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Abstract 
One of the initiatives to reach the European 
decarbonization goal is the roll-out of smart heating 
meters in the building stock. However, these meters often 
record the total energy usage with only hourly resolution, 
without distinguishing between space heating (SH) and 
domestic hot water (DHW) production. To tackle this 
limitation, this paper presents the validation of a new 
methodology to estimate the SH and DHW from total 
measurements in different building types in three 
countries (Denmark, Switzerland, and Italy). The method 
employs a combined smoothing algorithm with a support 
vector regression (SVR) to estimate the different heating 
uses. The estimation results are compared with the 
different countries’ DHW compliance calculations. The 
comparison showed that the compliance calculations 
outperformed this method by considering the validation 
dataset characteristics. 

Introduction 
The society is being pressed to become more sustainable. 
These pressing sustainable challenges are due to the 
global climate change, pollution issues, and fossil fuel 
supply curtailment. A “green” transition must occur, 
especially for the building sector. According to European 
Commission (2022a), in the European Union (EU), its 
building sector has an estimated share of 40% of the total 
energy end-usage, where 79% of it is for space heating 
(SH) and domestic hot water (DHW) production alone 
(European Commission (2022b)). It is estimated that 97% 
of the existing buildings in the EU must be renovated to 
achieve its 2050 environmental goals (BPIE (2017)). This 
estimation is based solely on the energy performance 
certificates (EPC) issued in the different EU member-
states. An EPC results from several calculations made by 
an expert to estimate a building’s energy usage and 
efficiency. These calculations are based on different 
measurements, assumptions, and standards depending on 
the country where the building is located. The objective 
behind these certificates is to raise awareness of energy 
efficiency among the owners and tenants, promote the 
refurbishment of the building, and assess the overall 
country building stock (Iribar et al. (2021); Gonzalez-
Caceres et al. (2022)). Even though the EPCs are 

promising, they usually show a significant difference 
between the measured and estimated energy usage. This 
difference is known as the performance gap (Cozza et al. 
(2021)) and has been studied in several EU countries 
(Gram-Hanssen and Hansen (2016)). In order to solve this 
issue, one of the proposed solutions is the usage of actual 
measurements as additional information for performing 
the EPC calculations. This manuscript focuses on how the 
actual building heating measurements can be used to 
estimate the SH and DHW shares and compare them with 
the countries’ current compliances to estimate the yearly 
DHW consumption in the EPCs. The countries studied are 
Denmark, Switzerland, and Italy. Therefore, each 
country’s effort in using energy data to decrease the 
performance gap is explained below. 
As a front-runner country, Denmark is making a great 
endeavor to install smart heat meters in buildings 
connected to the district heating (DH) network (Johra et 
al. (2020)). The resulting data from the meters are the 
aggregated heating usage (SH and DHW), water 
consumption, and temperature-weighted volume 
consumption, resulting in monotonically increasing 
measurements (Kristensen and Petersen (2021)). Also, 
these meters typically have hourly measurements, and the 
data are easily accessible by the utility companies. 
Although this initiative is a substantial move toward 
achieving the energetic target set by Denmark (Danish 
Climate Policies | Energistyrelsen (2022)), it has a 
downside regarding its data collection. In most buildings, 
only one device is installed, which collects the total heat 
usage without differentiating between the energy used for 
SH or DHW production. Because these two heat uses 
depend on different factors, it is crucial to disaggregate 
them to understand better the building and occupancy heat 
demand (Gram-Hanssen (2014)). 
Even though the DHW in Swiss nZEB accounts for 50-
70% of the total heat consumption, its monitoring is not 
required by the local regulations or the EPC (Office 
fédéral de l’énergie OFEN SuisseEnergie (2016); 
Flourentzou and Pereira (2021)). On the contrary, in 
Switzerland, it is common for the buildings to be 
equipped with one heat meter that measures the total heat 
consumption, both for SH and DHW, making it 
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challenging to identify the heat required for the DHW or 
SH production (Flourentzou and Pereira (2021)). 
In Italy, in the last years, the Government promoted 
several energy conservation measures for the building 
envelope with related incentives due to the prevalence of 
old buildings. So, as a matter of fact, the energy 
consumption of the building stock will change in the 
future (also considering the climate change effect). 
Consequently, the district heating networks in the main 
cities of northern Italy, which were built several decades 
ago and are operating at high temperatures (70-80°C), 
need to be revised in terms of both production and 
operating conditions. An example of such an intervention 
is studied by Vivian, Quaggiotto and Zarrella (2020). The 
heating and DHW disaggregated profiles will help design 
and manage these improvements efficiently. In addition, 
the recent concept of the district heating network 
integrated with other renewable energy technologies (e.g., 
heat pumps) in new building districts is a good 
opportunity (Bordignon et al. (2022)). Also, in this case, 
the disaggregated profiles can help design and set suitable 
control strategies to increase energy efficiency. 
Another aspect to consider on the importance of knowing 
these energy shares is regarding refurbishment initiatives. 
In Pomianowski et al. (2020), the authors argue that 
global building regulations have stricter SH efficiency 
rules while overlooking DHW consumption. Therefore, 
the new buildings, also known as low-energy buildings, 
have a much higher DHW share due to the continuous 
decrease of SH usage over the years and the higher levels 
of comfort concerning heating practices demanded by the 
residents. 
Thus, a better assessment of the thermal appliances can be 
achieved by disaggregating the energy used in buildings. 
This contributes to a more detailed understanding and 
control on the demand side and promotes better decision-
making strategies regarding heat production and 
distribution. 
Background 
The disaggregation of time-series has been studied since 
the 1980s regarding electrical appliances metering 
(Zeifman and Roth (2011)). However, the research has 
been shifting towards heating meter data. One of the first 
articles to explore this type of data is Bacher et al. (2016), 
which presents a statistical methodology to estimate the 
SH from 10-min resolution total heat measurements. This 
method is based on the premise that SH demand variates 
accordingly to the smooth external temperature 
fluctuations. At the same time, DHW usage fluctuates 
sporadically with higher peaks due to its short-time hot 
water draw-off events. The method predicts the SH by 
applying a kernel smoother to the total measurements, 
where all values above a defined threshold are due to 
DHW usage. Although promising, the method needs 
validation with separated space heating and DHW usage 
measurements. Also, the need for high-resolution data 

(10-minutes resolution) to detect the DHW peaks is 
uncommon to find in the typical installed smart meters. 
Unlike the above method, more straightforward methods 
were developed to disaggregate heating datasets. The 
articles Lien, Ivanko and Sartori (2020), and Ivanko, 
Sørensen and Nord (2021) propose different methods to 
decompose SH and DHW usage based on discovering the 
DHW profiles when the total heating is assumed to be 
equal to the DHW usage only (no SH demand). 
Additionally, considering the relationship between SH 
demand and the external temperature, the methods were 
validated with several Norwegian buildings (apartments 
and hotels) and compared with other existing methods. 
Also worth mentioning regarding Lien, Ivanko and 
Sartori (2020) is that besides presenting their developed 
methodology, they also compared their results with 
several Norwegian reference data. 
In Marszal-Pomianowska et al. (2019), another technique 
is proposed by assuming that the total heat measurements 
are equal to the DHW usage during Summer (no SH 
demand). Their novel approach does not aim to 
disaggregate the data but to predict the dwelling’s daily 
DHW usage profile. This load-profiling technique seeks 
to throw light on the customers’ DHW practices and how 
their behavior affects the DH supplier. 
In Hedegaard, Kristensen, and Petersen (2021), the 
weekly SH and DHW usage profiles are predicted using 
calibrated grey-box models. This method is likely to be 
the most reliable and accurate of the ones presented in this 
review, and the authors claim that the model’s accuracy 
can be improved even further. Also worth mentioning is 
Alzaatreh et al. (2018). A pattern recognition technique 
was developed and tested in this research work to separate 
SH measurements from other appliances in two UK 
single-family dwellings. 
This manuscript aims to present the results from the 
validation of a novel disaggregation methodology 
described in Leiria et al. (under review). The validation 
process is constituted by applying the method in three 
smart heat meter datasets. These datasets are different in 
terms of measurements resolution (i.e., number of 
decimal digits), measurements scale (i.e., energy usage in 
a single apartment or a block of apartments), building type 
(i.e., residential or commercial buildings), heating 
systems (i.e., DHW production with or without storage 
tank) and different countries (i.e., Denmark, Switzerland, 
and Italy). The current study compares the DHW 
estimation by the disaggregation methodology with the 
actual measurements and the DHW compliance 
calculations of each country.  
Following the Introduction, the section Study Case 
presents the different validation datasets. In Methodology, 
the applied disaggregation method is explained. The 
results from the validation are examined in the section 
Results and Discussion. The manuscript closes with 
Conclusion and Suggestions for Further Work. 
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Study Case 
For the methodology’s validation, three heating datasets 
are used. All datasets have separated energy 
measurements of SH, DHW, and the aggregated sum of 
both (total heat). The differences between datasets are the 
following. 
Danish dataset 
This dataset is constituted of 28 single-family apartments. 
All apartments are from a social housing complex in 
Aalborg, Denmark. The complex was progressively 
refurbished to the Nearly Zero-Energy Buildings (NZEB) 
standard from 2012 to 2020. The interior of the 
apartments was fully remodeled, and the new SH 
installation includes radiators in all rooms and kitchens 
and underfloor heating in the bathrooms and hallways. 
The heat for SH and DHW is produced at the building 
block level and distributed to each apartment. Apartments 
are equipped with single SH and total heat usage meters, 
and the DHW is calculated through the difference 
between measurements from the meters. The heated area 
of the dwellings is between 97 and 112 m2. 
The local weather data (hourly outdoor temperature and 
the global radiation) is retrieved from the Danish 
Meteorologic Institute website (Dansk Meterologisk 
Institut (2022)). The chosen weather station is Tylstrup, 
the nearest available station to Aalborg. 
In this work, the data pre-processing consisted in 
detecting the number of missing and negative 
measurements and removing them. In the 28 dwellings 
dataset (187 123 measurements) with approximately nine 
months of monitoring for each dwelling, there are 46 661 
missing hours (~25% of the dataset). The household with 
the lowest missing measurements has approximately 3% 
missing data. Some households have up to 43% of 
missing data. Regarding negative measurements 
(incorrect values), few apartments have those. In total, 
these values only represent 0.013% of the original dataset. 
Swiss dataset 
This dataset is constituted of an apartment building 
located in Vevey, Switzerland. The building was built in 
20120 and deeply refurbished to reach NZEB standards 
during 2018-2019. The local district heating network 
supplies heat for SH and DHW. A heat meter measures 
the total heat provided by the district heating network. A 
second, a Flexim ultrasonic portable flowmeter (Fluxus 
F601), was used to measure the heat consumption for the 
DHW.  
The hourly outdoor temperature and the global radiation 
data were collected from the Swiss Federal Office of 
Meteorology and Climatology-MeteoSwiss (Swiss 
Federal Office of Meteorology and Climatology-
MeteoSwiss (2022)). The “Vevey” station was used for 
the weather data as it was the nearest available. The data 
were pre-processed in order to identify the missing and 
negative values and remove them. In total, for 2020, there 
were five months of available valid data.  

Italian dataset 
The selected building dataset consists of a theatre and a 
rehab institution connected to the district heating network 
of Verona Centro Città, serviced by AGSM. This network 
supplies heat to residential, tertiary, and industrial 
customers, operating at constant supply temperature and 
variable flow rate. Overall there are 247 user substations, 
but just for 2 (theater and rehab institution) of these 247, 
the separate monitoring on the use of SH or DHW was 
provided. The measures all correspond to the primary 
circuit of the heat exchanger installed at each user 
substation. The measuring devices installed are all 
ultrasonic compact energy meters suitable for measuring 
the energy consumption of district heating systems. The 
principle of operation of these meters is static and based 
on the transit time measurement. In particular, ultrasonic 
meters are characterized by the absence of moving parts, 
thus preventing mechanical wear of the metering 
components, low-pressure losses, low start flowrate, and 
good tolerance to suspended particulates in the water 
flow. On the whole, the ultrasound principle assures 
stable and accurate measuring results. The measurement 
period is from December 1, 2021, to January 31, 2022, for 
the rehab institution and from January 11 to January 31, 
2022, for the theater. The resolution of the measured data 
is a 15-minute time step. 
The local weather data (global solar radiation and air 
temperature with hourly time step) has been provided by 
the Arpav Meteorological Institute of Teolo. 

Methodology 
The methodology starts with the premise that the SH 
system runs continuously during the heating season while 
the DHW usage is sporadic throughout the day. Hence, 
during a day (which has around 24 recorded heating 
measurements), only a few of those consist of combined 
SH and DHW usage (ETotal = ESH + EDHW). The other 
recorded data points are SH usage alone (ETotal = ESH). 
Following this premise, the method has two stages. The 
first is to segregate the data points with and without DHW 
production. The second is to estimate the SH share 
(ESH,estim) in the points identified with DHW usage. From 
the SH estimation, the DHW is calculated through 
Equation 1: 

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐸𝐸𝑆𝑆𝑆𝑆,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1) 
The estimation results are compared with the separated 
measurements (SH and DHW usage) for each dataset. The 
DHW values obtained by the disaggregation methodology 
with the DHW prediction from the different countries’ 
compliance calculations. The disaggregation 
methodology is disclosed in more detail below. 
Furthermore, the algorithm presented in this work is 
coded with the software Rstudio (RStudio (2022)). 
Energy separation 
This first part of the method starts from the same premise 
as Bacher et al. (2016) that moderate variations of outdoor 
temperature during the day combined with the inertia of 
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the building environment contribute to smooth SH daily 
fluctuations. Hence, all peaks recorded by the meters can 
be accounted for DHW usage. Therefore, the method 
detects all daily highest points (ETotal) and identifies them 
containing DHW and SH usage (ETotal = ESH + EDHW). For 
each day, the method assumes the seven-highest recorded 
values as DHW usage, while the other measurements are 
considered SH alone. It is also assumed a sleeping period 
from 1:00 – 4:00 hours every day. Thus, there is no DHW 
demand during the sleeping period, and the high values 
recorded are because of the SH system operation. In 
Figure 1, one can see a schematic representation of the 
separation method. 

 
Figure 1: Separation method’s representation. 

All points identified with DHW production are removed 
from the dataset in order to have only SH measurements. 
The remaining SH data points will be used to estimate the 
SH from the removed recordings. The estimation 
algorithm is explained in the following subsection. 
SH and DHW estimation 
At this stage, the smart meters’ dataset consists of 
measurements without DHW production (ETotal = ESH). 
The next stage of the methodology is to estimate the SH 
usage (ESH,estim) at the data gaps. After determining the 
ESH,estim, the DHW usage (EDHW,estim) is calculated with 
Equation 1. 
From the same starting argument of the energy separation, 
the SH demand will vary smoothly due to small outdoor 
temperature oscillations. Therefore, the SH share in the 
removed data points is predicted from its known 
neighboring SH measurements that remained in the 
dataset. To estimate the SH, a smoothed Kalman filter 
algorithm is applied. This algorithm is based on a 
structural time series model from the function “StructTS” 
in the R-package imputeTS (Moritz and Bartz-Beielstein 
(2017)). The package’s selected function consists of a 
linear Gaussian state-space model for univariate time 
series. 
From the results in Leiria et al. (under review), the 
Kalman smoothing technique is a good method to predict 
the SH demand in the missing values. However, as 
mentioned, these values are calculated by their 
neighboring points. Basing this estimation on the adjacent 
points raises the risk of inaccuracy when several points 
are removed sequentially (large gap). To solve this 
problem, the algorithm is refined to use the smoothed 
Kalman filter only when the number of hours removed 
consecutively is equal to or below 2 hours (gap ≤ 2 hours). 
If the data gap is larger, a support vector regression (SVR) 
is applied instead. The SVR is a machine learning 

regressor that is trained with the known SH points that 
remained in the dataset and takes into account other inputs 
to calculate the SH usage instead of the neighboring 
points. The input data to estimate a given SH share is the 
outdoor temperature and global solar radiation measured 
two and one hours prior to the missing point and the smart 
meter measurements before and after the missing point. 
The SVR model uses a radial kernel function with the 
parameters C (cost) and γ (gamma) equal to 7 and 0.01, 
respectively. The SVR algorithm is retrieved from the R-
package e1071 (Meyer et al. (2020)). One can see in Table 
1 the details regarding the estimation algorithms. 

Table 1: Methods’ description. 
Method Parameters Input Condition 
Kalman 

filter 
Model: StructTS 
Smoothed: True 

ETotal [i] Gap ≤ 2 
hours 

SVR Kernel: Radial 
C = 7 

γ = 0.01 

Tout [i-1, i-2] 
Rad [i-1] 

ETotal [i-1, i+1] 

Gap > 2 
hours 

The final part of the present methodology compares the 
estimated values from the methodology and the actual 
measurements. Also, it explicitly compares the DHW 
method’s prediction on the rounded measurements 
(present case buildings), prediction on the decimal values 
(from the study in Leiria et al. (under review)), and the 
DHW estimation from the compliance calculations in the 
different countries (as described below). 
Danish DHW compliance calculations 
In Denmark, the DHW consumption in residential 
buildings is currently estimated using the compliance 
calculation of 250 liters/m2 per year (Aggerholm and 
Skovgaard (2018)). Similarly, the supplied cold water and 
DHW temperatures are 10⁰C and 55⁰C, respectively 
(Dansk Standard (2000)). By using the floor area of the 
different apartments, the yearly DHW energy production 
is calculated through Equation 2: 

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1

3600 ∙ 0.25𝐴𝐴 ∙ 𝜌𝜌𝑤𝑤𝑐𝑐𝑝𝑝,𝑤𝑤 ∙ (𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑇𝑇𝑐𝑐) (2) 

Swiss DHW compliance calculations 
In Switzerland, the DHW consumption in residential 
apartment buildings is currently predicted using the 
compliance calculation of 35 liters/day per person, and 
each person is considered to occupy 30 m2 of floor area 
(Société suisse des ingénieurs et des architectes (2015)). 
Similarly, the supplied cold water and DHW water 
temperatures are 10⁰C and 60⁰C, respectively (Société 
suisse des ingénieurs et des architectes (2015)). Thus, by 
knowing the building’s floor area, the yearly DHW 
energy production is calculated through Equation 3: 

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶 =
365
3600 ∙

0.035
30 𝐴𝐴 ∙ 𝑛𝑛 ∙ 𝜌𝜌𝑤𝑤𝑐𝑐𝑝𝑝,𝑤𝑤 ∙ (𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑇𝑇𝑐𝑐) (3) 

Italian DHW compliance calculations 
In Italy, the DHW consumption in specific (commercial) 
buildings is estimated using particular compliance 
calculations and standards. The Italian dataset has the 
heating measurements of a rehab institution and a theatre, 
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therefore, the DHW consumption (volume) is calculated 
accordingly for each building case. The rehab institution 
accounts for a water volume (Vw) of 80 liters/day per 
existing bed in the building (Ente Nazionale Italiano di 
Unificazione (2014)), and the number of days regarding 
the calculation period (G) is equal to 365. The theatre’s 
DHW consumption (Vw) is given at 3.8 liters/day per 
person (ISO (2016)). The theatre is divided into zones 
where the number of people will variate accordingly. The 
number of days (G) for this case is 251 (ISO (2016)). For 
both cases, the supplied cold water and DHW 
temperatures are 13⁰C and 40⁰C, respectively (Ente 
Nazionale Italiano di Unificazione (2014)). Thus, by 
knowing the buildings’ bed number or occupants’ number 
(n), the yearly DHW energy production is calculated 
through Equation 4: 

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼 =
𝐺𝐺

3600 ∙ 10
−3𝑉𝑉𝑤𝑤 ∙ 𝑛𝑛 ∙ 𝜌𝜌𝑤𝑤𝑐𝑐𝑝𝑝,𝑤𝑤 ∙ (𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑇𝑇𝑐𝑐) (4) 

Results and Discussion 
The first set of results from this research is from applying 
the energy separation algorithm to identify the 
measurements with DHW usage. To assess the 
identification accuracy, the percentage of incorrectly 
identified measurements is shown per case building in 
Figure 2. 

 
Figure 2: Incorrectly identified points percentage per 

building type. 
The results show that the separation approach is quite 
inaccurate in identifying the DHW draw-off events. The 
lowest percentages belong to the Danish cases (single-
family apartments), with the lowest value of 16%. The 
largest inaccurate identified points belong to the Italian 
cases with the extreme of 67%. The plot corroborates the 
hypothesis that this separation approach performs better 
for households than commercial buildings. 
The following step in the methodology is the estimation 
of the SH usage in the detected DHW points. The 
estimation algorithm combines two methods, smoothed 
Kalman filter estimator and SVR, as described in the 
Methodology. In Figure 3, it is presented the overall error 
between the estimated values (SH – upper area; DHW – 
down area) and the real measurements.  

 
Figure 3: Overall error of the SH and DHW estimation 

for each building. 
As one can see from Figure 3, the overall SH error (upper 
area) is mainly negative (underestimated) and has a lower 
error than the estimated DHW, with the buildings having 
a SH error between -65% and 17%. 
Concerning the DHW prediction (down area), the error 
distribution is much wider than the SH predictions. In this 
case, 13 of the buildings on the dataset have an 
overestimation of the DHW demand above +100%. The 
extreme DHW prediction is one single-family dwelling 
with an overestimation of +510% and only two 
apartments being underestimated. 
Several reasons can be outlined to explain these energy 
predictions and their overall error. Foremost, the 
separation method inaccurately identifies several 
measurements, decreasing the estimation’s accuracy from 
the start. From Leiria et al. (under review), it is seen that 
in this research work, the separation approach 
underperforms more in single-family apartments. This is 
due to the coarse measurements (rounded values), which 
hinder the algorithm from finding the maximum values 
because most data points have the same value (e.g., 1, 2, 
3 kWh). Also relevant is that this method has a significant 
inaccuracy for the commercial buildings. To overcome 
this challenge, a separation approach can be developed, 
taking into account the maximum values (as done in this 
manuscript) and the occupancy schedule. Because these 
buildings have such strict schedules (e.g., opening and 
closing hours), a more precise method can be developed 
to account for these characteristics. 
Another factor is the occurrence of missing measurements 
in the initial dataset. As one can see in the Study Case, the 
different countries’ datasets are comprised of large 
missing measurement gaps (Denmark and Switzerland) or 
small timespan measurements (Italy). Because the 
prediction relies on determining the SH usage based on its 
neighboring points, several missing points negatively 
impact the overall method’s accuracy. 
Furthermore, the different heating systems and people’s 
social cultures significantly impact the methodology. As 
described, some of the DHW systems are of instantaneous 
heat production (Denmark). However, others have a 
storage tank (Switzerland), which in itself affects the 
DHW usage detection. Besides the production system, the 
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unique dwellers’ consumption habits or the DHW usage 
being equal to zero (no occupancy) may influence the 
method’s performance, which might explain the extreme 
error estimated cases.  
The present work also assesses the estimated DHW values 
from the method with the different countries’ compliance 
calculations used to predict the DHW demand in the 
buildings. In this comparison, the values presented in the 
manuscript Leiria et al. (under review) are also displayed 
(“decimal” column). The results of this comparison are in 
Table 2. 
Table 2: Comparison between the countries’ compliance 

predictions and the method’s estimation results. The 
green-colored cells indicate the best (orange color – the 

worst) performing method between this research’s 
method (rounded and decimal measurements) and the 

compliance calculations when comparing with the actual 
DHW measurements. 

Data Case-
building 

Error 
Compliance Round Decimal 

DK Apart 666 -47% 97% 0% 
DK Apart 668 -42% 103% 21% 
DK Apart 669 -11% 102% 22% 
DK Apart 670 -72% 21% -6% 
DK Apart 671 -34% 108% 20% 
DK Apart 697 -76% 12% -12% 
DK Apart 698 -75% 21% -7% 
DK Apart 699 -76% 10% -13% 
DK Apart 700 123% 510% 85% 
DK Apart 701 -1% 93% 18% 
DK Apart 702 87% 182% 32% 
DK Apart 724 -28% 89% 11% 
DK Apart 726 43% 70% 14% 
DK Apart 727 61% 149% 18% 
DK Apart 728 11% 152% 37% 
DK Apart 729 14% 119% 12% 
DK Apart 730 -57% 43% 5% 
DK Apart 731 90% 273% 63% 
DK Apart 732 -60% 24% -15% 
DK Apart 734 59% 144% 17% 
DK Apart 735 -50% 44% 6% 
DK Apart 736 -51% 40% 1% 
DK Apart 739 -68% 34% 7% 
DK Apart 740 1% 75% -3% 
DK Apart 741 -30% 59% 7% 
DK Apart 742 0% 121% 15% 
DK Apart 743 -64% 29% -13% 
DK Apart 745 78% 265% 69% 

CH Apart. 
block 4% -9% - 

IT Rehab 
inst. -59% -79% - 

IT Theater -35% 154% - 
As shown in Table 2, there are three calculated errors per 
DHW usage. The error between the measured DHW 
usage and the DHW compliance calculations 

(“Compliance”), the error between the actual 
measurements and the results from the methodology 
applied on this manuscript dataset (“Round”), and the 

error between the DHW measurements and the results 
from the methodology applied on the Leiria et al. (under 
review) dataset (“Decimal”). The error calculation is 
performed using the aggregated DHW usage divided by 
the number of data points (hours). For the case of the 
DHW measurements and the disaggregation method, the 
number of data points is the number of measurement 
hours in each building. For the compliance case, the 
number of data points is the number of hours in a year. In 
most cases, the compliance calculations outperform 
(green color) the disaggregation methodology when 
applied to rounded values. However, the total heating 
values are recorded with decimal number, its accuracy 
increases and outperforms the DHW compliance 
prediction. The main reasons behind this performance are 
stated above. However, it is relevant to highlight that even 
though the compliance calculations are in some cases 
more accurate, the methodology should be reviewed or 
changed because the results are still too high and might be 
one of the main reasons for the observed building energy 
performance gap. 

Conclusion 
This article presents a validation study on a new data-
driven methodology to estimate the SH and DHW from 
hourly resolution heat meters data. The validation novelty 
is the application of different building cases with different 
characteristics, e.g., different measurements resolution, 
building types, heating systems, and countries 
(consumption habits).  
The validation process shows that the method is quite 
inadequate to detect DHW usage in rounded 
measurements or commercial buildings. To solve these 
challenges, it is argued that the measurements cannot be 
rounded and should be recorded with decimals, and that 
the separation algorithm must be refined by taking into 
account the occupancy schedules in large buildings. The 
overall methodology predicts better the SH demand with 
an error between -65% and 17%. Concerning DHW 
prediction, the error is much wider, with most building 
cases falling between 0% and 200%. Additionally, this 
study compared the estimated DHW demand predicted by 
the method with the actual measurements and the DHW 
compliance calculations used in Denmark, Switzerland, 
and Italy. This comparison concludes that the compliance 
estimations outperform this method for most building 
cases, when the used rounded values. However, it is 
argued that the compliance calculations must be updated 
or replaced to estimate more precisely the buildings’ 
DHW demand, hence decreasing the energy performance 
gap and improving the EPCs’ accuracy. 

Suggestions for Further Work 
A suggestion for further work is the application of this 
methodology with other datasets for further validation and 
robustness analysis. Improving the separation 
methodology for rounded measurements and commercial 
cases is highly needed. 
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It is also advised to benchmark this methodology with 
other existing disaggregation techniques on a common 
dataset. Additionally, a more extensive endeavor must be 
made to collect good quality datasets and share them with 
our research peers. 
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Nomenclature 
Acronyms 
CH Switzerland (country code) 
DHW Domestic hot water 
DK Denmark (country code) 
EPC Energy performance certificate 
EU European Union 
IT Italy (country code) 
SH Space heating 
SVR Support vector regression 
Symbols and variables 
A Floor area [m2] 
C Cost (SVR parameter) [-] 

Cp,w Water specific heat capacity – Constant: 4.18 
[kJ/kg⁰C] 

EDHW Measured domestic hot water energy usage 
[kWh] 

EDHW,compl Estimated annual DHW energy usage from any 
compliance [kWh/year] 

EDHW,estim Estimated domestic hot water energy usage 
[kWh] 

EDHWDK Estimated annual DHW energy usage from 
Danish compliances [kWh/year]  

EDHWCH Estimated annual DHW energy usage from 
Swiss compliances [kWh/year]  

EDHWIT Estimated annual DHW energy usage from 
Italian compliances [kWh/year]  

ESH Measured space heating energy usage [kWh] 
ESH,estim Estimated space heating energy usage [kWh] 

ETotal Measured total heat usage (smart meter 
measurements) [kWh] 

G Number of days in calculation period [days] 
n Number of people or beds [-] 
Rad Global solar radiation [W/m2] 
Tc Temperature of inlet cold water [⁰C] 
TDHW Temperature of outlet DHW water [⁰C] 
Tout Outdoor temperature [⁰C] 
γ Gamma (SVR parameter) [-] 
ρw Water density – Constant: 1000 [kg/m3] 
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