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Abstract. The time series of wind power is influenced by many external factors, showing strong volatility 
and randomness. Aiming at the problem of low prediction accuracy of wind power time series, this paper 
proposes a short-term wind power prediction framework based on two-layer decomposition and the 
combination of ensemble model and deep network, which is composed of complete ensemble empirical mode 
decomposition (CEEMD), sample entropy (SE), stacking ensemble, linear regression (LR), variational mode 
decomposition (VMD), long short term memory (LSTM) and multi-layer perceptron (MLP). Firstly, CEEMD 
is used to decompose the time series of wind power into different modes and then SE is used for reconstruction. 
Secondly, different models are applied to predict the different reconstruction components and select the 
optimal model. Subsequently, VMD is used to decompose the partially decomposed reconstruction 
components and a combined prediction model of stacking ensemble and LSTM is established. Finally, in 
order to further improve the prediction accuracy, MLP is applied to correct the error and the corrected error 
is superimposed with the prediction results and other reconstruction components to obtain the final predicted 
value. The simulation results show that the accuracy and effectiveness of this model is superior to the 
traditional model and the prediction accuracy of short-term wind power time series is improved effectively. 

Key words: Wind power prediction; complete ensemble empirical mode decomposition; variational mode 
decomposition; stacking ensemble; long short term memory; multi-layer perceptron. 

1. Introduction 
With the development and continuous progress of society, 
people's demand and requirements for energy continue to 
increase. Traditional fossil fuels are far from meeting 
people's needs. The emergence of new energy can not 
only solve the problem of energy shortage, but also 
effectively alleviate the environmental issues such as the 
greenhouse effect and air pollution. Wind energy is the 
most widely used new energy with the largest application 
prospects. It is of great significance to use wind energy 
reasonably and realize wind power generation. However, 
due to the uncertainty and volatility of wind, when wind 
power generation is carried out, it will bring a severe test 
to the safe and stable operation of the power grid and the 
safety and reliability of the grid connection of the power 
system. In order to reduce the impact of wind power 
generation on the power system, it is of great significance 
to achieve accurate prediction of wind power in wind 
farms [1-4]. 
At present, domestic and foreign researchers have mainly 
divided the methods of wind power prediction into 

physical method [5-8], statistical method [9-13] and 
combined prediction method [14-16]. The physical 
method is based on the wind speed, wind direction, 
longitude, temperature, air pressure and other impact 
factors to realize wind power prediction. Due to the large 
number of impact factors, it is usually necessary to 
perform feature selection; the statistical method is based 
on the time series of historical wind power, using methods 
such as data mining and deep feature analysis to realize 
wind power forecast; the combined forecasting method is 
currently the most popular method, which often 
manifested as the ensemble of multiple models such as the 
combination of shallow model and deep model, to 
improve the prediction accuracy to a certain extent. 
Currently, support vector machine [17-18], neural 
networks [19-21] and deep networks [22-26] are often 
used in wind power prediction. It proposes an ultra-short-
term wind power forecasting method combining multi-
cluster algorithm and hierarchical clustering algorithm, 
which clustering historical power sequences and historical 
meteorological sequences and establishing particle swarm 
optimization-back propagation (PSO-BP) neural network 
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prediction model separately to obtain the final prediction 
result in reference [27]. It reports a LSTM prediction 
model based on multiple meteorological features and 
error correction of the final prediction result to obtain the 
final prediction value in reference [28]. In reference [29], 
Ying-Yi Hong proposes a deep feature extraction of wind 
power time series by convolutional network (CNN) and 
then establishes an LSTM prediction model to realize the 
prediction of wind power. Reference [30] proposes a new 
short-term wind power prediction method consisting of 
partial direct prediction and iterative prediction through 
the combination of chaotic time series analysis and 
singular spectrum analysis (SSA). 

2. Experimental Principle and Methods 

2.1 COMPLETE ENSEMBLE EMPIRICAL MODE 
DECOMPOSOTION(CEEMD) 

Complete ensemble empirical mode decomposition 
(CEEMD) is an improvement of empirical mode 
decomposition (EMD) and integrated empirical mode 
decomposition (EEMD). EMD can decompose the 
fluctuation and change trend of the original signal, 
making the signal tends to be stable. CEEMD adds a set 
of positive and negative white noise to the original signal, 
which can not only suppress the EMD mode aliasing 
problem, but also make the residual noise maintain on a 
very small scale. The main steps are as follows: 
Step 1: Add n sets of positive and negative white noises 
𝑚𝑚�, 𝑚𝑚�to the original signal x(t) to form the composite 
signals P(t) and N(t). 

P�t� � ��t� � 𝑚𝑚� 
N�t� � ��t� � 𝑚𝑚� 

Step 2: Make empirical mode decomposition on the 
composite signals, where the jth IFM component of the 
ith signal is expressed as 𝑐𝑐��. 
Step 3: Calculate the average value of all inherent modal 
function (IMF) components to obtain the decomposition 
result of CEEMD, as shown in Equation 1. 

 𝐶𝐶� � �
�� ∑ 𝑐𝑐�������                 (1) 

2.2 SAMPLE ENTROPY(SE) 
Sample entropy (SE) is a method of measuring the 
complexity of time series. The larger the entropy value, 
the higher the complexity of the time series. The SE does 
not depend on the data length and has better consistency. 
The calculation of the sample entropy value is shown in 
Equation 2. 

SampEn�k, r, L� �  ��n �������
�����         (2) 

Where k is the dimension, r is the threshold, L is the length, 
and 𝐵𝐵���� is the probability of matching k points when 
the threshold is r. 

2.3 VARIATIONAL MODE 
DECOMPOSITION(VMD) 

Variational mode decomposition (VMD) is a new signal 
decomposition method. Its purpose is to decompose a 
signal into multiple discrete modes 𝑢𝑢��k � �,2,3, … . K�. 

For each mode, the state  𝑢𝑢� surrounds the center 
frequency 𝜔𝜔� and the VMD method mainly includes the 
solution and construction of the variational problem. To 
decompose the original time series into a series of modal 
functions with limited bandwidth, the main process is as 
follows: 
Step 1: Hilbert transform is performed for each mode 𝑢𝑢� 
to obtain a single-sided spectrum. 
Step 2: For each mode 𝑢𝑢� , according to the estimated 
center frequency, adjust the spectrum to the 
corresponding base band. 
Step 3: Using the Gaussian smoothness of the 
demodulated signal to estimate the bandwidth of each 
mode, the constraint variation problem is expressed as 
Equation 3. 

min �∑ �𝜕𝜕� ��𝛿𝛿�𝑡𝑡� � �
��� 𝑢𝑢��𝑡𝑡�� 𝑒𝑒������ �������     (3) 

s. t. � 𝑢𝑢� � 𝑓𝑓�𝑡𝑡�
�

���
 

Step 4: Introduce the second penalty factor C and 
Lagrange multiplier θ to transform the constrained 
optimization problem into an unconstrained optimization 
problem, as shown in Equation 4. 

L�𝑢𝑢�, 𝑤𝑤�, θ� � 
C�∑ �𝜕𝜕� ��𝛿𝛿�𝑡𝑡� � �

��� 𝑢𝑢��𝑡𝑡�� 𝑒𝑒������ ������� � ‖𝑓𝑓�𝑡𝑡� �
∑ 𝑢𝑢����� ‖ �〈θ�t�, 𝑓𝑓�𝑡𝑡� � ∑ 𝑢𝑢����� 〉��              (4) 

Step 5: Solve the problem by using the alternating 
direction multiplier algorithm (ADMM), and get the 
updated formulas of  𝑢𝑢� and 𝑤𝑤�.The specific expressions 
are shown in Equation 5 and Equation 6. 

𝑢𝑢����� � ������∑ ������������
�

����
����������          (5) 

        𝜔𝜔���� � � �|������|����
�
� |������|����

�
           (6) 

2.4 STACKING ENSEMBLE 
The Stacking ensemble model is currently the most 
widely used model in data mining competitions. It is a 
method of classification and regression using the fusion 
of mu ltiple models. The key lies in the selection of the 
base model and the number of cross-validation. The 
selection requires that the effects of the base models are 
close and the correlation is low. The main flows of the 
Stacking model are as follows: 
Step 1: Divide the dataset into training set and test set. 
Step 2: Cross-validate the training set to obtain the 
prediction result of the validation set and the test set. 
Step 3: Calculate the weighted average of the test set 
prediction results, the same operation is performed 
according to the number of base models, until a new 
training set and test set are constructed. 

2.5 LONG SHORT TERM MEMORY(LSTM) 
Long short term memory (LSTM) is an improvement of 
the recurrent neural network. It is an improved network 
proposed to solve the gradient disappearance or gradient 
explosion of the recurrent neural network (RNN). The 
LSTM consists of an input gate, a forget gate, and an 
output gate, as shown in Figure 1. 
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Figure 1. The block diagram of LSTM 

Among the three gates, the forget gate determines which 
information will be discarded, as shown in Equation 7. 

𝑓𝑓� � ��𝑤𝑤�▪�ℎ���, 𝑋𝑋�� � 𝑏𝑏��          (7) 
The input gate determines which information is retained, 
and receives new input at the same time, and updates the 
control parameter 𝐶𝐶�, as shown in Equations 8,9,10. 

𝑖𝑖� � ��𝑤𝑤�▪�ℎ���, 𝑋𝑋�� � 𝑏𝑏��         (8) 
  𝐶𝐶�� � ���ℎ�𝑤𝑤�▪�ℎ���, 𝑋𝑋�� � 𝑏𝑏��       (9) 

    𝐶𝐶� � 𝑓𝑓� ∗ 𝐶𝐶��� � 𝑖𝑖� ∗ 𝐶𝐶��           (10) 
The output gate generates the output of the LSTM at the 
current time according to the control parameter 𝐶𝐶� , as 
shown in Equations 11 and 12. 

𝑂𝑂� � ��𝑤𝑤�▪�ℎ���, 𝑋𝑋�� � 𝑏𝑏��        (11) 
ℎ� � 𝑂𝑂� ∗ tanh �𝐶𝐶��            (12) 

Where 𝑋𝑋� is the input, ℎ� is the output, ℎ��� is the output 
at the last time, 𝐶𝐶��� is the control parameter at the last 
time, 𝐶𝐶� is the latest control parameter,  𝑖𝑖�  is the 
information to be saved. 

2.6 MULTILAYER PERCEPTRON(MLP) 
Multi-layer perceptron (MLP) is a simple multi-layer 
neural network, the hierarchy of MLP is a directed graph. 
Each layer is fully connected to the next layer, and the 
output of the neuron in the previous layer is the input of 
the neuron in the next layer. The key to MLP lies in the 
number of hidden layers, the number of neurons in the 
hidden layer, and the connection weights and offsets, 
which are often adjusted by grid search and other methods. 

3. Establishment Of Prediction Model 

3.1 DATA PREPROCESSING 
In order to eliminate the dimensional influence between 
the data, we can make the data be normalized. After the 
original data is normalized, the data will be in the same 
dimension. When the input of the model is the same 
dimension, the operating efficiency of the model will be 
greatly improved. 
The equation for data normalization is shown in the 
Equation 13: 

𝑋𝑋∗ � ������
���������

             (13) 
Where 𝑋𝑋��� is the maximum value of the sample data, 
𝑋𝑋��� is the minimum value of the sample data. 

3.2 ONE-LAYER DECOMPOSITION 
Due to the large volatility of wind power time series, in 
order to improve the prediction accuracy, many signal 
decomposition techniques are widely used in wind power 
prediction. At present, EMD, EEMD, WT, VMD and so 
on are widely used. In the one-layer decomposition, this 
paper uses complete ensemble empirical model 
decomposition (CEEMD), which can effectively suppress 
the modal aliasing problem of EMD and make the residual 
component always keep at a very small level. Also, the 
original wind power data can be completely decomposed 
without loss. Calculating the sample entropy value (SE) 
of each IMF and reconstructing the components which the 
SE are closed to form a new reconstructed component. 
The process of one-layer decomposition is shown in 
Figure 2. 

 

Figure 2. The structure diagram of CEEMD + SE 

After obtaining different reconstructed components, 
Analyzing the reconstructed components and selecting 
different models for prediction according to the 
characteristics of the different components, Finally, we 
select the optimal model . 

3.3 TWO-LAYER DECOMPOSITION 
When the volatility of one of the reconstructed 
components is large, a two-layer decomposition is 
performed on the basis of the one-layer decomposition. 
The method of two-layer decomposition in this paper 
adopts the variational mode decomposition (VMD) 
technology. After the two-layer decomposition, the 
reconstructed component obtains k modes and the mode 
number k is determined by the center frequency 𝜔𝜔�  of 
each mode. 
For each different mode, the combined model of stacking 
and LSTM is used to make predictions and the final 
prediction results are accumulated to obtain the wind 
power prediction results. Among them, the selection of 
the basic model of the stacking model are random forest 
(Random Forest), Xgboost and LightGBM three 
ensemble models, making full use of the characteristics of 
the three basic models and constructing new features as 
the input of the LSTM model to predict wind power, 
which is shown in Figure 3. All prediction results are 
superimposed to obtain the final prediction value. Since 
certain prediction errors will occur, in order to further 
improve the prediction accuracy, the prediction errors are 
corrected by the MLP model. The specific process of the 
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two-layer decomposition of the reconstructed components 
is shown in Figure 4. 

  

Figure 3. The flowchart of Stacking ensemble model 

 

 

Figure 4. The flowchart of two-layer decomposition 

 
A short-term wind power prediction framework based on 
two-layer decomposition and the combination of 
ensemble model and deep network is shown in Figure 5. 

 

 

Figure 5. short-term wind power prediction model based on 
two-layer decomposition and the combination of ensemble 

model and deep network 

 

The main steps of the short-term wind power prediction 
model based on two-layer decomposition and the 
combination of ensemble model and deep network are: 
Step 1: Perform CEEMD decomposition and SE 
reconstruction on the original wind power time series to 
form reconstructed component 1, reconstructed 
component 2, reconstructed component 3, and the residual 
component can be directly ignored because of its small 
magnitude. 
Step 2: For reconstructed component 2 and reconstructed 
component 3, analyzing their data characteristics and 
selecting different models for comparison and prediction, 
we decide to use linear regression (LR) model on the 
reconstructed component 2 and reconstructed component 
3. 
Step 3: Because the volatility of reconstructed component 
1 is relatively large, VMD is used for two-layer 
decomposition and the combined prediction models of 
stacking and LSTM are used for each mode, and error 
correction is performed using MLP to obtain the final 
predicted value of reconstructed component 1. 
Step 4: Accumulate the predicted results of the 
reconstructed components 1, 2 and 3 to obtain the final 
predicted value of wind power. 

3.4 D. EVALUATION FUNCTION 
The evaluations function of the prediction model selected 
in this paper are: 
a. Root mean square error: 

���� � � 1
𝑚𝑚 ��𝑦𝑦� � 𝑦𝑦����

�

���
 

b. Mean absolute error: 

��� � 1
𝑚𝑚 �|𝑦𝑦� � 𝑦𝑦��|

�

���
 

c. R-Square: 

𝑅𝑅� � 1 � ∑ �𝑦𝑦� � 𝑦𝑦��������
∑ �𝑦𝑦� � 𝑦𝑦�������

 

Where 𝑦𝑦� is the actual value of the wind power at the i-th 
moment, 𝑦𝑦�� i is the predicted value of the wind power at 
the i-th moment, and 𝑦𝑦𝑦� is the average value of the m wind 
power values. 

4. Case studies 
In this paper, we use a wind farm data in the UK for short-
term wind power prediction. In order to prove the validity 
of the model, this paper selects a total of 4,490 wind 
power data from the wind farm at 1:00 on March 1, 2018 
to 8:00 on April 14, 2018. 
In the experiment, the sampling interval between the 
experimental data points is 10 minutes and the time series 
of the wind power obtained is shown in Figure 6. Among 
them, the first 3995 data points are used as the training set 
and the last 495 data points are used as the test set. The 
previous 5 wind power data predict the wind power at the 
next moment to achieve rolling prediction. 
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Figure 6. Time series diagram of wind power 

It can be seen from Figure 6 that the time series of wind 
power has obvious fluctuation, so CEEMD 
decomposition is performed on it, and the specific 
decomposition results are shown in Figure 7. 

 

Figure 7. The graph of CEEMD decomposition results 

Because that the residual component Rest is always on a 
very small scale, only the sample entropy values of the 
decomposed components (IMF1-IMF10) need to be 
calculated, the sample entropy threshold r is set to 0.2, the 
length L is set to 2, and each component The sample 
entropy values are shown in Table 1. 

Table 1. Sample entropy of each component 
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It can be drawn from Table 1 that the sample entropy 
values of IMF1-6 are close, so the components are 
superimposed to obtain the reconstructed component 1; 
IMF6-9 is used as the reconstructed component 2 and 
IMF10 is used as the reconstructed component 3. 
For the reconstructed component 1, the graph is shown in 
Figure 8. 
It can be seen from Figure 8 that the time series of wind 
power still exhibits a certain degree of non-stationarity, so 

VMD decomposition is performed on the reconstructed 
component 1 and the center frequency method is used to 
determine the number of modes k. The general value 
range of k is 3~ 8. The center frequency when k takes 
different values is shown in Table 2. 

 

Figure 8. The graph of reconstruction component 1 

Table 2. Center frequencies for different values of k 

 u1 u2 u3 u4 u5 u6 u7 
K=3 9.147 48.973 139.975 - - - - 
K=4 7.787 31.679 78.593 156.950 - - - 
K=5 7.720 30.964 76.114 150.410 263.141 - - 
K=6 7.673 30.466 74.291 145.673 235.520 354.132 - 
K=7 7.202 25.636 54.285 93.459 156.300 251.171 359.550 

 
It can be seen from the center frequency in Table 2 that 
when k=7, the center frequency appears 25.636 and 
54.285, the two center frequencies are relatively close and 
the number of modes of VMD decomposition can be 
determined to be 6.As is shown  
in Figure7, Comparing with the six modes before 
decomposition, the wind power is decomposed two times, 
which reduces the fluctuation of wind power and has 
better stability. The results of VMD decomposition are 
shown in Figure 9. 

 

Figure 9. The graph of VMD decomposition results 

When training and predicting each mode, we build a 
combined prediction model of stacking and LSTM. The 
three base models are random forest (RF), xgboost and 
LightGBM. Among them, the parameters of each model 
are determined by grid search, where the max depth of 
three base models is 4, the learning rate is 0.1, LSTM is a 
4-layer network structure, the number of neurons in each 
layer is 50, dropout is 0.1, the optimizer is adam and The 
number of iterations is 50. when MLP is used for error 
correction, the number of MLP network layers is 4 and the 
number of neurons in each layer is 100, 100, 100, and 50 
respectively. 
Table 3 lists the predicted evaluation indexes of four 
different models and Figure 10 shows the predicted results 
of the four models. 
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Table 3. Evaluation indicators of the four models 

Model RMSE(KW) MAE(KW) R-Square 
LSTM 155.71 97.57 0.687 

stacking-LSTM 153.42 96.62 0.801 
VMD-stacking-LSTM 62.35 43.21 0.949 
VMD-stacking-LSTM-

MLP 12.21 8.87 0.998 

 

 

 

 

Figure 10. The graph of four model prediction curves 

According to the predicted results in Figure 10 and Table 
3, we can conclude that for the reconstructed component 
1, the four models can both predict the wind power at the 
next moment. Compared with the one-layer 
decomposition and the two-layer  decomposition, the 
MSE is reduced by 91.07 KW and MAE are reduced by 
53.41KW. In terms of predicted accuracy, VMD-
stacking-LSTM-MLP has the highest predicted accuracy 
and R-Square achieves 0.998, indicating that this model 
has better fitting ability and better predicted effect than 
other models. 
For the reconstructed component 2 and the reconstructed 
component 3, the graphs of the two reconstructed 
components are shown in Figure 11 and Figure 12. 

 

Figure 11. The graph of reconstruction component 2 curve 

 

Figure 12. The graph of reconstruction component 3 curve 

 
As can be seen from Figure 11 and Figure 12, the curve 
relationship between the reconstructed component 2 and 
the reconstructed component 3 has a certain linear 
relationship, because of its potential data characteristics, 
a linear regression (LR) model is selected for prediction 
and the predicted effect is the best. As shown in Figure 13, 
Figure 14. 

 

Figure 13. The graph of reconstruction component 2 prediction 
curve 

 

Figure 14. The graph of reconstruction component 3 prediction 
curve 

It can be drawn from Figure 13 and Figure 14, compared 
with other prediction models, the predicted effect of the 
linear regression (LR) model on the reconstructed 
component 2 and the reconstructed component 3 is almost 
completely fitted with the true values, which shows the 
predicted effect of the model is the best. 
Because of the CEEMD decomposition is a complete 
decomposition and almost no loss. After the predicted 
values of each reconstructed component are obtained, 
they are accumulated to obtain the final predicted value of 
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wind power. Table 4 shows the predicted indexes of the 7 
models. The graphs of the final prediction results of the 7 
models are shown in Figure 15. Among them, Model 1 
uses the SVR model for prediction directly; Model 2 uses 
the LSTM model for prediction directly; Model 3 uses the 
LSTM model for prediction after one –layer 
decomposition; Model 4 uses a combination of stacking 
and LSTM for prediction after one-layer decomposition 
of CEEMD; Model 5 uses stacking and LSTM for 
combined prediction after one-layer decomposition of 
VMD; Model 6 uses stacking and LSTM combined 
prediction after two-layer decomposition; Model 7 uses 
LR, stacking, LSTM and MLP after two-layer 
decomposition combination forecast. 

Tab 4. Evaluation indicators of the seven models 

Model RMSE(KW) MAE(KW) R-Square 
Model 1 168.31 124.79 0.753 
Model 2 165.75 115.64 0.768 
Model 3 161.24 100.62 0.773 

Model 4 
Model 5 

153.42 
81.08 

98.68 
54.78 

0.795 
0.942 

Model 6 62.34 43.22 0.966 
Model 7 13.15 9.44 0.998 

 

 

 

Figure 15. The graph of seven model prediction curves 

Analyzing Table 4 and Figure 15, we can get: 
(1) Compared with the SVR model, The RMSE and MAE 
of the LSTM model is reduced by 2.56KW and 9.15KW 
respectively. 
(2) After one-layer decomposition of CEEMD, RMSE 
and MAE are reduced by 4.51KW and 15.02KW 
respectively and R-Square is increased to 0.773. 
(3) After one-layer decomposition of CEEMD, using 
stacking integration and LSTM combined prediction, both 
RMSE and MAE are reduced, which indicates that the 
combined prediction model has a strong fitting ability 
than the single model. 

(4) The second decomposition of VMD based on the first 
decomposition of CEEMD greatly improves the 
prediction accuracy of the model. RMSE and MAE are 
reduced by 91.08KW and 55.46KW respectively and R-
Square is also greatly improved to 0.966. 
(5) After MLP correction of the error, RMSE and MAE 
were reduced to 13.15KW and 9.44KW respectively and 
R-Square is increased to 0.998, which indicates that the 
correction of the error can improve the prediction 
accuracy of the model. 
Therefore, compared with other models, the prediction 
model proposed in this paper can better predict the short-
term wind power changes and the predicted accuracy of 
the model has also been greatly improved, which verifies 
the feasibility and effectiveness of the proposed method. 

5. Conclusion 
This paper proposes a short-term wind power prediction 
based on the two-layer decomposition and the 
combination of ensemble model and deep network and 
draws the following conclusions: 
a. Signal decomposition techniques such as CEEMD, 
VMD can effectively improve the predicted accuracy of 
the model. 
b. The predicted results obtained by the combined 
prediction model are significantly better than the single 
prediction model. 
c. Perform feature analysis on the data to find the most 
suitable model for prediction, which can not only get 
better predicted results, but also speed up the operation 
efficiency of the model. 
d. When it is found that the prediction error shows a 
certain regularity, an appropriate model can be used to 
train and correct the error, which can further improve the 
predicted accuracy of the model. 
At present, the extensive use of ensemble models and 
combined forecasting models, the combined use of 
shallow models and deep models and the correction of 
errors are the main development directions of forecasting 
models. In the future, we can do major research in these 
three areas. 
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