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Abstract 
A number of recent research efforts focus on the inclusion 
of more detailed models of occupants in building 
performance computing. Thereby, agent-based modelling 
(ABM) has the theoretical potential to capture the 
dynamic and complex patterns of occupants' presence and 
behaviour in buildings. This paper starts with a brief 
reference to recent reviews of the state of the art 
concerning the deployment of ABM in building energy 
simulation. Subsequently, an illustrative case study is 
used to explore the potential and current challenges of 
ABM in building performance simulation. The case study 
involves the coupling of ABM with a building simulation 
model to evaluate the influence of occupants' energy 
consciousness and thermal comfort preferences on 
buildings' energy performance.  
Introduction 
In recent years, a number of research efforts have 
addressed the integration of occupants' behaviour in 
general, and their interaction with control systems in 
particular, in building performance computing (O’Brien 
et al., 2020). Thereby, it has been suggested that, as 
compared to more conventional occupant representation 
methods (e.g., fix schedules or simple rule-based 
systems), agent-based modelling has a richer potential to 
capture the dynamic and complex presence and behaviour 
patterns of building users.  
In this context, the present paper provides a two-fold 
contribution. First, a brief reference to recent reviews of 
the state of the art concerning the deployment of ABM in 
building energy simulation is critically reviewed. Second, 
to illustrate the potential and current challenges of ABM 
in this field, the experiences with a specific illustrative 
case study are presented and discussed. This case study 
pertains to an effort to couple an agent-based model with 
a dynamic building simulation model to evaluate the 
influence of building users' behaviour on buildings' 
energy performance. To this end, four different occupant 
types are included in the modelling environment via a 
well-known ABM application (NetLogo) (Wilensky, 
2022). Thereby, the occupant types are differentiated in 
terms of their energy consumption intensity and their 
preferences and tolerance levels regarding indoor 
(thermal) conditions. The impact of the respective 
building user scenarios on the energy performance is 

simulated for six single-occupancy offices in the case 
study building located in Vienna, Austria. In order to 
couple the ABM with the energy simulation model 
(EnergyPlus), the BCVTB (Building Control Virtual Test 
Bed) and Python are used (EnergyPlus, 2022; Python, 
2022; Wetter et al., 2022).  
As expected, the simulation results point to the impact of 
the occupants' energy consciousness level and their 
thermal comfort preferences on the computed energy use. 
More importantly, the case study allows to highlight a 
number of prevailing co-simulation challenges involved 
in the coupling of agent-based modelling with dynamic 
building performance simulation. These include, among 
others, required computational tools and resources as well 
as empirically-based knowledge on occupants' actual 
indoor-environmentally relevant preferences as well as 
their behavioural traits. The paper concludes with 
reflections on the aforementioned case study. Thereby, 
thoughts are offered on both the potential and current 
challenges of ABM applications in building performance 
simulation. 
Background 
As stated in the outset, ABM techniques are proposed to 
adequately represent the dynamic and complex patterns of 
building users' behaviour and presence. A number of 
recent research efforts address and critically review the 
deployment of ABM in building energy simulation. As for 
example, Berger and Mahdavi (2020) performed a 
systematic review and analysis of several ABM research 
efforts that specifically focus on modelling building 
occupants for energy and indoor-environmental 
performance analysis. Thereby, the potential of ABM 
application is highlighted, but also several challenges are 
identified. Another recent research contribution focuses 
on ten questions and answers concerning ABM research 
and application of occupant behaviour in the context of 
building performance simulation (Malik et al., 2022).  
An illustrative ABM case study 
The case study involves the coupling of an ABM platform 
with a dynamic building simulation application. The 
elements of this case study are briefly described in the 
following. First, the three elements of the research design 
(occupant behaviour assumptions, case study building, 
computational setup) are described, followed by the 
presentation and discussion of the case study results. 
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Occupant behaviour assumptions 
In order to explore the influence of occupants on 
buildings' energy performance, four different occupant 
types are defined. Thereby, differentiations among levels 
of energy awareness as well as tolerance levels of indoor 
(thermal) conditions are considered. Table 1 illustrates the 
different occupant types and respective assumptions of 
their energy consumption intensity as well as tolerance 
levels regarding indoor (thermal) environmental 
conditions.  

According to these assumptions, the idea is that building 
users with a high energy awareness level (Type I and II 
respectively) have a tendency to perform adaptive actions, 
such as adapting their clothing, to reach their thermally-
preferred indoor conditions. Whereas, building users with 
a low level of awareness in terms of their energy 
consumption (Type III and IV respectively) tend to 
change the heating or cooling setpoint to enhance their 
thermal comfort. 

Furthermore, the building user types differentiate in terms 
of tolerance levels of the indoor (thermal) comfort 
condition. Users with a low tolerance level (Type II and 
IV respectively) tend to change their thermal condition 
more likely as users with a high tolerance level (Type I 
and III respectively). The levels of tolerance are expressed 
according to functions that are based on the concept of 
Predicted Mean Vote (PMV) (Fanger, 1970; Regnath, 
2021). Figure 1 illustrates the defined functions for high 
and low tolerance levels and the respective formulae are 
shown in Equations (1) and (2). Moreover, the occupants' 
operation of shading elements is assumed to depend on 
the energy awareness level and the contextual conditions.  

To further evaluate the impact of the various occupant 
types, four scenarios with different compositions of 
occupant types are considered (see Figure 2). Thereby, 
Scenarios II and III consist of a combination of different 
occupant types. Scenario I solely includes high energy 
aware occupants with a high tolerance level, Scenario IV 
exclusively considers low energy aware occupants with a 
low tolerance level.  

Table 1: Assumptions of occupant types  
(Regnath et al., 2022).  

 Energy awareness Tolerance level 

Type I high high 

Type II high low 

Type III low high 

Type IV low low 

 

 

 
Figure 1: Assumed PMV functions corresponding to 
occupants' high and low tolerance levels regarding 

thermal conditions (Regnath et al., 2022). 

 

𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑂𝑂 [%]
= 100 − 95 ∗ 𝑇𝑇𝑒𝑒𝑂𝑂(−0.03353∗𝑃𝑃𝑃𝑃𝑃𝑃4−0.2179∗𝑃𝑃𝑃𝑃𝑃𝑃2)∗0.5 

 (1) 

 

𝐿𝐿𝑇𝑇𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑂𝑂 [%]
= 100 − 95 ∗ 𝑇𝑇𝑒𝑒𝑂𝑂(−0.03353∗𝑃𝑃𝑃𝑃𝑃𝑃4−0.2179∗𝑃𝑃𝑃𝑃𝑃𝑃2)∗2 

 (2) 

 

  
Figure 2: Four scenarios with a mix of different 

occupant types (Regnath et al., 2022). 
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Case study building 
The influence of the assumed occupant type scenarios on 
the energy performance is simulated for six single-
occupancy offices in a case study building, located in 
Vienna, Austria. Figure 3 illustrates the office spaces that 
have a total floor area of 72m2. The respective building 
elements are assumed to meet the minimum requirements 
of the national building norm (OIB-Richtlinie 6, 2019). 
An overview of the case study building assumptions with 
regard to geometry as well as construction is given in 
Table 2. Note that each window is operable and equipped 
with an internal shading element.  

In order to establish a basis for comparison, a first "Base 
Case (BC)" simulation of the case study building is 
performed using fixed pre-defined schedules. Thereby, a 
metabolic rate of 1.0 (corresponding to seated office 
work) as well as a standard heating and cooling system 
(HVAC Ideal Loads Air System) is assumed (see 
Regnath, 2021 for further information).  

 
Figure 3: Case study building model  

(Regnath et al., 2022). 
 

Table 2: Case study building assumptions.  
(Aw: zone window area; Azone: zone floor area;  
Vg: gross volume; WWR: window to wall ratio;  

U-values of roof (Uroof), floor (Ufloor), window (Uwindow), 
and external wall (Uext. wall)) (Regnath et al., 2022). 

 Variable Unit Value 

G
eo

m
et

ry
 

Aw m2 3.6 

Azone m2 12 

Vg m3 216 

WWR - 0.4 

C
on

st
ru

ct
io

n Uroof 

W.m-2.K-1 

0.15 

Ufloor 0.11 

Uwindow 0.11 

Uext. wall 0.20 

 

 

 

Computational setup 
As already referred to above, the well-known ABM 
application NetLogo (Wilensky, 2022) is used to generate 
the occupant behaviour model. The dynamic energy 
simulation is performed using the tool EnergyPlus (2022). 
Moreover, the BCVTB (Wetter et al., 2022) and Python 
language (2022) are used to couple the occupant 
behaviour model with the dynamic energy simulation 
model. A 30-min timestep duration is selected to perform 
the simulation in a reasonable degree of resolution. 
Furthermore, the simulations are performed for one 
illustrative week per season (i.e., in total a four-week 
period). Figure 4 shows the computational configuration 
and data exchange concept (the occupancy schedule 
referred to in this figure is based on Mahdavi et al., 2018). 
Thereby, EnergyPlus simulates the buildings' state at each 
timestep by considering energy consumption, 
temperature, illuminance, and PMV. Thereafter, the data 
is transferred via BCVTB and Python to NetLogo. The 
tool NetLogo then further simulates the respective 
occupant actions and gives this information via Python 
and BCVTB back to EnergyPlus. In the EnergyPlus 
environment, the updated indoor-environmental 
condition is simulated in the subsequent timestep.  

Within this data exchange process, a decision-making 
routine is included in the occupant behaviour model. In 
this routine, a number of different possible actions that 
could be performed by an agent to enhance thermal 
discomfort at each timestep are defined and listed in the 
following: 

- Revoke the preceding action that might have led 
to a thermal discomfortable condition 

- Change the clothing  

- Change the heating or cooling setpoint 

- Open or close the window 

Depending on the building user type, the likeliness to 
perform certain actions changes. Moreover, a limited 
range for certain actions is assumed (e.g., the clothing 
value is limited between 0.6 and 1.4.). Figure 5 shows 
such an illustrative decision-making routine for building 
users with a low energy awareness (i.e., Type III and IV) 
that perceive the indoor-environmental conditions as too 
hot. In this graph, the likeliness to perform a specific 
action is included. As in this example, the low energy-
aware agent has a tendency to first change the heating or 
cooling setpoint (70%), before opening the window 
(20%) or changing the clothing (10%). In contrast to that, 
a high energy-aware agent has a higher likeliness to first 
change the clothing (70%), before opening the window 
(20%) or changing the heating or cooling setpoint (10%). 
Considering the probabilistic character of building users' 
actions, a set of multiple simulation runs is performed per 
each scenario. The data analysis is conducted in Python 
(2022) and the results presented and discussed in the 
subsequent section show average values for each 
scenario.  
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Figure 4: Diagram of the computational configuration 
and data exchange (Regnath et al., 2022). 

 

 

Figure 5: Illustrative decision graph for low energy 
aware users (Type III and IV) (Regnath et al., 2022). 

 
 
 
 

Results and discussion 
The simulation results (summarized in Figures 6 to 12, 
adopted from Regnath et al., 2022) display the impact of 
the occupants' energy consciousness level and their 
thermal comfort preferences on the computed energy use.  
As expected, Figure 6 displays the tendency that actions 
performed by low energy aware occupants result in higher 
heating and cooling loads (note that this figure displays 
annual energy loads obtained based on extrapolation of 
the simulation results for the aforementioned four 
representative weeks). A similar trend can be seen in 
Figures 7 and 8 that show the hourly energy loads for each 
scenario in the spring season compared to the Base Case 
scenario.  
However, the results also propose that the energy 
awareness level can impact and reduce the buildings' 
overall energy loads. For instance, Figure 9 illustrates the 
energy loads for each user type (in spring). The resulting 
median and distribution are influenced by the control 
actions performed by the occupants. The results of Type I 
and II (i.e., both high energy aware user types) show 
rather low medians whereas the results of Type III (i.e., 
low energy awareness, high tolerance level) denote the 
highest energy load. This might seem paradoxical at first 
sight; however, this can be explained by the reduced 
number of control (corrective) actions that result from the 
occupants' high tolerance level. This building user type 
might be oblivious to the fact that extremely low indoor 
thermal conditions are unfavourable in the summer season 
or extremely hot indoor thermal conditions in the winter 
season are unfavourable from an energy saving point of 
view. 
Figures 10 to 12 denote a similar tendency by displaying 
the energy loads for each user type in the summer, 
autumn, and winter season. 
 

 

Figure 6: Annual energy load per scenario. 
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Figure 7: Total energy loads per scenario in spring. 
 

 

Figure 8: Hourly energy loads for the Base Case and the 
four scenarios in the course of a representative week in 

spring. 
 

 

Figure 9: Distribution of energy loads (per single office 
during spring) occupied by different occupant types. 

 

 

 

Figure 10: Distribution of energy loads (per single office 
during summer) occupied by different occupant types. 

 

 

Figure 11: Distribution of energy loads (per single office 
during autumn) occupied by different occupant types. 

 

 

Figure 12: Distribution of energy loads (per single office 
during winter) occupied by different occupant types. 
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Conclusion 
As mentioned at the outset of this contribution, there has 
been a recent increase in efforts to develop more detailed 
models of building users in building performance 
simulation applications. Specifically, the potential of 
high-resolution occupant models via ABM deployment 
has been highlighted in a number of recent and ongoing 
research and development efforts. The simple case study 
discussed in this paper facilitates the discussion of two 
basic classes of related challenges. 
The first class of challenges are of a more technical 
nature. ABM requires considerable computational 
resources. The implementation entailed in the case study 
faced major difficulties in the process of co-simulation. 
As such, setting up a co-simulation framework in the field 
of building performance simulation is still far from a 
seamless process. Execution of co-simulation and data 
exchange management procedures cannot rely on well-
rounded off-the-shelve environments and require thus 
considerable programming expertise. Data input, model 
specification, and the processing and visualization of 
results still require the application of non-standardized 
measures and techniques.  
Last but not least, current co-simulation solutions are also 
not especially efficient in view of data handling and 
simulation duration. However, it can be reasonably 
expected that many of the predominantly technical 
challenges will be addressed and resolved in the near 
future, assuming the interest in ABM-based strategies in 
building performance simulation will be sustained into the 
future. Experiences in other building-related fields where 
ABM is widely used (e.g., building security, evacuation 
modelling, fire safety) appear to confirm this optimism. 
Moreover, ongoing efforts in development of occupant-
centric ontologies (Mahdavi et al., 2021) are expected to 
support the implementation of more robust and 
comprehensive ABM applications.  
The affairs concerning a second class of challenges may 
be, however, more complex. This class pertains to the 
actual content of the occupant representations in ABM. 
These representations require a considerable range of 
detailed data concerning occupants' attributes and 
behavioural tendencies. The illustrative case study 
discussed in the present paper clearly underlines a number 
of related problems. In the case study, the significant 
diversity of real populations was radically reduced to just 
a few high-level types.  
The utility of ABM arguably lies in its theoretical 
potential to represent building users at the individual 
level. However, such high-resolution information is rarely 
available. In many cases, rather coarse demographic 
information is broken down into group or individual 
patterns not based on empirically obtained attribute 
distributions, but based on the appearance of plausibility.  
 

In other words, whereas ABM, as a formalism, offers the 
theoretical possibility of highly individualized 
representations of occupants, the possibility is either not 
used or used without firm empirical underpinnings 
(Mahdavi, 2021). There are other limitations in the case 
study that exemplify a number of further challenges. The 
behaviour of real individuals may change over time due 
to multiple reasons (e.g., health-related issues, learning 
processes, economic pressures). These dynamic 
circumstances are difficult to capture due to reasons 
related to both technical complexity and lack of empirical 
data. Last but not least, the case study was carried out 
based on the assumption of agents in single-occupancy 
settings. Again, a key theoretical strength of ABM lies in 
the capacity to model agents' interactions and how they 
lead to emergent behaviour. ABM applications in some of 
the other, previously mentioned, building domains such 
as fire safety have been probably more successful given 
the fact that behavioural rules in such specific situations 
could be perhaps more readily formulated and tested.  
Note the preceding observations regarding the limitations 
of the current state of ABM applications are not meant to 
discourage efforts in this area. Rather, they are meant to 
contribute to the clarification of discourse. There are 
many application scenarios of building performance 
simulation that could be soundly pursued with simplified 
occupant representations. But there are also scenarios 
where detailed occupant models in general and ABM in 
particular may be appropriate and useful. However, the 
pursuit of these latter scenarios via a purely formalistic 
ABM (i.e., one that is not based on detailed empirical 
data) is unlikely to result in more expressive and reliable 
results.  
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