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Abstract 
Building Information Management (BIM) and Digital 
Twin (DT) technology can optimise lighting to support 
human health and well-being and the building’s energy 
performance. The data exchange between a physical and 
virtual environment was investigated, focusing on a 
scenario in which optimal interaction between daylight 
and electric light derives an optimised realisation of a 
given light demand curve. Investigation and validation of 
a DT model were done using a virtual room simulated in 
DIALux Evo and its physical twin for three levels of 
geometrical complexity. The results show the influence of 
model complexity and consequences on the speed of 
information exchange.  
 
Introduction 
The built environment can impact human health and well-
being daily through various factors. The light 
environment is one factor that strongly influences visual 
performance and comfort as well as mood, behaviour and 
interaction with the surroundings (Altomonte et al., 
2020). For example, the recommendations of Brown et al. 
(2020) revealed that rooms with optimised light, both 
natural and electric, can improve several health outcomes. 
Building Information Modelling and Management (BIM) 
allows the architecture, engineering, and construction 
(AEC) industry to move forward from traditional working 
methods to a more digitalised way of working. It enables 
general improvement and optimisation of the built 
environment and lighting in particular (Skondras et al., 
2019). 
Computational light modelling is a technology used to 
design and analyse lighting, even though research has 
shown that lighting designers and architects do not 
commonly use these tools (Davoodi et al., 2019). A light 
simulation does not use any form of automated data 
exchange between the physical object and the digital 
object (Kritzinger et al., 2018). Additionally, it does not 
integrate real-time data to cope with regular changes in 
real life, nor can it immediately or directly affect the 
physical entity (Lu et al., 2020, Tao et al., 2018). 
By implementing an Internet of Things (IoT) architecture 
in the BIM process in different phases of the building 
lifecycle, 3D virtual models with engaged as-built 

physical assets can be created (Skondras et al., 2019). 
This simulation approach is referred to as a Digital Twin 
(DT). Lu et al. (2020) defined a Digital Twin (DT) as “a 
digital replica of physical assets, processes and systems. 
DTs integrate artificial intelligence, machine learning 
and data analytics to create living digital simulation 
models that are able to learn and update from multiple 
sources, and to represent and predict the current and 
future conditions of physical counterparts (p.1).” Negri et 
al. (2017) added that sensed data, connected smart 
devices, mathematical models, and real-time data 
elaboration could optimise lighting design, predictive 
analytics, self-operating initiatives, and maintenance. The 
definition is based on preceding research (e.g., Garetti et 
al., 2012) and is used by many others (e.g., Kritzinger et 
al., 2018, Lu et al., 2020, Tao et al., 2018). 
A DT can be defined by three levels of integration 
(Kritzinger et al., 2018). The first level is referred to as 
the Digital Model without any automated data exchange, 
and it equals the traditional light simulation. The second 
level implements a one-way automated data exchange 
between the physical and virtual world, called a Digital 
Shadow. It only becomes a Digital Twin when a two-way 
automated data exchange is established (see Figure 1).  

 
Figure 1. Building Information Modelling and 

Management, framed in purple and green, represents 
where it is used in the DT context. The bidirectional 
feedback in the DT concept shows the third level of 

integration (after Skondras et al., 2019). 
A real-time data exchange means that sensor data is 
exported from real life, processed in a simulation tool in 
DT and later optimised, giving ‘orders’ to the lights in real 
life to change light level. It demands lighting technology, 
e.g., smart, intelligent, dynamic, or adaptive lighting and 
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sensoring, in the built environment for control and 
communication. It enables lighting adjustment according 
to the lighting demand for optimal visual comfort and 
physical and mental well-being by providing the right 
amount of light at the right time of day (Abd-Alhamid et 
al., 2019, Brown et al., 2020). A so-called ‘demand curve’ 
can be created, which provides which quality and quantity 
of light exposure are required for human health, well-
being, and comfort. Additionally, lighting technology that 
regulates the use of electric light only when needed will 
save energy (e.g., Mead, 2008, Hafezparast-Moadab et 
al., 2021). 

Designing the illumination of a real environment has 
always been a complex and often tedious task, requiring 
much time and effort to manipulate, i.e., physical light 
sources, shades, and reflectors (Loscos et al., 1999). 
Lighting simulation is challenging due to the strict 
requirements to represent reality and, at the same time, 
provides different degrees of complexity for diverse users 
within the same field (Ochoa et al., 2012).  
Since a DT partly represents reality,  it should have a high 
level of detail (LOD) with as-built geometric information 
like size, shape, location, quantity and orientation and 
non-geometric information like material, light colour 
temperature, luminous flux (Latiffi et al., 2015). The 
realism is critical in lighting, where it directly affects the 
tested environment instantly compared to thermal and 
acoustic conditions. Furthermore, parametric BIM objects 
enable the data exchange process to be fully automated in 
DT. In other words, having one BIM model rich in 
information that later can be used in different simulation 
tools depending on its purpose will save time and effort 
and increase realism and accuracy. Nevertheless, every 
step of transferring data from one model format to another 
in creating a DT may introduce an error factor because of 
interoperability issues and the way it is performed (Gupta 
et al., 2014). 
The enormous amount of information contained in BIM 
models will result in complex virtual environments. The 
increased number of sensors sending out continuous 
measurement data results in Big Data sets. The 
unstructured data requires a series of programming 
techniques to filter and map it. Big Data Analytics 
processes relevant data to convert it into practical and 
understandable information, which are tools for building 
management, optimisation, and decision-making (Lim et 
al., 2020, Ward and Barker, 2013). Visualisation of data 
is often used as a relatively simple way to ensure that 
more people understand what they see. For example, 
besides having the sensor data measuring illuminance 
values in a table or grid points, it is also informative to 
visualise the light distribution in the measured area 
showing luminance received by the eye and possible glare 
areas.  
However, validation of light simulations has been done 
numerous times. Still, not many studies have investigated 

a digital twin-driven lighting simulation evaluation. 
Furthermore, there is a challenge in offering DT services 
in a single environment because some services need a 3D 
graphic interface (i.e., luminance distribution) while 
others can analyse data without a visualisation. A fully 
detailed BIM model has the advantages of realism and as-
built information but the disadvantages of heaviness and 
complexity that can slow down the data exchange. On the 
other hand, a simplified BIM model will be easier to 
manage and serve the simulation purpose but may 
sacrifice accuracy. Therefore, the study investigates how 
the level of geometrical complexity of the virtual 
environment impacts time- and error factors during data 
exchange with the real environment with daylight and 
electric lighting for a given light demand curve. 
 
Methods 
The research methodology is based on a quantitative case 
study approach.  
Setting 
A case study was performed in a controlled laboratory 
apartment environment with smart lighting (Philips Hue 
bulbs and Bridge) and several illuminance sensors 
(HOBO Pendant MX2202) in Jönköping, Sweden 
(57°46′58″N 14°09′38″E). The test room had two large 
windows oriented towards North-East, allowing direct 
sunlight to enter the room only in the early hours of the 
day. The window in the bedroom part was covered with a 
black-out curtain limiting light to enter. Daylight 
illuminance values measured in the physical environment, 
the real twin (RT), were compared to values calculated in 
the DT, created using the DIALux evo (version 9) lighting 
simulation tool. Sensors were placed at different heights 
depending on the furniture height and both twin models 
used the same seven sensor points (see Figure 2). Since 
the simulation model’s level of accuracy may impact the 
speed of data exchange, three models with varying 
geometric complexity were created: fine, medium, and 
coarse. 

 
Figure 2.  A schematic floor plan of the laboratory 

apartment showing the placement of the furniture, the 
seven sensor points (green dots, horizontally placed 

except one), and the three light sources (yellow dots). 
The room has two windows, and the bedroom window 

was screened.  
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Additionally, a simple lighting demand curve, specifying 
the light exposure (illuminance in lux) per hour for one 
day, based on (melanopic daylight equivalent 
illuminance) recommendations by Brown et al. (2020), 
was applied to the case, see Figure 3. The aim was to 
satisfy the human exposure demand as much as possible 
with daylight and use the DT to support a scenario for 
optimal interaction between daylight and electric lighting. 
Vertical illuminance (in lux) values were used for the light 
exposure data exchange between the RT and DT. Electric 
lighting is dimmed up and down appropriately based on 
the need for lighting. Optimization is reached from a 
human health perspective, serving right light at the right 
time and sustainability perspective, using as little energy 
as possible. 

 
Figure 3. The applied curve for the human lighting 

demand (in illuminance in lux per hour between 4:00 
and 22:00), based on melanopic daylight equivalent 

illuminance recommendations by Brown et al. (2020). 
Procedure 
Creating a DT started with using a BIM authoring 
software application (Revit) based on a point cloud file 
created by photogrammetric laser scanning equipment of 
the real environment. Then, a fully parametric BIM model 
with a high level of detail was exported in Industry 
Foundation Classes (IFC) format to the lighting 
simulation tool (DIALux evo) to perform lighting 
analysis. The BIM-models applied were Author Design 
Model and Review Design Model in Revit and Analyse 
Lighting Performance in DIALux evo. Due to 
interoperability issues between two software tools, much 
geometrical information regarding furniture and lighting 
fixtures got lost. Non-geometrical information such as 
colour temperature and luminous flux did not follow into 
the simulation model either. The model was largely 
manually recreated in the simulation tool and the 
luminaire information was manually added. Real-time 
data for two dates (March 12th and 17th) were selected as 
those days represented a day with an overcast and clear 
sky condition, respectively. Comparisons were performed 
for the full 24 hours of each day. Next step was adding the 
sensor points and instead of taking only one point, in the 
DT a surface area was used to avoid mistakes due to 
misplacement of sensor points. As said, three copies of 

the simulation model were made with different levels of 
detail (see Figure 4). The very detailed fine model (f) was 
a level-one Digital Model that includes as-built objects 
(Kritzinger et al., 2018). The medium model (m) had main 
objects such as furniture and openings, but complex 
objects with many surfaces were removed, such as plants, 
curtains, and bed sheets. The coarse model (c) included 
main objects with simplified surfaces such as cylinders 
for circular tables and boxes for rectangular tables and 
armchairs. All detailed objects were removed. All models 
included the same luminaires and light sources. Next, the 
ratio between the simulated data in all three models and 
real-life data was calculated. 

 

 

 
Figure 4.  Three geometrical complexity levels of the 
DIALux simulation model: fine, medium, and coarse, 

respectively. 
 

The final step was demonstrating how the DT and Real 
RT work together to reach the optimal solution for 
realizing a lighting demand curve (see Figure 3). It was 
done for the vertical sensor point in the space behind the 
chairs in the living room (see Figure 2). Based on the 
agreement of simulation data and demand curve data 
meeting the human needs, the difference between demand 
curve illuminance values and simulated values was 
calculated. By that, the required amount of electric 
lighting was determined. Then, the same simulation was 
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run, predicting the daylight situation five minutes into the 
future. The DT calculated the optimal luminous flux 
needed to reach demand values while not exceeding it and 
wasting energy. This was done by turning the electric 
light source at different dimming levels. 
 
Results 
First, the comparison between the Real Twin and Digital 
Twin models is described and subsequently, the 
consequences for the data exchange and the light 
environment optimisation are shown. 
 
Comparison of Real and Digital Twin 
The simulated results were compared to the real-time 
sensor data. In Error! Reference source not found., the 
data for only one sensor point are presented. The vertical 
sensor point close to the two chairs in the living room was 
selected to simulate the (demanded) light at the human 
eye (vertical plane). The figure shows the comparison of 
the RT and all three models for daylight illuminance 
values between 7:00 and 17:00. For the overcast sky 
condition (March 12th), the agreement between the RT 
and VT was, on average, 52, 62, and 63% for the fine, 
medium, and course models, respectively. However, the 
figure clearly shows the shifted peak and the higher 
daylight amount during the day for the RT. Disagreement 
between RT and DT for the clear sky condition (March 
17th) was even more spread. 

 
Figure 5. Comparison of real-time data in the physical 

environment (RT) and simulation data from the fine (DT-
f), medium (DT-m), and coarse model (DT-c). 

 
Optimization of data exchange 
After applying the three levels of geometrical complexity, 
the average simulation time was calculated manually. 
Table 1 summarises the results for when the full model 
was calculated and when the calculation surfaces only 
were considered. Overall, the average calculation time for 
the clear sky condition took slightly longer than the 
situation with the overcast sky condition. As expected, the 

coarse model had the fastest simulation time, both for the 
full model and surfaces-only calculations. The higher the 
level of complexity, the longer time it takes to simulate. 
Calculation of surfaces only for the fine model reduced 
the calculation time to 1/10th of the original time for the 
fine model, whereas this reduction was 1/3 for the coarse 
model. Both the ‘full model’ and the ‘calculation surfaces 
only’ options provided the same illuminance values, 
indicating that the surface calculation option has high 
accuracy and fast results. It can be a choice when 
illuminance results are only presented as values, not for 
visualisation or rendering. 

Table 1. Average calculation time (in mm:ss.0) for the 
three different Digital Twin models (fine, medium, and 

course) for two different sky conditions (overcast, clear) 
between 7:00 and 17:00 when including either the full 

model or just the calculations surfaces. 
 Calculation time 

Overcast 
sky 

Clear 
 sky 

DT-fine Full model 05:16.3 05:17.9 
Surfaces 00:29.1 00:29.9 

DT-medium Full model 02:03.6 02:05.2 
Surfaces 00:23.6 02:05.2 

DT-course Full model 01:02.8 01:00.6 
Surfaces 00:19.6 00:19.8 

 
Optimisation of light environment 
For one chosen point, the vertical sensor behind the chairs 
in the living room, the interaction between the RT and VT 
was explored when realising the lighting demand curve 
(Figure 3). For the VT, the course model was used. The 
amount of daylight (DL) was collected (RT-DL) or 
calculated (DT-c-DL) and compared with the demand 
curve. If the daylight amount was insufficient, electric 
lighting using Light source 1 (L1) was used. The light 
source was dimmed down accordingly to match the 
demand curve as close as possible. If the illuminance from 
L1 was not enough, support from Light sources 2 (L2) or 
3 (L3) was added. The maximum illuminance the light 
sources delivered was 90 lx, 50 lx, and 300 lx, 
respectively, for L1, L2, and L3. Figure 6a shows the 
dimming percentages of three light sources for the 
situation with the Real Twin (RT-DL) and Figure 6b 
shows the results for the course model Digital Twin (DT-
c-DL). The dark grey line in both figures shows the 
resulting demand curve (Demand-res) which is higher 
around 10:00 for the RT and between 8:00 and 10:00 for 
the DT due to a high daylight supply. 

The next step was a five-minute future prediction 
simulation using the light sources in the coarse DT model. 
With an hourly illuminance adjustment, the level is kept 
at a constant level for a full hour; see the example in Table 
2. One hourly time step is used here as example: for the 
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situation between 13:00 and 14:00, L3 is held at 34% and 
the two other sources at 100%.  

a. 

b. 
Figure 6. Dimming percentages of three light sources 
(L1, L2, and L3) as a response to the daylight vertical 
illuminance (DL in lux, overcast sky, light grey line) to 

realise the Demand curve (dark grey line) for the 
situation with the Real Twin (RT-DL, figure a) and 

course model Digital Twin (DT-c-DL, figure b). 

The DT ‘knows’ that the date for this simulation is March 
12th, where - for this room and this orientation - the light 
level will slowly decrease between 13:00 and 14:00 with 
approximately 5.7 lx per five minutes (pre-knowledge/ 
calculated in the model). Hence, the DT can calculate 
what happens on average regarding the daylight situation 
at the moment when the RT sensor input comes in as well 
as five minutes in the future. It calculates then how much 
electric lighting is required for a more optimal light 
condition according to the demand curve. As said, Table 
2.shows that L3 was turned on at 13:00 at 34%, delivering 
451 lx. At 14:00, the light source had to be dimmed down 

even further, to 7%. With an hourly time-adjustment and 
no future adjustment, the electric lighting will keep the 
illuminance level at 451 lx until 14:00. The illuminance 
amount could have been reduced significantly with a 
shorter adjustment step and future adjustment, 
implemented by the DT.   

Table 2. Example of the dimming situation for the three 
light sources (L) in the DT-c model between 13:00 and 
14:00 on March 12th (overcast sky) and the agreement 
between the demanded and resulting illuminance level. 
Time Demand 

[lx] 
L1 L2 L3 Demand-res 

[lx] 
13:00 450 100% 100% 34% 451 

14:00 300 100% 100% 7% 301 

 
Discussion 
The case study investigated the agreement between the 
RT and DT and the influence of the geometrical 
complexity of the DT model on accuracy and calculation 
speed. Additionally, it studied the optimisation between 
daylight and electric light in case the RT and DT interact. 
In this study, the DT manipulated the virtual environment 
in the simulation tool (digital model) manually instead of 
automatic programmed data exchange according to the 
Level of Integration (Kritzinger et al., 2018). 
 
Comparison of Real and Digital Twin 
The RT and DT (simulation) agreement was not very 
high, particularly on a day with a clear sky. The 
simulation model assumed that the sky was entirely 
overcast or clear for the whole day. In DIALux evo, the 
horizontal illuminance for a sky model cannot be set or 
adjusted besides the fact that, in reality, days may not be 
entirely 100% overcast or clear either. Additionally, 
assumptions have been made regarding the content and 
surroundings of the investigated room, and this shows the 
importance of having as-built BIM models (Latiffi et al., 
2015). If more specific information was available, it could 
limit the chance of introducing errors in the process of DT 
creation. Since DIALux (evo) was initially developed for 
electric lighting simulations and has limited capabilities 
regarding daylight simulations, it may explain the 
difference in light amounts, especially as a result of direct 
reflections in adjacent windows when there is a clear sky 
condition.  
However, DIALux evo and Revit are simulation tools that 
lighting designers and architects frequently use. In the 
operation or facility management phase of the building’s 
life cycle, building performance analyses are often 
performed (re-)using BIM models received from previous 
building cycle phases. Ideally, data can be exchanged 
automatically between the BIM design model and the 
lighting simulation model to avoid doubling the work of 
recreating the model in the simulation tool. However, in 
this study, the BIM tool and the simulation tool had 
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interoperability issues that could not be controlled, 
resulting in doubling the amount of work, time, and effort 
to recreate/reuse a simulation model. For example, 
furniture objects and lighting fixtures placed in Revit did 
not appear in DIALux evo and had to be replaced in the 
lighting simulation tool. Even when objects were 
imported directly into DIALux evo from other software 
tools like SketchUp, the dimensions were distorted and 
needed manual manipulation.  
The used lighting simulation tool did not support other file 
formats and had a limited library of objects, which is one 
of the challenges faced when implementing new 
technology in traditional working methods (Skondras et 
al., 2019). In most cases, BIM systems at companies are 
equipped with conventional tools for light simulation 
(e.g., DIALux evo, Velux Visualiser, Revit Insight 360). 
However, these tools need to be updated and completed 
with intelligent devices (e.g., sensors, weather stations, 
smart light sources) and programming (to connect the 
physical world with the virtual world) to cope with DT 
technology (Macchi et al., 2018). 
 
Optimization of data exchange 
As expected, the comparison between the three 
geometrical models showed that the model with the 
lowest geometrical complexity had the fastest simulation 
time. However, unexpectedly, the model with the lowest 
level of geometrical complexity showed a better 
agreement with the real world. An explanation can be that 
the coarse model was predominantly developed directly 
in DIALux evo. For example, instead of using a BIM 
model for a chair, a standard box in DIALux evo was 
placed in the room.  
Not surprising, the average calculation time for the 
condition with a clear sky and higher illuminance values 
(March 17th) took slightly longer compared to the 
situation with an overcast sky condition (March 12th). It is 
likely because a clear sky simulation combines direct and 
diffuse light calculations, while a model using an overcast 
sky has only diffuse light calculations. The calculations 
were relatively fast in all cases: less than 6 minutes for the 
most detailed full model. However, the method described 
was simplified and focussed only on illuminance values. 
In case of full high dynamic range images, required for, 
for example, visual comfort analysis as a significant part 
of integrative lighting solutions, the calculation time will 
be much longer.   
 
Optimisation of light environment 
During the RT and DT interaction, the DT plays a crucial 
role in finding the optimal lighting as a combination of 
daylight and electric lighting for human well-being and 
energy saving. The results showed that, in theory, the 
interaction between the RT and DT can create a light 
condition that agrees with recommended values. This 
study used a simplified version of general light 

recommendations (Brown et al., 2020). However, 
different tasks require different lighting conditions, and 
therefore, it is essential to use appropriate demand curves 
when presenting different scenarios of daily activities. 
Nevertheless, for realising actual integrative lighting, the 
light amount and spectral and spatial distribution of the 
light are crucial. They are supplied at the appropriate time 
of the day. 
The fast simulation time and the continuous 
measurements of real-time data allow a DT to test and 
control alternatives in the virtual environment before 
sending information to the RT, predicting what may 
happen in the near future. For example, when the DT 
simulated five minutes in future at 13:00, electric light 
was more than enough at 34%. Therefore, the DT can 
simulate and explore a 33% or even 32% lamp dimming 
condition to reach the optimal required light levels. When 
a DT predicts a need for increasing light levels, it can send 
information to RT to turn on electric light gradually to 
reach better visual comfort. Instead of testing each light 
level in DT and sending data to the RT, testing all 
different light level alternatives in a virtual world and 
finally choosing the best option will save a lot of energy. 
This process can only be done with future predictions and 
requires high calculation speeds. 
 
Conclusions 
Researchers and practitioners are becoming more 
interested in the DT application in the AEC industry in 
recent years. This paper explored a digital twin-driven 
lighting simulation and optimised characteristics for data 
exchange between a physical and virtual light 
environment. The light environment was optimised for an 
interaction between the RT and DT. Slightly against 
expectations, the results showed that the coarse model 
was a more accurate representation of the physical 
environment and generated faster data exchange. 
Calculations required for appropriate data exchange 
between RT and DT were fast in all investigated cases. 
However, the method described was simplified, and 
future studies should explore more complex situations, 
including, for example, high dynamic range image 
calculations. Furthermore, the results showed that, in 
theory, the interaction between the RT and DT can create 
a light condition that agrees with recommended values. 
Future studies should apply and test multiple appropriate 
demand curves presenting different scenarios of daily 
activities and include requirements for spectral, spatial 
and temporal light distribution. 
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