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Abstract

In a smart grid setting, building managers are encouraged
to adapt their energy operations to real-time market and
weather conditions. However, most literature assume sta-
tionary temperature set points for heating and cooling. In
this work, we propose a grey-box model to investigate
how the energy flexibility of the thermal mass of the build-
ing may impact its energy flexibility potential as well as
the investment decisions of the energy system within a
building, by using an already developed investment de-
cision tool, BUILDing’s OPTimal operation and energy
design model (BUILDopt) (Lindberg et al. (2016)). As
BUILDopt is a Mixed Integer Programming (MIP/MILP)
tool, the flexibility models must be linear as well. We
evaluate the energy flexibility potential, here called com-
fort flexibility, for use cases reflecting different heating
systems (electric panel ovens vs. ground source heat
pump) and operation (flexible vs. non-flexible). The case
study of an Office building is performed, which considers
electric specific demand, domestic hot water demand and
space heating demand. Real historical data for weather
and energy prices from Oslo are used, including grid tar-
iffs related energy and monthly peak power. Most of the
savings are obtained through peak load reduction, which
can reach up to 13-16%. These and the savings from shift-
ing demand away from peak prices lead to total savings of
around 2%. Yet, these actions do not require additional
investment in heat supply or storage components, nor in
building renovations: only system measurement and con-
trol components are needed.

Introduction

The use of the inherent thermal mass in a building is a
promising way to enable demand-side response, i.e. con-
trolling a building’s energy demand through price signals.
While the thermal mass itself comes at no cost, there are
costs associated with activating its energy flexibility.
To be able to study the effect of activation of the ther-
mal mass of building as a flexibility resource, the indoor
temperature needs to be modelled. To implement this in
investment optimization models based on MILP formula-
tions, the model must be linear. The approach of using lin-
ear Grey-box models for building envelopes is well estab-
lished in the domain of Model Predictive Control (MPC)
for buildings (Drgoňa et al. (2020)). Grey-box models

combine reduced-order models based on simple physics
with data-driven inference of the parameters (Bacher and
Madsen (2011)). The use of low order representations of
building envelopes for investigating flexibility has been
demonstrated for district heating systems (Romanchenko
et al. (2018)) and energy planning tools (Georges et al.
(2021)). A common factor for these approaches is that
they use a deviation from a reference temperature instead
of the absolute temperature. A direct representation of the
indoor temperature with a grey-box RC-network model
for energy planning purposes was demonstrated by (Hede-
gaard et al. (2020)).
According to the IEA Annex 67, energy flexibility of a
building is defined as the ability to manage its demand
and generation according to local climate conditions, user
needs and grid requirements. Energy flexibility of build-
ings will thus allow for demand side management or load
control and thereby demand response based on the re-
quirements of the surrounding grids (IEA ECB Annex 67
(2019)). In this paper, we evaluate the impact of com-
fort flexibility, which is the flexibility attained by deviat-
ing from normal set-points of the indoor temperature, e.g.
by overheating. In this work, we represent this flexibil-
ity explicitly with the help of a grey-box model (Bagle
et al. (2021)), usually envisioned for usage in an opera-
tional control setting. The methods are applied to a case
study of an Office building, with given load profiles for
electric specific demand, domestic hot water demand and
space heating demand (Lindberg et al. (2019)). To enforce
consistency between the results (i.e. a cross-comparable
baseline case), we create synthetic temperature profiles by
forcing the grey-box model to follow the stationary space
heating load profile.

Method and model

MILP Model formulation

In the following, we describe the extensions of the MILP
BUILDopt model (Lindberg et al. (2016)) which has been
re-implemented in the open-source Python-based opti-
mization suite Pyomo (Hart et al. (2017)). BUILDopt
is a techno-economic optimisation tool applied to a sin-
gle building. The model supports investments in heating
technologies, storage technologies and power generating
technologies. With its hourly time resolution, BUILDopt
accounts for detailed operational insights. The objective
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function represents the net present value (NPV) of the to-
tal costs of the energy system within the building, which
depends on the installed capacity, xi, of each energy tech-
nology i. The discounted investment costs, cinv, consist of
re-investments throughout the entire lifetime of the build-
ing minus its salvage value at the end of the lifetime. crun

is the sum of fixed maintenance costs and variable fuel
costs. The discounted NPV of the total operational costs
equals the annual operational costs divided by the annu-
ity factor, ✏n,r. The building’s energy system must fulfill
the equalities h(xi, kj), and inequalities g(xi) constraints
dependent on the installed capacity for all the energy tech-
nologies of the vector x.

min⇡ =
X

i2I
c

inv
i (xi) + c

run
i (xi, kj) (1)

s.t.h(xi, kj) = 0 (2)

g(xi) ≥ 0 (3)

where xi is the size of each technology i 2 I , and kj is
the consumption of each energy carrier j 2 J .
BUILDopt extensions

Separation of heat demand
What drives the BUILDopt model is the demand for en-
ergy, originally separated on electricity demand (DEL)
and heat demand (DHT) (Lindberg et al. (2016)). In
this paper, the demand for heat is further split into space
heating demand (DSH) and domestic hot water demand
(DDHW), as first introduced in (Bagle (2019)). The fol-
lowing constraints Eq. 4-6 assure that all the demands
{DEL

, D

SH
, D

DHW} are met for all t 2 T :
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Here, yi,t represents both the generation of electricity
from technology i 2 IEL, and the use of electricity in
heat technology i 2 ISH [ IDHW. qi,t is heat gener-
ated by technology i 2 ISH [ IDHW. Notice that I =
ISH [IDHW [IEL. The internal gains from occupants and
electricity demand are not shown in the heat balance, as
they are implicitly included in the space heating demand.
Grey-box model representing the space heating de-
mand
A general grey-box model structure for describing the dy-
namics of the building envelope has been implemented.
From (Kristensen and Madsen (2003)), the full model is
a stochastic, linear, continuous-time state space model of
the form:

ż = Az +Bu+ w (7)

where A is the state transition matrix, B maps from the
inputs u 2 U ⇢ R

nu to the states z 2 Z ⇢ R

nz , and
w 2 W ⇢ R

nw is the diffusion term. Since we consider
deterministic realizations of the models, we assume w to
be zero in the discretization, given by (Van Loan (1978)):

Ad = eAt (8)

Bd = A(Ad − I)B (9)

where t is the sampling time, taken to be one hour in this
work to make it comply with the rest of BUILDopt. Ap-
plying the transformation from continuous-time in Eq. (7)
to a discretized state-space given by Eq. (8)–(9), the grey-
box model can be implemented directly in BUILDopt us-
ing Eq. (10)–(12), 8t 2 T \ |T |:

z
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where n = nx and m = nu, and the components of Ad

and Bd have been written out explicitly. Populating the
a’s and b’s in the grey-box model, we use the results from
(Bagle et al. (2021)) and represent the office building as
a two-state grey-box model (2R2C), based on data from a
white-box IDA-ICE model. Hence, we have a parameter-
ization of the general structure given by Eqs. (10)–(12),
with:

zt = [T in
t , T

e
t ]

T
, ut = [φh

t , T
a
t ]

T (13)

where T

in
t , T e

t and T

a
t , are the indoor, envelope and ambi-

ent temperatures at time step t 2 T , respectively. The last
step is to replace the input parameter of the space heating
demand in BUILDopt, DSH, with the heat consumed by
the building φ

h
t . We rewrite Eq. (5) to:

φ

h
t =

X

i2ISH

q

SH
i,t (14)

By this, the space heat demand is now a variable instead
of a parameter. The ”comfort”-constraint applied to the
envelope model is defined by a lower and an upper bound
of the indoor temperature, respectively T

in,lo
t and T

in,up
t :

T

in,lo
t  T

in
t  T

in,up
t (15)

Case study

This section explains how the data for the reference case
is obtained. Then, the case study is described, and we
present four different use cases.
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Case study

This section explains how the data for the reference case
is obtained. Then, the case study is described, and we
present four different use cases.

Input data

The PROFet model is used to generate load profiles for
electric specific demand, space heating demand and do-
mestic hot water demand for an office building with an
area of 11,500 m2, built in accordance to the TEK10 en-
ergy efficiency standard in Norway (Direktoratet for byg-
gkvalitet (2016)). The methodology is described in (Lind-
berg et al. (2019), Andersen et al. (2021)). For the weather
(NorskKlimaservicesenter (2021)) and spot price (Nord-
Pool (2021)) data, the meteorological year 2012 is used,
with Oslo, Norway as the location. D

EL, D

SH (non-
flexible) and D

DHW are 2,058 MWh/a, 523 MWh/a and
137 MWh/a, respectively. The grid tariff that is imple-
mented consists of three parts: energy tariff, peak power
tariff, and a fixed annual fee. The energy tariff is paid in e
per kWh consumed, while the peak power tariff is paid in
e per kW monthly peak power. The energy tariff is 0.39
ecent/kWh from April to October and 0.7 ecent/kWh for
the rest of the year, while the peak power tariff is 3.6 and
8.5 e/kW for the same periods, respectively. In addition
to the aforementioned tariff, the electricity spot price is
paid. The NPV of the energy system is calculated for a
lifetime of n =60 years, with an interest rate of r =4%.
Calibration e↵orts to establish the baseline

To establish the baseline for evaluating the flexibility of
the building thermal mass, we force the heat generated by
the heating technologies, φh

t , to track the stationary profile
D

SH. That is, we force the heat supply in the model to
follow the profile given by PROFet, in order to calculate
a proxy temperature. We can formulate an objective func-
tion as the minimization of the mean-squared error (MSE)
of these two vectors:

min
(
D

SH − h
t

)2
(16)

The optimization is performed subject to the constraints
in Eq. (10) and (11), where T

in is set as a variable, and
T

a is a parameter. The resulting time series of indoor tem-
perature from this optimization, T in,min

t , is then used as the
lower bound for the indoor temperature in Eq. (15). The
upper bound, T in,up

t , is calculated as T

in,min
t + 2◦C. Set-

ting the lower bound temperature this way allows a fair
comparison of the greybox-model and PROFet, and gives
a conservative estimate of the flexibility potential.
Description of case study

The case study consists of an office building with a to-
tal area of 11,500 m

2, assuming that the envelope can be
represented by the grey-box model described and iden-
tified in Eq. (13). The office building consists of six
floors, however, we consider the aggregated dynamics of
the building, with T

in representing the arithmetic average
of the temperature inside the building. We consider two
different heating systems, where each system has its own
baseline, denoted nf, short for no flexibility; the activa-
tion of the grey-box model for space heating is denoted
flx. The DIR case investigates the flexibility potential if
the building is heated with direct electricity using elec-
tric panel ovens (PO), the most common heating system

Table 1: Case description.

Name Description
DIR Building is heated by panel ovens (PO).
GSHP Building is heated through a waterborne

heat distribution system, heated by a
ground sourced heat pump (GSHP).

flx Flexible space heating (activation of
thermal mass).

nf Non-flexible space heating.

in Norway (Bøeng, Ann Christin and Halvorsen, Bente
and Larsen, Bodil M. (2014)). This configuration falls un-
der the point-source heating category, meaning the build-
ing does not have a waterborne heat distribution system.
The second case, GSHP, includes a waterborne heating
system, heated by a ground-source heat pump (GSHP).
Both heating systems are complemented by electric boil-
ers (EB) to supply heat to cover DDHW; in the GSHP it
can also assist during D

SH peak loads. In the DIR case,
the system is limited to PO and EB (only for DHW prepa-
ration), and the model can optimize the size of these com-
ponents. In the GSHP case the model can optimize the
size of the GSHP and the EB, and it is allowed to invest in
storage tanks for domestic hot water and for space heat-
ing. The system (component type and size) is calculated
in the nf case, and the same system is kept for he flx case;
this allows to focus on the building mass flexibility. The
modelling of the hourly COP of the heat pump is based on
Standards Norway (2020), combined with several manu-
facturers’ data. Table 1 summarizes the use cases.

Results

In this section, the results of the case studies are presented.
Our hypothesis is that by utilizing the building thermal
mass, in this paper defined as comfort flexibility, a reduc-
tion in the space heating cost can be achieved by overheat-
ing the building in hours before high prices occur, and by
spreading the energy import in order to reduce peak loads.
For this, the heat generated by the heat pump or other elec-
tric heating must be curtailed or shifted.
Without flexibility

Table 2 shows that the GSHP case has the lowest opera-
tional costs and lowest amount of electricity bought from
the grid. Moreover, the peak load of this system is over
100 kW lower than the DIR case. However, the invest-
ment costs are over six-fold higher than the DIR case that
uses electric panel ovens for space heating. The NPV of
the total costs is lowest for the case with the ground-source
heat pump, however this is without the cost of the water-
borne heating distribution system within the building. One
way to interpret the difference in NPV between DIR and
GSHP, is as the maximum NPV of the waterborne heat-
ing system at which the case GSHP is the most profitable.
It must be noted that in this investigation, the non-flexible
case is still the output of an optimization. Therefore, even
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Table 2: Results of selected KPIs.

Use Cases
KPIs DIR GSHP

nf flx nf flx
Peak load [kW] 644 561 537 451
Total cost [ke] 4,254 4,157 3,914 3,840
Cost oper. [ke] 4,191 4,094 3,509 3,436
Cost invest. [ke] 63 63 405 405

El. imp. [MWh/yr] 2,721 2,740 2,319 2,324
Optimal caps.
Panel ovens [kW] 287.9 -

GSHP [kW] - 123.9
Electric boiler [kW] 26.9 141.3
SH Tank [kWh] - 153.7

DHW Tank [kWh] - 65.9

if space heating flexibility is not activated, the model will
optimize the operation of the systems components. This
becomes notably relevant in the GSHP case because of
the investments in SH and DHW tanks, as even in the case
without flexibility, the model makes optimal use of the
storage capacity of the tanks.
Activation of flexibility

Activation of the flexibility reduces the electricity peak
load in all cases (cf. Table 2). When activating the thermal
flexibility the peak import of electricity is reduced by 13%
in the DIR case, and by 16% in the GSHP case. The
reduction of the monthly peak load leads to a subsequent
reduction of the peak power tariff. The savings due to
this action constitute over 90% of the savings in operation
costs in both cases.
Operational details are presented in Fig. 1 and Fig. 2, and
are examined more closely in the following.
The figures describing the cases have three plots that
show, (from top to bottom) the indoor temperature dif-
ference between the flx and nf cases, heat generated for
space heating and electricity imported from the grid. For
comparison, the variables of the non-flexible cases nf (in-
door temperature T

in,noflex
t , inflexible heat demand D

SH

and electricity import yimp,noflex) are included in the sec-
ond and third plots. Note that yimp

t is the sum of electricity
imported for all building loads (see Eq. 4). Hence it can
be both smaller and larger than D

SH, depending on the
coincidence of the loads {DEL

, D

SH
, D

DHW} and the effi-
ciency of the base load technology.
Fig. 1 shows the operation of the heating system of the
DIR case in a winter week, with significant spikes in the
spot price P

spot (grey line) and low outdoor temperatures.
The bottom plot shows that the model flattens the peak
load and avoids operating the (qSH

PO,t) when prices are
high. The upper plot shows that due to this, the build-
ing is often overheated in hours preceding high prices.
Since these spikes occur in the morning and evening, a
significant part of the overheating must take place at night.

Figure 1: Operational details of the DIR-flx case,
week no.5.

Whether this is acceptable for the end-user is outside the
scope of this work. In addition, it is not possible to sepa-
rate out the bedroom temperature from the aggregate dy-
namics represented by the average indoor temperature T in

t .
It is also noteworthy that the model finds different peak
loads for every month, and sets that peak load as maxi-
mum import power for every day.
From column DIR in Table 2, the annual peak load is re-
duced by 83 kW, a 13 % decrease, in DIR-flx compared
to DIR-nf. This is a direct consequence of the power-
driven tariff; if this tariff was not considered, the peak
load reduction might be lower, and the peak load might
even increase. The operational costs are reduced by 97
ke, leading to a 2.3 % reduction in the total cost. The an-
nual imported electricity is increased by ⇠ 19 MWh/yr
compared to DIR-nf. This quantity corresponds to the
losses incurred when storing heat in the thermal mass of
the building.
The operation of the GSHP case is shown in Fig. 2. A
significant difference from the DIR case is the presence
of a waterborne heating system. Hence, the GSHP and
the top-up boiler supply both the space heating (DSH) and
domestic hot water (DDHW) demand. However, only D

SH

is shown in Fig. 2, since the focus of the paper is flexibil-
ity from space heating. The tendency towards overheating
is similar to the DIR case; however, the operation of the
GSHP is significantly different to that of the panel oven.
The model uses the GSHP nearly constantly at full capac-
ity during the week shown. This is because its COP makes
it preferable to the EB, which is only used during hours
when the GSHP alone cannot cover the heat demand. The
GSHP also supplies heat for DHW demand, which can
be seen in the figure as drops in GSHP SH supply during
hours when the EB is also operated. Further, the figure
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Figure 1: Operational details of the DIR-flx case,
week no.5.

Whether this is acceptable for the end-user is outside the
scope of this work. In addition, it is not possible to sepa-
rate out the bedroom temperature from the aggregate dy-
namics represented by the average indoor temperature T in

t .
It is also noteworthy that the model finds different peak
loads for every month, and sets that peak load as maxi-
mum import power for every day.
From column DIR in Table 2, the annual peak load is re-
duced by 83 kW, a 13 % decrease, in DIR-flx compared
to DIR-nf. This is a direct consequence of the power-
driven tariff; if this tariff was not considered, the peak
load reduction might be lower, and the peak load might
even increase. The operational costs are reduced by 97
ke, leading to a 2.3 % reduction in the total cost. The an-
nual imported electricity is increased by ⇠ 19 MWh/yr
compared to DIR-nf. This quantity corresponds to the
losses incurred when storing heat in the thermal mass of
the building.
The operation of the GSHP case is shown in Fig. 2. A
significant difference from the DIR case is the presence
of a waterborne heating system. Hence, the GSHP and
the top-up boiler supply both the space heating (DSH) and
domestic hot water (DDHW) demand. However, only D

SH

is shown in Fig. 2, since the focus of the paper is flexibil-
ity from space heating. The tendency towards overheating
is similar to the DIR case; however, the operation of the
GSHP is significantly different to that of the panel oven.
The model uses the GSHP nearly constantly at full capac-
ity during the week shown. This is because its COP makes
it preferable to the EB, which is only used during hours
when the GSHP alone cannot cover the heat demand. The
GSHP also supplies heat for DHW demand, which can
be seen in the figure as drops in GSHP SH supply during
hours when the EB is also operated. Further, the figure

Figure 2: Operational details of the GSHP-flx case,
week 5.

shows how the model uses the SH tank to help keep the
indoor temperature within the given limits.
The bottom plots in Fig. 1 and Fig. 2 show remarkably
different impact of the EB operation on the imported elec-
tricity: while it is mostly absent in Fig. 1, it is significant
in Fig. 2. This has two reasons. First, in the DIR case the
EB is operated exclusively to cover DHW demand, thus
having a peak load of only 27.4 kW, whereas in the GSHP
case it contributes to the SH, and reaches a peak load of
144.2 kW. Second, the peak load of the PO reaches 287.8
kW, whereas the peak load of the GSHP only reaches 44.4
kW. Thus, not only does the EB operate at at five-fold
peak power in the GSHP than in the DIR case, but it also
complements a component with roughly one sixth peak
import power. The peak load is reduced by ⇠86 kW, or 16
%, which is a similar reduction to the DIR case, yet the
GSHP case starts from a lower peak load, as mentioned
above.

Discussion

The utilisation of the thermal mass of the building as en-
ergy storage allows the model to shift the space heating
supply - and thus the electricity import - in a way that
reduces the costs incurred through the energy-driven and
power-driven tariffs. To implement this action while con-
sidering the comfort of the building occupants, this inves-
tigation allowed the indoor temperature to be increased
by 2◦C with respect to a baseline temperature. The tem-
perature modulation is in this paper incentivized by the
variations of the spot price and the savings from reducing
the monthly peak load. It is likely that the cost reduc-
tions achieved by the flexibility actions (>73 ke) is large
enough to warrant the investment cost of the hardware re-

quired for the implementation of a smart control strategy,
such as MPC, which can enable demand-side management
and hence ”predictive overheating” in a real-time setting.
However, most of the savings are obtained through peak
load reduction and subsequent savings in the power-driven
tariff; if this tariff is not available, which is the case for
residential consumers, the savings would be much lower.
The power-driven tariff can significantly increase the op-
eration costs. Therefore in some cases, such as during Feb.
3rd. in Fig.2, it is more cost-effective to avoid increas-
ing the peak power than to shift demand away from price
peaks, so the optimization model may prioritize peak-
shaving instead of shifting loads away from price peaks.
Further, the assumption of ”full”-horizon and perfect
knowledge for the operational part of the problem, in
the sense that the optimizer sees all disturbances for the
whole year with perfect knowledge, makes it optimal to
overheat as far ahead as several days before a peak-price
event. This might not be feasible in reality, as the in-
creased computational burden entailed by a long predic-
tion horizon would render MPC infeasible in many cases
(as most optimal control problems increase ca. cubically
in computational complexity with horizon length Drgoňa
et al. (2020)). In addition, real-time predictions are not
perfect. Moreover, the model is able to find the mini-
mum monthly peak load simultaneously for all days, thus
knowing ahead of time what the optimal peak import for
the month is. This gives an unrealistic advantage to the
model, as in reality the model could only know the peak
value of the current and previous days. This could, for ex-
ample, prevent an MPC from importing at higher power
during hours with low prices because it has no knowledge
whether the monthly peak will be increased later in the
month. Thus, from the practical control perspective, the
flexibility potential in this paper is overestimated. How-
ever, the baseline is very restrictive. It does not take into
account factors such as occupancy, night setback and dif-
ferent thermal zones (e.g. with the indoor temperature be-
ing represented by the average, T in). Further, the tempera-
ture window is conservatively set at +2◦C; this delta could
be larger, and it may also be negative, thus increasing the
window of flexibility. Thus, from a modelling perspective,
the flexibility potential might as well be underestimated.

Conclusion

In this paper a grey-box structure has been implemented
in a building design optimization tool, BUILDopt, to in-
vestigate the flexibility potential of the thermal mass of a
building. It has been shown that by utilizing the building
thermal mass, in this paper defined as comfort flexibility, a
reduction in the peak space heating load can be achieved
by overheating and thereafter curtailing the heat generated
from the peak load technologies. The activation of these
flexibility actions leads to modest operational savings of
⇠ 2%, yet they do not require additional investment in
heat supply or storage components, nor in building ren-
ovations: only system measurement and control compo-
nents are needed. Moreover, the monetary impact of the
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flexibility actions is closely related to energy prices, so
even low percentages could translate to significant sav-
ings if prices increase. As well, the energy demand in
the building studied here is dominated by the electric spe-
cific demand; thus, the flexibility actions may have larger
impact in cases where space heating accounts for a higher
share of the total energy demand.
It has been shown that the cost of the increased energy
consumption due to the flexibility actions can be offset by
the savings in the energy-driven and power-driven tariff,
with the latter tariff allowing most of the savings. It would
thus be of interest to investigate MPC strategies that al-
low optimal calculation of the monthly peak import with
consideration of the limited optimization horizons that are
typical in this type of controllers.
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