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Abstract 
Waste heat from a data centre (DC) is a promising heat 
source because of the evenly distributed load profile and 
intensive waste heat generation. Many studies have 
proven the substantial financial benefits for the district 
heating (DH) operators by integrating DC waste heat with 
DH systems. However, there is a scarcity of research 
focusing on the optimal control of the DH system after 
integrating DC waste heat to further improve the system's 
economic performance. Therefore, this study aimed to 
further improve the economic performance of a DH 
system with DC waste heat by utilizing a model predictive 
control (MPC) scheme. This MPC scheme employed an 
economic-related objective function and formulated 
technical operational constraints. The proposed MPC 
scheme was tested on a campus DH system in Norway by 
simulation. Compared to a traditional rule-based control 
approach, the MPC scheme reduced the monthly energy 
cost by 1.8% while providing more stable chilled water 
for the DC cooling system.      

Introduction 
A data centre (DC) is a location where information 
technology (IT) equipment is housed. Moreover, a DC 
usually incorporates environmental control devices to 
guarantee that the IT equipment operates in a safe 
environment. These two major energy end-user 
equipment, i.e. the IT equipment and environmental 
control devices, results in a DC an energy-intensive 
facility. A DC can use more than 40 times the energy of a 
typical office building, and the majority of electricity used 
in DCs is converted into waste heat [1]. As a result, given 
the concern on the energy and climate crises, it is critical 
to investigate techniques for improving the energy 
efficiency of DCs [2]. The integration of DC waste heat 
into district heating (DH) systems is an effective way for 
the sustainability of DC as well as the improvement of the 
DH system’s economic performance, and many 
researchers have proven it [3-5]. However, there is a 
scarcity of research focusing on the optimal control of the 
DH system after integrating DC waste heat to further 
improve the system economic performance, particularly 
for a DC waste heat-based heat prosumer with thermal 
energy storage (TES).  
An optimal control technique may fully unlock the 
system's flexibility and hence further improve the DH 
system's economic performance. Model predictive control 
(MPC), which can use an economic-related objective 
function, is an ideal optimal control technique for 

achieving the system's maximum feasible economic 
performance while meeting various technical operational 
restrictions [6, 7]. In the presence of disturbances and 
technical operational restrictions, an MPC technique 
employs a system dynamic model to predict the system's 
future behaviour and provides an optimal control vector 
that minimizes an objective function over the prediction 
horizon.  
This study, therefore, aimed to contribute to the optimal 
control of the DH system after integrating DC waste heat 
to further improve the system's economic performance by 
utilizing an MPC scheme. In the MPC scheme, an 
economic-related objective function based on an 
economic boundary was defined, a system dynamic 
model was developed and optimization constraints were 
formulated based on a real system’s measured data. A 
campus DH system located in central Norway, which is a 
DC waste heat-based heat prosumer, was chosen as the 
case system to test the proposed MPC scheme by 
simulation. Moreover, the campus DH system was 
monitored by its energy management platform, which 
provided extensive operational data to aid this study. The 
DC performance, the total energy use and the energy bill 
of the system were used to evaluate the proposed MPC 
scheme. The main contributions of this study are listed as 
follows. Firstly, this study aimed to explore the optimal 
control of a DH system after integrating DC waste heat, 
which is a realistic yet rarely addressed issue. Secondly, 
the economic boundary was formulated by considering 
the dynamic pricing schemes of heating and electricity in 
Nordic countries at the same time, which may contribute 
to the study of the energy system involving both thermal 
and electrical networks. Lastly, real measured data from 
the case system was used to formulate the optimization 
constraints, which may supplement the recommended 
values from the standards and support the simulation and 
optimization to reveal the operation of a real system.  
The remainder of this article is organised as follows. 
Section 2 describes the campus DH system, presents the 
developed system dynamic model, the developed 
economic boundary and the formulated MPC scheme. 
The information on simulation settings and research 
scenarios is introduced as well in Section 2. The model 
validation and simulation results are presented in Section 
3. Lastly, conclusions are given in Section 4.  

Methods 
This section describes the campus DH system, as well as 
the system modelling method and economic boundary 
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condition. Finally, the MPC formulation, simulation 
settings and research scenarios are demonstrated. 
Campus district heating system 
Figure 1 presents the studied campus DH system, which 
is located in Trondheim, Norway. The campus DH system 
is connected to the city DH system via heat exchangers 
(HEs) in the main substation (MS), allowing the campus 
DH system to be managed independently. The waste heat 
from the university DC is captured by heat pump (HP) 
units and reused for the heating demand of the campus so 
that the DC waste heat is a distribution heat source (DHS). 
The connection method between the DC and campus DH 
system is that the water is extracted from the return pipe 
of the campus DH system and heated by the high-
temperature refrigerant vapour at the HP condenser, and 
then fed back into the return pipe [8, 9]. Based on the 
measured data from June 2017 to May 2018, as shown in 
Figure 2, the total building heating demand was 32.8 
GWh. The DC waste heat recovery accounted for about 
20% of the total heating supply, and the rest 80% was 
supplied from the city DH system via the MS. As a result, 
the DH system on campus is a DC waste heat-based heat 
prosumer. In addition, buildings with a total building area 
of around 300 000 m2 are the heat users in this campus DH 
system [10].  

 
Figure 1. Campus district heating system 

Another feature noticed in Figure 2 is that the building 
heating demand was not equally distributed and hence the 
peak heat loads were needed from the MS because the DC 
waste heat supply was almost constant throughout the 
year. However, the local DH company considers heat 
users’ peak loads and the charging fee based on the peak 
loads accounted for around 26% of the total heating bill 
each year. The previous study has shown that using a 
short-term TES, water tank TES (WTTES), for the case 
system could solve the high peak load problem while also 
improving the system's economic performance [11]. 
Furthermore, research has been conducted to determine 

the optimal storage size for the introduced WTTES [12]. 
Therefore, this study was further research based on this 
previous research and introduced a WTTES with optimal 
storage size. The introduced WTTES had a storage 
volume of 900 m3 and was able to supply heat to the 
campus DH system for up to 12 hours. In addition, the 
introduced WTTES was charged by a HE in the MS.  

 
Figure 2. Building heating demand and data centre 

waste heat recovery 
System modelling method  
MPC uses a system dynamic model to predict the system's 
future behaviour and provides an optimal control vector. 
The Modelica language was used in this study to build the 
system dynamic model, which was based on the energy 
and mass flow exchanging connection between the 
individual component models. The individual 
components consisted of the MS, DC, buildings, WTTES, 
circulator pump (CP) and pipeline. The energy and mass 
flow exchanges between various components, as well as 
the modelling method for each component of the MS, 
buildings, WTTES and pipelines, are elaborated in 
previous research [12]. The modelling methods of the 
DC’s HP and CP are discussed in this section.  
Based on research [13], the operational conditions are the 
key factors that determine an HP's electricity use, aside 
from the HP's inherent performance characteristics. The 
operational conditions include the inlet and outlet water 
temperature as well as the water mass flow rate both at the 
evaporator and condenser sides of an HP. Moreover, 
extensive measured data on these operational conditions 
were available in this study. Therefore, an HP model 
including these operational conditions was developed, as 
shown in Equation (1).  

�̂�𝐸𝐻𝐻𝐻𝐻 = 𝑎𝑎 ∙ 𝑇𝑇𝑖𝑖𝑖𝑖_𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑏𝑏 ∙ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜_𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑐𝑐
∙ 𝑇𝑇𝑖𝑖𝑖𝑖_𝑐𝑐𝑜𝑜𝑖𝑖 + 𝑑𝑑 ∙ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐𝑜𝑜𝑖𝑖
+ 𝑒𝑒 ∙ �̇�𝑚𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑓𝑓 ∙ �̇�𝑚𝑐𝑐𝑜𝑜𝑖𝑖 

(1) 

where �̂�𝐸𝐻𝐻𝐻𝐻 is the simulated HP compressor power. 𝑇𝑇𝑖𝑖𝑖𝑖_𝑒𝑒𝑒𝑒𝑒𝑒 
and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜_𝑒𝑒𝑒𝑒𝑒𝑒 are the inlet and outlet water temperatures at 
the evaporator side. 𝑇𝑇𝑖𝑖𝑖𝑖_𝑐𝑐𝑜𝑜𝑖𝑖 and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐𝑜𝑜𝑖𝑖 are the inlet and 
outlet temperatures at the condenser side. �̇�𝑚𝑒𝑒𝑒𝑒𝑒𝑒 and �̇�𝑚𝑐𝑐𝑜𝑜𝑖𝑖 
are the water mass flow rate at the evaporator and 
condenser sides, respectively. 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒, and 𝑓𝑓 are the 
parameters needed to be identified. In this study, the 
Evolutionary engine provided by the Excel Solver was 
used to identify these parameter values.  
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To overcome pipeline hydraulic resistance and local 
pipeline accessory resistance, a CP was employed to 
circulate warm water for the campus DH network. This 
study used a variable-speed CP because it can 
dramatically minimize pumping electricity use [14]. The 
total pumping power needed to circulate the water in a 
distribution system can be calculated by Equations (2) 
and (3). 

𝐸𝐸𝐶𝐶𝐶𝐶 =
∆𝑃𝑃 ∙ �̇�𝑉
𝜂𝜂𝐶𝐶𝐶𝐶

 (2) 

∆𝑃𝑃 = 𝑆𝑆 ∙ �̇�𝑚2 (3) 

where 𝐸𝐸𝐶𝐶𝐶𝐶 is the CP electricity use. �̇�𝑉 is the water volume 
flow rate. 𝜂𝜂𝐶𝐶𝐶𝐶 is the total conversion efficiency of the CP 
and was 0.7 in this study [15]. ∆𝑃𝑃 is the total pressure 
drop of the DH distribution network. �̇�𝑚 is the mass flow 
rate of water. 𝑆𝑆 is the resistance friction coefficient of the 
DH distribution network that is related to the 
characteristics of the pipeline. One assumption was 
adopted in this study: the water flow rate was regulated 
by the variable-speed CP, and the pipeline valves had no 
actions. As a result, the resistance friction coefficient 𝑆𝑆 
was a constant value that could be inferred from the DH 
system's design condition. 
Economic boundary condition 
The energy bill of the campus DH system includes two 
parts: 1) heating bill paid for the DH use and 2) electricity 
bill paid for the electricity use. Heat is provided by the 
DH company for the HEs in the MS, while electricity is 
provided by the electricity company for the HP of DC and 
the CP. As a result, this section defines the economic 
boundary condition by considering the pricing 
mechanisms of heating and electricity in Norway at the 
same time.  
A generalized heating price model has been proposed in 
research [12], and this study used it as well. A generalized 
electricity price model was proposed in this study based 
on the investigation of electricity contracts in Norway. 
When using electricity in Norway, end-users must pay for 
two components: 1) power price for the electricity 
purchased from a power supplier, and 2) grid rent to the 
local grid distribution company for the power's 
transportation [16, 17]. 
In terms of the power price paid for a power supplier, a 
spot-price contract was used in this study. Because it is 
the most commonly used contract type in Norway based 
on Statistics Norway [18]. The price of the spot-price 
contract is calculated by Equations (4), (5) and (6). 

 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (4) 

 𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = ∫ 𝑃𝑃𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝(𝑡𝑡) ∙ �̇�𝐸(𝑡𝑡) ∙ 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0
 (5) 

 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = ∫ 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 ∙ �̇�𝐸(𝑡𝑡) ∙ 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0
 (6) 

where 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝑝𝑝𝑝𝑝𝑝𝑝  denotes the power price paid by 
consumers. 𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 is the spot price-related fee and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 is a 

mark-up fee that must be paid by the customer [19]. 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
is the monthly fixed fee. Moreover, 𝑃𝑃𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝(𝑡𝑡) represents 
the spot price at time 𝑡𝑡 and gained from Nord Pool [20]. 
𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠  is the mark-up fee per energy unit. Finally, �̇�𝐸(𝑡𝑡) is 
the electricity use at time 𝑡𝑡. 
In terms of the grid rent paid for the grid distribution 
company, it is determined by the local grid distribution 
company. The grid rent for a big electricity user includes 
an energy link fee, a power link fee and an annual fixed 
fee, as shown by Equations (7), (8) and (9) [21].  

 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝑔𝑔𝑠𝑠𝑚𝑚 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚  (7) 

 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = ∫ 𝐺𝐺𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 ∙ �̇�𝐸(𝑡𝑡) ∙ 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0
 (8) 

 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐺𝐺𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ∙ �̇�𝐸𝑝𝑝 (9) 
where 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝑔𝑔𝑠𝑠𝑚𝑚  denotes the grid rent paid by consumers. 
𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 are the energy link fee and the power link 
fee, respectively. 𝐶𝐶𝑎𝑎𝑚𝑚𝑚𝑚 is the annual fixed fee. 𝐺𝐺𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 is the 
energy link fee per energy unit and �̇�𝐸(𝑡𝑡) is the electricity 
use at time 𝑡𝑡 . 𝐺𝐺𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝  is the power extraction price per 
power unit and �̇�𝐸𝑝𝑝 is the highest hourly power output. 
As a result, a generalized electricity price model was 
suggested in this study, which is determined by Equation 
(10).  

 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝑔𝑔𝑠𝑠𝑚𝑚 (10) 
where 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  is the total electricity cost.  
Model predictive control formulation 
The MPC scheme developed in this study employed an 
economic-related objective function to further improve 
the economic performance of the campus DH system. The 
generalized heating price model and electricity model 
were used in this objective function. However, the 
monthly fixed fee in the power price and the annual fixed 
fee in grid rent were not involved, because they are not 
determined by the real-time electricity use. Furthermore, 
the power link fee included in the grid rent of the 
electricity price model was not taken into account. This is 
because the optimization problem in MPC only 
considered the electricity use of the HP and CP, the 
electricity use by other equipment, lighting, etc. was not 
considered, while the power link fee is calculated based 
on the highest hourly total electricity use of the entire 
energy system. As a result, the MPC controller solves the 
following optimization problem at each time step: 
Minimize: 

∫ 𝐸𝐸𝑃𝑃(𝑡𝑡) ∙ �̇�𝑄𝑀𝑀𝑀𝑀(𝑡𝑡) ∙ 𝑑𝑑𝑡𝑡
𝐻𝐻

0
+ 𝐿𝐿𝑃𝑃 ∙ �̇�𝑄𝑀𝑀𝑀𝑀_𝑝𝑝

+ ∫ (𝑃𝑃𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝(𝑡𝑡)
𝐻𝐻

0
+ 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐺𝐺𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒)
∙ (�̇�𝐸𝐻𝐻𝐶𝐶(𝑡𝑡) + �̇�𝐸𝐶𝐶𝐶𝐶(𝑡𝑡))
∙ 𝑑𝑑𝑡𝑡 

(11) 
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subject to: 
 �̇�𝑄𝑀𝑀𝑀𝑀(𝑡𝑡) ≤ �̇�𝑄𝑀𝑀𝑀𝑀_𝑝𝑝 (12) 
 𝐹𝐹(𝑡𝑡, 𝒛𝒛(𝑡𝑡)) = 0 (13) 
 𝐹𝐹0(𝑡𝑡0, 𝒛𝒛(𝑡𝑡0)) = 0 (14) 
 𝑧𝑧𝐿𝐿 ≤ 𝒛𝒛(𝑡𝑡) ≤ 𝑧𝑧𝑈𝑈 (15) 

where 𝐻𝐻 is the predictive horizon and was 12 hours in this 
study. �̇�𝑄𝑀𝑀𝑀𝑀(𝑡𝑡) is the heat flow rate from the MS at time 𝑡𝑡. 
�̇�𝑄𝑀𝑀𝑀𝑀_𝑝𝑝  is the peak heat rate from the MS, and it was a 
parameter to be optimized in this study. The peak heat rate 
was determined by the maximum hourly heat use in one 
month in this study [22].𝐸𝐸𝐸𝐸(𝑡𝑡)  is the energy demand 
component (EDC) heating price at time 𝑡𝑡, and 𝐿𝐿𝐸𝐸 is the 
load demand component (LDC) heating price [12]. 
�̇�𝐸𝐻𝐻𝐻𝐻(𝑡𝑡) and �̇�𝐸𝐶𝐶𝐻𝐻(𝑡𝑡) denote the HP electricity use and the 
CP electricity use at time 𝑡𝑡 , respectively. The system 
dynamic model and its initial condition are the equality 
constraints as shown by Equations ( 13 ) and ( 14 ). 
Equation (15) defines the inequality constraint, which 
includes the technical operational constraints. 𝒛𝒛 ∊  ℝ𝑛𝑛𝑧𝑧 is 
the set of time-dependent variables and includes the 
manipulated variables 𝒖𝒖 ∊  ℝnu  to be optimized, the 
differential variables 𝒙𝒙 ∊  ℝnx , and the algebraic 
variables 𝒚𝒚 ∊  ℝny . 𝑧𝑧𝐿𝐿 ∊  [−∞,∞]nz  and 𝑧𝑧𝑈𝑈 ∊
 [−∞,∞]nz are the lower and upper limits, respectively.  
Finally, the above-formulated optimization problem was 
solved on the optimization platform JModelica.org [23]. 
The detailed information on the optimization algorithm 
used in JModelica .org was elaborated on in the research 
[24].  
Simulation settings and research scenarios 
The building heating demand presented in Figure 2 was 
used as simulation inputs in the study. The energy prices, 
which included both heating and electricity, were 
collected from the local DH company [25] and a power 
supplier [26]. The used LDC in heating price was 39 
NOK/kW (The currency rate between NOK and EUR 
used in this study was 1 EUR=10.0 NOK). The used EDC 
in heating price ranged from 0.484 to 0.868 NOK/kWh, 
while the electricity use-related price ranged from 0.485 
to 0.870 NOK/kWh. The measured inlet water 
temperature and water mass flow rate of the evaporator in 
DC were almost constant values, with the average values 
of 11°C and 36.5 kg/s, and were directly used as 
simulation inputs in this study. 
An MPC scenario together with an RBC scenario was 
proposed in the study. The RBC scenario was a reference 
scenario based on an RBC strategy, as shown in Figure 3 
(a). A weather compensation controller (WCC) and a 
proportional-integral (PI) controller were used to control 
the supply water temperature and water flow rate of HE2. 
Another PI controller was utilized to control the 
compressor power of HP according to the feedback from 
the outlet water temperature of the evaporator, whose 
reference value was set as 6.5 ℃. Moreover, a pre-defined 
schedule based on the heating demand characteristics was 

used to control the charging and discharging processes of 
WTTES.   

 
Figure 3. Research scenarios 

The MPC scenario was based on the proposed MPC 
scheme, as shown in Figure 3 (b). Its manipulated 
variables included the supply water temperature and mass 
flow rate of the HEs, the water mass flow rate of the 
WTTES and the power of the HP compressor. In the real 
system, these manipulated variables were constrained to 
their feasible regions, formulating the MPC's technique 
operational constraints. The bounds of the HP compressor 
power were obtained by the measured data. The range of 
the outlet water temperature at the evaporator was set as 
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6.0- 7.0°C based on measured data. The bound settings of 
other manipulated variables can be found in [12].  

Results 
This section firstly introduces the model validation and 
then evaluates the MPC scheme in terms of the DC 
performance as well as the total energy use and energy bill 
of the system. In addition, January of 2018 was chosen as 
a typical month in the heating season of the year 2017-
2018 to conduct this simulation-based study. 
Model validation 
Table 1 shows the values for the identified parameters in 
the HP model. The HP model was validated by the 
measured data from the campus energy management 
platform, as shown in Figure 4. Mean absolute error 
(MAE), mean absolute percentage error (MAPE) and root 
mean square error (RMSE) were utilized to evaluate the 
developed model, as presented in Figure 4 [27, 28]. 
Moreover, as shown in Figure 4, the simulated 
compressor hourly power matched the measured data well 
with the coefficient of determination (R2) of 0.93. 

Table 1. Values of the identified parameters 
Parameter 𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒 𝑓𝑓 

Value -1.5 10.6 -17.0 24.4 -5.7 -9.3 

 
Figure 4. Simulated and measured hourly compressor 

power of heat pump 
Data centre performance 
Figure 5 presents the outlet temperature of the evaporator 
in HP. Compared to the RBC scenario, the MPC scenario 
had a smaller outlet temperature fluctuating range and 
preferred lower outlet temperatures with an average value 
of 6.0. Moreover, one result was obtained as well: the 
cooling requirement of DC was satisfied in both MPC and 
RBC scenarios because the evaporator's outlet water 
temperatures were mostly between 6.0 and 7.0°C, which 
was the feasible range based on the measured data. Figure 
6 presents the coefficient of performance (COP) of HP. 
Similar to the outlet temperature of the evaporator, the 
MPC scenario had a lower COP fluctuating range yet 
higher COP values with an average value of 3.1. These 
results showed that the MPC scenario was more robust 
than the RBC scenario, expressed as the lower fluctuation 
ranges of both the evaporator's outlet temperature and the 

HP's COP, both of which are critical for the DC cooling 
system's safe operation.  
 

 
Figure 5. Simulated outlet temperatures of the 

evaporator 

 
Figure 6. Simulated coefficient of performance of heat 

pump  
Total energy use and energy bill 
The total energy use consisted of the heat use from the MS 
and the electricity use to power the HP of DC and the CP. 
Figure 7 presents the simulated total energy use in January 
of 2018 for the two research scenarios. Compared to the 
RBC scenario, more electricity but less heat were used in 
the MPC scenario. As shown in Figure 7, the total heat 
use in the MPC scenario was 5.02 GWh, with a reduction 
of 2.0% compared to the RBC scenario. In contrast, 
electricity use was increased by 8.1% in the MPC scenario. 
The reason can be explained as follows: the MPC scenario 
preferred to produce more waste heat from the DC by 
utilizing more electricity because the HP’s COPs were 
usually higher than 1 and fluctuated at 3.1. In addition, 
during the study period, the electricity prices were only 
slightly higher than the heating prices. As a result, the 
MPC scheme depended on obtaining as much heat as 
possible from the HP to achieve the best possible 
economic performance. 
Figure 8 presents the monthly total energy bill for the two 
research scenarios. The energy bill included heating and 
electricity costs. Thereof, the heating cost consisted of the 
LDC based on the heat user’s peak load and the EDC 
based on the total heat users’ heat use. As shown in Figure 
8, the MPC scenario saved the total energy bill by 1.8% 
compared to the RBC scenario. Specifically, the reduced 
heating costs in the MPC scenario, which were brought 
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by both the reductions of the LDC and the EDC, with a 
total cost reduction of 2.3%. On the other hand, the MPC 
scenario increased the electricity cost by 8.2% due to the 
increased electricity use. However, the electricity cost 
contributed to less than 10% of the total energy bill and 
hence the overall economic performance of the MPC 
scenario was not impaired by the increased electricity 
cost. In summary, the MPC scheme optimized the trade-
off between heat and electricity use so that the possible 
maximum economic performance of the heat prosumer 
was achieved in the MPC scenario.  

 
Figure 7. Energy use for the two research scenarios 

 
Figure 8. Energy bill for the two research scenarios 

Conclusion 
This study aimed to further improve the economic 
performance of a DH system after integrating DC waste 
heat by utilizing an MPC scheme. The MPC scheme 
employed an economic-related objective function, 
formulated the economic boundary condition and the 
technical operational constraints. The proposed MPC 
scheme was tested on a campus DH system in Norway by 
simulation. 
Results showed that the MPC scheme was found to be 
more stable and robust, as seen by smaller fluctuating 
ranges of both the evaporator outlet temperatures and the 
COPs of the HP in DC, which are critical for the safe 
operation of the DC cooling system. To achieve the best 
possible economic performance, the MPC scheme tended 
to extract waste heat from the DC as much as possible by 
utilizing more electricity for the HP but extracting less 
heat from the MS, resulting in a 1.8% monthly energy cost 
saving. In summary, the MPC scheme optimized the 
trade-off between heat and electricity use so that the 

possible maximum economic performance of the heat 
prosumer was achieved in the MPC scenario. 

Acknowledgement 
The authors gratefully acknowledge the support from the 
Research Council of Norway through the research project 
Understanding behaviour of district heating systems 
integrating distributed sources under the 
FRIPRO/FRINATEK program (project number 262707). 

Nomenclature 
COP Coefficient of performance 
CP Circulator pump 
DC  Data centre 
DH District heating 
DHS Distributed heat source 
EDC Energy demand component 
HE Heat exchanger 
HP Heat pump 
IT Information technology 
LDC Load demand component 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MPC Model predictive control 
MS Main substation 
PI Proportional-integral  
RBC Rule-based control  
RMSE Root mean square error 
TES Thermal energy storage 
WCC Weather compensation controller 
WTTES Water tank thermal energy storage 
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