. For estimation we used a multi-layer perceptron consisting of: 03 input layers (wind speed, form 

factor and scale factor), 02 hidden layers of 10 neurons each and one output layer (wind turbine power), for 

training we used the gradient back-propagation algorithm using Matlab software. After an average of 200 

training runs and a training step of 0.001, we obtained an RMSE for each of the four seasons of 0, 0065361; 

0.00165361; 0.00052543; 0.0000011564. It was concluded that the algorithm improves the accuracy of 

power estimation by the MLP model and can be recommended for wind turbine power estimation. 
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1 Introduction
 
The energy question is a global issue requiring the 
development of new energy sources to overcome the 
current deficit. It probably coincides with the depletion 
of conventional energy sources in view of the decline in 
oil prices. Renewable energies present themselves as a 
potential solution to the reduction of greenhouse gas 
emissions. Among the promising means of production, 
we can mention wind power, biomass and photovoltaic. 
Moreover, these energies present themselves as a very 
promising means of electricity production for several 
reasons. We can mention among others: the technology 
which presents qualities on the ecological plan, because 
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the finished product is not polluting, silent and does not 
involve any disturbance of the environment, if it is not 
the occupation of space for the installations of big 
dimensions. Renewable energies can be used in the 
mountains, in a remote village or in the center of a large 
city. 

The rapid development of wind technologies is an 
alternative to conventional energy systems in recent 
years. The equatorial zone, which extends from the 
second to the sixth degree of north latitude, in which the 
city of Douala is located, has a low wind speed but is 
exploitable for the production of electrical energy. 
Douala is characterized by an average hourly wind 
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speed that has a moderate seasonal variation throughout 
the year. The windiest period of the year lasts 3.5 
months, from June 11 to September 26, with average 
wind speeds above 6.3 kilometers per hour. The 
windiest day of the year is August 3, with an average 
wind speed of 7.5 kilometers per hour. The calmest 
period of the year lasts 8.5 months, from September 26 
to June 11. The calmest day of the year is November 30, 
with an average hourly wind speed of 5.1 kilometers per 
hour. More than 73% of its electricity comes from the 
Édéa hydroelectric dam. Located on the Sanaga River in 
the city of Edea, which is gradually experiencing a 
decrease in water supply due to insufficient rainfall as a 
result of climate change. This condition leads to a low 
water reserve and close to the reference value of the dam 
operation which is increasingly the cause of power cuts. 
However, the demand is increasing and the supply is 
insufficient. These situations cause damage in the 
production and distribution of electricity. 

Due to the economic conditions, and high stochastic 
variability of wind, the estimation and accurate 
prediction of wind potential is too complicated. 
Therefore, it is clear that the efficient processing and 
application of wind energy resources require accurate 
and complete information on the wind characteristics of 
the Region. 

The way to estimate the potential of wind energy in 
a selected site is to analyze and explain the data 
collected from the metrological station that is installed 
at the same location to ensure the accuracy of the 
analysis. The data can also be classified on daily, 
monthly or annual basis [1]. Identifying wind potential 
Energy is very important in determining site efficiency. 
In this paper, the analysis of station characteristics will 
be implemented to evaluate the wind potential of site 
P/30 based on the Weibull distribution. Now Wind 
energy forecasting relies on the estimation of wind 
speed. Over the past decades, various models have been 
established to predict wind speed to obtain accurate 
wind energy information and these power forecasting 
methods can be used to plan unit commitment, 
scheduling and dispatch by system operators. In general, 
these models are divided into three types: physical, 
statistical learning and intelligent models. Physical 
approaches, which rely on a detailed physical 
description of the atmosphere, use meteorological data 
such as air temperature, topography and pressure to 
predict wind speed. These types of methods have not 
been applied to short-term wind speed prediction due to 
complex computational methods, high costs and poor 
performance. Yet they can have more accurate long-
term predictions compared to other types of prediction 
models [2]. We have thus in the literature [3] present a 
methodology for accurate prediction of wind speed and 
wind power using machine learning algorithms set. The 
objective of this study is to consider the failure to 
improve the predicted wind power output for Agartala 
using two combined methods AdaBoost and XGBoost 
to predict the wind power of the station. [4] present three 
models (Boosted Trees, Random Forest and Generalized 
Random Forest) to provide reliable short term wind 
power prediction. incorporating lagged data has been 
shown to improve prediction performance compared to 

static models. experiments conducted have shown that 
ensemble models taking into account lagged data can 
achieve better wind power prediction performance. [5] 
make a generalized regression neural network (GRNN), 
radial basis function neural network (RBFN) and a 
hybrid of GRNN and RBFN are applied for wind energy 
estimation and their performance is with respect to 
short-term wind energy prediction. The research in this 
paper interprets that GRNN has consistently better than 
RBFN. 
The GRNN-RBFN hybrid also showed good accuracy 
in one week ahead wind power prediction. [6] Propose 
a method based on Gaussian processes (GPs) to improve 
the probabilistic prediction of wind power in a region. 
They conclude that this study went through two types of 
comparisons of dynamic and static GP as well as direct 
and indirect prediction scheme. The result of the 
comparison between dynamic and static GP revealed 
that the dynamic GP generates Prediction Intervals (PI). 
In addition, comparing the accuracy of direct and 
indirect prediction plan, it shows that the indirect 
prediction strategy results in wider prediction intervals 
with higher probability coverage of the net demand 
forecast share. Moreover, the proposed model provides 
accurate results of predicted energy at each time step.[7] 
propose a multi-resolution forecasting model to improve 
the current wind power forecasting performance. The 
proposed model contains three steps, including a multi-
resolution ensemble, adaptive multiple error corrections 
and uncertainty estimation. This allows them to 
conclude that the techno-economic analysis allows to 
conclude that the proposed model has the potential to be 
applied to improve the power integration performance. 

2. Data acquisition

2.1. Location of the site

The station of Douala P/30 of the site of ASECNA - 
Douala Cameroon is located in the littoral region with 
an altitude of 13 m.  The coordinates of the site are 
(4.012936 longitude, 9.71835 latitude). 

 

 

Fig. 1. Geolocation of the ASECNA site P / 30
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2.2. ASECNA site data P / 30

Wind data were acquired from the metrological mast 
at ASECNA P/30 (Douala city) in Cameroon. The data 
include Wind speed, Weibull (k), and Weibull (C) for 
the 12 months of the year 2020. The data were recorded 
on a ten-minute interval, as required by the international 
standard for wind measurement. 

Table 1. Table Data from the ASECNA P / 30 wind station 

for the year 2020

Year Month

Wind speed 

C(m/s) Weibull k

Weibull C 

(m/s)

2020 January 1,3903226 3,6999272 1,550865354

2020 Fébruary 1,6322581 3,7989791 1,943513735

2020 March 1 3,0082408 1,366398328

2020 April 1,1645161 2,8676263 1,404950669

2020 May 1,3935484 2,9698441 1,570712247

2020 June 1,2258065 2,753343 1,431598643

2020 July 1,4774194 3,401074 1,655192164

2020 August 1,3967742 3,4936381 1,562742886

2020 September 1,4233871 3,1628053 1,653439841

2020 October 1,3933333 2,7472998 1,542298142

2020 November 1,2166667 3,0747985 1,439902028

2020 Décember 1 3,0375622 1,396369078

 

Table 2. Data from the ASECNA P / 30 wind station for the 

year 2020

Year Month
Wind speed 
C(m/s)

Wind 
Power(MW)

2020 January 1,3903226 29,99

2020 Fébruary 1,6322581 131,09

2020 March 1 258,04

2020 April 1,1645161 79,46

2020 May 1,3935484 27,67

2020 June 1,2258065 25,18

2020 July 1,4774194 289,46

2020 August 1,3967742 17,54

2020 September 1,4233871 52,85

2020 October 1,3933333 23.59

2020 November 1,2166667 39,55

2020 Décember 1 74,66

 

3. Methods

3.1. Weibull probability distribution 
function

There are many continuous probability density functions 
that can model several phenomena [8], but in literature 

we found that the two-parameter Weibull distribution 
has been increasingly put forward for problems of wind 
potential estimation in different areas [9]. The two-
parameter Weibull model is given as follows [10]-[12]; 

�(�)  =  �
� �  ����	
 ��(−(�|�)�)                                   (1)                            

�(�)  =  1 − ��(−(�|�)�)                                             (2)                            

Where
�(�)  =Probability density function
�(�)  =Cumulative density function 
� = Dimensionless shape parameter
� = Scale parameter ( � �⁄ )

There are several methods for determining the K and C 

parameters from the wind data of a site. The most 

common methods are: the graphical method, the 

moment method, the maximum likelihood method, the 

modified maximum likelihood method and the standard 

deviation method [13].Since the available wind data are 

in frequency distribution format, the recommended 

method is the modified maximum likelihood method. 

The Weibull parameters are determined using the 

following equations:

� = (∑ ��� �����  �×����  �����
∑ ���×����  �����

)-1                                                   (3)

� = ( 

�(�!") × ∑ �#$ × ���%  �&%'
 )�

�                                     (4)  

Where *+   is the midpoint of the intervals i of the 

velocities and n the number of intervals, ,�*+  � the 

frequency for which the wind speed falls on i. -(* ≥ /)
the probability that the wind speed is greater than or 

equal to zero. Equation (3) is solved numerically by 

successive iteration until the value of k converges. The 

calculations are initialized with k=2. After convergence, 

equation (4) is now solved explicitly using the value of 

k to find that of C.

3.2. Estimating and fitting Weibull 
distribution

The capacity of wind resources can be determined by the 
density of wind power at a specified location. There are 
several approaches to estimate the monthly or annual 
power density per unit area of a site based on the 
Weibull distribution. The probability density function is 
expressed from the mathematical relationships as below, 
[14], with WPD (Wind Power Density) and WED(Wind 
Energy Density)  [14], [15]. 
023 = ∫ 


5
6

" 7�8�(�)9� = 

5 7 �8: �1 + 8

��             (5)                           

0<3 = 

5 7 �8: �1 + 8

�� >                                              (6)                           

> = ?�@ABC�9 DB�� �CBE9
Where ρ is the air density (7 = 1.225 IJ �8⁄ ) at standard 

atmosphere at sea level, Γ is the gamma function. 

Here the wind potential depends first of all on the average 

wind speeds but also on wind power density and wind energy 

density because the average wind speeds can take the same 

values at different locations, although they possess the same or 

different wind energies or wind energy densities [10].
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3.3. Estimating and fitting Weibull 
distribution  

You are free to use colour illustrations for the online 
version of the proceedings but any print version will be 
printed in black and white unless special arrangements 
have been made with the conference organiser. Please 
check whether or not this is the case. If the print version 
will be black and white only, you should check your 
figure captions carefully and remove any reference to 
colour in the illustration and text. In addition, some 
colour figures will degrade or suffer loss of information 
when converted to black and white, and this should be 
taken into account when preparing them. 

3.4. Multi-layer perceptron neural networks

Multi-layer perceptron models, which are based on the 
nervous system of the human brain, are suitable for 
modeling the nonlinear behavior of complex systems. In 
the multi-layer back propagation perceptron, the 
neurons of one layer are linked to all the neurons of the 
adjacent layers. These links are subject to a coefficient 
altering the effect of the information on the destination 
neuron. Thus, the weight of each of these links is the key 
element of the network's operation: the implementation 
of a multilayer Perceptron to solve a problem thus 
requires the determination of the best weights applicable 
to each of the inter-neuronal connections. Here, this 
determination is done through a back propagation 
algorithm. Moreover, the nature of these models allows 
them to make predictions for problems of nonlinear 
structure. This model works on the basis of learning the 
problem solving process to achieve the desired or 
desired output. To achieve this goal, it is necessary to 
analyze data starting with a preprocessing of it and then 
training using specific algorithms and minimizing the 
error at most, the appropriate output is calculated. There 
are several examples of neural networks, among which 
we have the multilayer Perceptron with its learning and 
training algorithm which is the gradient back-
propagation that is more and more used than others. This 
network consists of 3 layers (input, hidden and output), 
which are composed of interconnected neurons in front 
and after each. Each layer is fully connected to the layer 
before and after itself [2]. 

 
Fig. 2. Architecture of a multi-layer perceptron 
 

3.4.1. Training process of the multi-layer perceptron 
The training process of MLP networks using the 

backpropagation algorithm, also known as the 

generalized Delta rule, is usually done by the successive 

application of two specific stages. The figure below 

shows n MLP configuration composed of two hidden 

layers, n signals on its input layer, n1 neurons in its first 

hidden neural layer, n2 neurons in its second hidden 

neural layer, and n3 signals associated with the output 

neural layer (third neural layer).

The first stage is called forward propagation, where the 

signals { x1 , x 2, ………, xn } of a given sample from 

the training set are inserted into the network inputs and 

are propagated layer-by-layer until the production of the 

corresponding outputs. Thus, this stage intends solely in 

obtaining the responses from the network, taking into 

account only the current values of the synaptic weights 

and thresholds of its neurons, which will remain 

unmodified during the execution of this stage.

Next, the responses produced by the network outputs are 

compared to the respective available desired responses, 

since it is a supervised learning process, as mentioned 

earlier. It is important to note that, considering an MLP 

network with n neurons in its output layer, the respective 

n3 deviations (errors) between the desired responses and 

those produced by the output neurons are calculated and 

will be used after that to adjust the weights and 

thresholds of all neurons.

Therefore, because of these errors, it is applied the 

second stage of the backpropagation algorithm, known 

as backward propagation. Unlike the first stage, the 

modifications (adjustments) of the synaptic weights and 

thresholds of all neurons of the network are executed 

during this stage[16].

  
 
3.4.2. Deriving the Backpropagation 

Algorithm
 

From Fig.2 the following terminology will be assumed 

for its fundamental parameters:

� Wji
(L) are weight matrices whose elements 

denote the value of the synaptic weight that connects the

jth neuron of layer (L) to the ith neuron of layer (L - 1).

� Wji
(3) is the synaptic weight connecting the 

jth neuron of output layer to the ith neuron of layer 2.

� Wji
(2) is the synaptic weight connecting the 

jth neuron of hidden layer 2 to the ith neuron of hidden 

layer 1.

� Wji
(1) is the synaptic weight connecting the 

jth neuron of hidden layer 1 to the ith signal of the input 

layer

Ij
(L) are vectors whose elements denote the weighted 

inputs related to the jth neuron of layer L, and are 

defined by:

Ij
(1)= ∑ 0K%

(
)&%'" . �% ⟹ Ij
(1)=W1,0

(1). �" + W1,1
(1). �
 +

⋯ ⋯ ⋯ ⋯ + W1,n
(1). �&                                           (7)

Ij
(2)=  ∑ 0K%

(5)&
%'" . N% ⟹ Ij
(2)= W1,0

(2).N"
(
) +

W1,1
(2).N


(
) + ⋯ ⋯ ⋯ + W1,n1
(2). N&


(
)
                 (8)

Ij
(3)=  ∑ 0K%

(8)&5%'" . N% ⟹ Ij
(3)= W1,0

(3).N"
(5) +

W1,1
(3).N


(5) + ⋯ ⋯ ⋯ ⋯ + W1,n2
(3). N&5

(5)
                  (9)
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� Yj
(L) are vectors whose elements denote the 

output of the jth neuron related to the layer L. They are 

defined as:

Yj
(1) = J(Ij

(1) )                                                    (10)                                                                                                         

Yj
(2) = J(Ij

(2) )                                                     (11)                                                                                                                    

Yj
(3) = J(Ij

(3) )                                                     (12)                                                                                                                      

 
3.4.3. Root mean Square error

The Root Mean Square Error (RMSE) (also called the 

root mean square deviation, RMSD) is a frequently used 

measure of the difference between values predicted by a 

model and the values actually observed from the 

environment that is being modelled. These individual 

differences are also called residuals, and the RMSE 

serves to aggregate them into a single measure of 

predictive power. 

The RMSE of a model prediction with respect to the 

estimated variable Xmodel is defined as the square root of 

the mean squared error:

RMSE= O∑ (PQRS,� 	PUQVWX,�)Y����
&                             (13)                                                        

where Xobs is observed values and Xmodel is modelled 

values at time/place i.
The calculated RMSE values will have units, and RMSE 

for phosphorus concentrations can for this reason not be 

directly compared to RMSE values. However, the 

RMSE values can be used to distinguish model 

performance in a calibration period with that of a 

validation period as well as to compare the individual 

model performance to that of other predictive models.

4. Results and discussions
In this study, the composition of an input layer, two 
hidden layers, and an output layer is used as a structure 
of the multilayer perceptron. The parameter in the input 
layer consists of the wind speed. The dependent variable 
that used as output is the power of the station P/30. The 
network design includes 1, 20, and 1 neurons for the 
input, hidden and output layers, respectively. In 
addition, sigmoid, tangent, and linear functions using 
the gradient back propagation algorithm with 200 
repetitions were used for the input and output layers. 
These functions were selected based on the trial and 
error procedure to obtain the accurate wind speed 
estimates to better predict the station power. In addition, 
the complexity of each machine learning network 
increases by adding configuration in the internal nodes. 
Based on 20 neurons from both hidden layers we trained 
our perceptron from our proposed program. This 
allowed us to also play with such sensitive parameters 
as the training step. 

To obtain our results we used the scientific 
computing software Matlab 2020 on an HP Core i3 
machine. Following the exploitation of the raw data 
obtained in our site, the profiles of the speed and then of 
the seasonal and annual wind power at the altitude of (13 
m) in the city of Douala are expressed and displayed 
during the days of the month and the whole year. 

4.1. Wind power estimation using the 
Weibull model

It should be noted that the months of March and July, 
which represent (the great and small dry season and 
hard) have a high wind speed unlike the other months. 
This implies that out of the 4 seasons found in the 
Littoral, the dry seasons present ideal periods to have a 
good estimate of the power of the site which oscillate 
around 258.06 MW for the month of March and 
289.46Mw in July. 

 
Fig. 3. Monthly wind profile at site P / 30 for the year 

2020 

Fig. 4. Seasonal wind and power profile for the year 

2020
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Fig. 5 Power estimation over the 4 seasons with Weibul (big 
dry season, small rainy season, small dry season and big 

rainy season) 
 
 
 

4.2. Estimation  de la puissance pour la  
station P / 30 en utilisant le Modèle  
perceptron multicouche

In this part we proposed an estimation method using 

an intelligent approach from a neural network 

model which is the multilayer perceptron. For the 

big dry season we obtained the model of (Fig. 6)
after 200 trainings with a learning step of 0.1 we 

compared the different errors of our predictive 

model and we obtain a Root Mean Square Error of 

0, 0065361; Thus the model has reproduced the 

behavior of the data curve. Hence the month of 

March is the period during which we have good 

winds and a good power 258.06MW. For small

rainy season after 20 trainings with a learning step 

of 0.001 we get a Root Mean Square Error of 

0.00165361 (Fig. 7). Thus the month of May is the 

period during which we have good winds and a 

power around 79.46MW.For the small dry season 

after 200 trainings with a learning step of 0.1 we 

obtain a Root Mean Square Error of 

0.00052543(Fig. 8).Thus the month of July is the 

period during which we have good winds and a 

power around 289. For the great rainy season, after 

200 training sessions with a learning step of 0.1, we 

obtain a Root Mean Square Error of 0.0000011564 

(Fig. 9). Thus, the months of September and 

October are the period during which we have good 

winds and a power around 68MW to 80MW.

Fig. 6 Power estimation during the long dry season 

Fig.7 Power estimation during the short rainy season

               Fig. 8 Estimated power during the short dry season
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Fig.9 Power estimation during the main rainy season

Table 2: Summary of the RMSE

Rmse

Power estimation during 

the long dry season

0, 0065361

Power estimation during 

the short rainy season

0,00165361

Estimated power during 

the short dry season

0,00052543

Power estimation during 

the main rainy season

0,0000011564

Here we present the tabulated results of the RMSE in 

our test between the two methods and we find that our 

model has very good ability to estimate the power as a 

function of seasons.

Conclusion

The purpose of this work was to estimate the wind 
power at the site using two methods, the Weibull 
distribution and a multilayer Perceptron neural model 
over each season with varying wind profile. The 
seasonal wind speed profiles were plotted. From the 
results, it can be concluded that the power prediction 
method based on a particular type of neural networks 
was used to estimate the output value. Furthermore, this 
paper provides an alternative power estimation model 
that can be a solution for the problems and challenges 
associated with wind power prediction. To further 
validate this work it is necessary to combine this work 
with comparisons to experimental results to validate our 
model which is the focus of our current work. 

Abbreviations: 

ASECNA : Agence pour la sécurité de la navigation aérienne
GRNN: Generalized regression neural network
RBFN: Radial basis function neural network
� = Dimensionless shape parameter

� = Scale parameter ( � �⁄ )
WPD : Wind Power Density
WED: Wind Energy Density  
7 = 1.225 Air density(IJ �8⁄ )
MLP: Multi-layer perceptron
ANN: Artificial neural networks
RMSE: The Root Mean Square Error
RMSD: The root mean square deviation 
 

References
[1] F. H. Mahmood, A. K. Resen, et A. B. Khamees, « Wind 

characteristic analysis based on Weibull distribution of Al-

Salman site, Iraq », Energy Reports, vol. 6, p. 79 87, févr. 

(2020), doi: 10.1016/j.egyr.2019.10.021.

[2] S. Samadianfard et al., « Wind speed prediction using a 

hybrid model of the multi-layer perceptron and whale 

optimization algorithm », Energy Reports, vol. 6, p. 

1147 1159, nov. (2020), doi: 10.1016/j.egyr.2020.05.001.

[3] R. Banik, P. Das, S. Ray, et A. Biswas, « Wind power 

generation probabilistic modeling using ensemble learning 

techniques », Materials Today: Proceedings, vol. 26, p. 

2157 2162, (2020), doi: 10.1016/j.matpr.2020.02.464.

[4] J. Lee, W. Wang, F. Harrou, et Y. Sun, « Wind Power 

Prediction Using Ensemble Learning-Based Models », IEEE 
Access, vol. 8, p. 61517 61527, 2020, doi: 

10.1109/ACCESS.2020.2983234.

[5] J. Varanasi et M. M. Tripathi, « A hybrid model of 

generalized regression neural network and radial basis 

function neural network for wind power forecasting in Indian 

wind farms », Journal of Statistics and Management Systems,

vol. 23, no 1, p. 49 63, janv. (2020), doi: 

10.1080/09720510.2020.1721598.

[6] A. Ahmadpour et S. Gholami Farkoush, « Gaussian 

models for probabilistic and deterministic Wind Power 

Prediction: Wind farm and regional », International Journal of 
Hydrogen Energy, vol. 45, no 51, p. 27779 27791, oct. (2020),

doi: 10.1016/j.ijhydene.2020.07.081.

[7] H. Liu et Z. Duan, « Corrected multi-resolution 

ensemble model for wind power forecasting with real-time 

decomposition and Bivariate Kernel density estimation », 

Energy Conversion and Management, vol. 203, p. 112265, 

janv.( 2020), doi: 10.1016/j.enconman.2019.112265.

[8] I. Pobočíková, Z. Sedliačková, et M. Michalková, 

« Application of Four Probability Distributions for Wind 

Speed Modeling », Procedia Engineering, vol. 192, p. 

713 718, (2017), doi: 10.1016/j.proeng.2017.06.123.

[9] H. S. Bagiorgas, G. Mihalakakou, S. Rehman, et L. M. 

Al-Hadhrami, « Wind power potential assessment for three 

buoys data collection stations in the Ionian Sea using Weibull 

distribution function », International Journal of Green 
Energy, vol. 13, no 7, p. 703 714, mai (2016), doi: 

10.1080/15435075.2014.896258.

[10] T. Aized, S. M. Sohail Rehman, S. Kamran, A. H. 

Kazim, et S. Ubaid ur Rehman, « Design and analysis of wind 

pump for wind conditions in Pakistan », Advances in 
Mechanical Engineering, vol. 11, no 9, p. 168781401988040, 

sept. (2019), doi: 10.1177/1687814019880405.

[11] T. P. Chang, « Estimation of wind energy potential 

using different probability density functions », Applied 
Energy, vol. 88, no 5, p. 1848 1856, mai (2011), doi: 

10.1016/j.apenergy.2010.11.010.

E3S Web of Conferences 354, 01009 (2022)
Energy2021-Conference

https://doi.org/10.1051/e3sconf/202235401009

 

7



[12] S. F. Khahro, K. Tabbassum, A. M. Soomro, L. Dong, 

et X. Liao, « Evaluation of wind power production prospective 

and Weibull parameter estimation methods for Babaurband, 

Sindh Pakistan », Energy Conversion and Management, vol. 

78, p. 956 967, févr. (2014), doi: 

10.1016/j.enconman.2013.06.062.

[13] F. H. Mahmood, A. K. Resen, et A. B. Khamees, « Wind 

characteristic analysis based on Weibull distribution of Al-

Salman site, Iraq », Energy Reports, vol. 6, p. 79 87, févr. 

(2020), doi: 10.1016/j.egyr.2019.10.021.

[14] S. H. Pishgar-Komleh, A. Keyhani, et P. Sefeedpari, 

« Wind speed and power density analysis based on Weibull 

and Rayleigh distributions (a case study: Firouzkooh county of 

Iran) », Renewable and Sustainable Energy Reviews, vol. 42, 

p. 313 322, févr. (2015), doi: 10.1016/j.rser.2014.10.028.

[15] A. K. Azad, M. G. Rasul, M. M. Alam, S. M. A. Uddin, 

et S. K. Mondal, « Analysis of Wind Energy Conversion 

System Using Weibull Distribution », Procedia Engineering,

vol. 90, p. 725 732, (2014), doi: 

10.1016/j.proeng.2014.11.803.

[16] I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, 

L. H. B. Liboni, et S. F. dos Reis Alves, « Multilayer 

Perceptron Networks », in Artificial Neural Networks, Cham: 

Springer International Publishing,(2017), p. 55 115. doi: 

10.1007/978-3-319-43162-8_5.

E3S Web of Conferences 354, 01009 (2022)
Energy2021-Conference

https://doi.org/10.1051/e3sconf/202235401009

 

8


