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Abstract

The paper presents the learnings from designing and run-
ning a model predictive control (MPC) of the heating sys-
tem in a school building. Several real-life applications of
MPC controlled heating have been presented in the liter-
ature. Most of them work by controlling the room tem-
perature usingn a heating system and thus need a refer-
ence measured temperature in the building. Some have
a single-zone temperature as the reference, while others
use some kind of mean temperature of multiple rooms. In
the present experiment, the MPC used the mean temper-
ature of all rooms as the reference and was able to keep
it within a lower and upper comfort bound, while mini-
mizing the heat costs by responding to a heat price signal.
However, the analyses of the temperature in each room re-
vealed that the temperature bounds were heavily violated:
some rooms were too cold and some too warm, while the
mean was within the bounds. The main conclusion from
the study is that, at least for buildings with different sized
rooms and room radiator capacities, it’s not reliable to use
a mean room temperature – rather, the control must con-
sider individual rooms in order to guarantee comfort.

Introduction

Control of HVAC systems in buildings is important for
the green energy transition, both in order to decrease the
heat demand and to increase flexibility for integration of
variable renewables, like wind and solar. The level of ac-
tivity in the field has been increasing over the last decades
and focus has centered around the use of Model Predic-
tive Control (MPC). The present paper describes an ac-
tual real-life experiment where MPC was applied to con-
trol the heating system in an older school building in a
cold climate. The main focus of the paper is on the learn-
ings achieved from the experiment, especially the way the
room temperatures were taken into account in the MPC
and the underlying model, and how they actually realized.
In the MPC, a simple mean of all room temperatures was
used, hence the control was carried out at a building level
and this temperature was kept well within comfort temper-
ature bounds. However at individual room level the tem-
peratures violated the comfort bounds, some rooms got
too cold and others too hot.
Recent overview papers provides a lot of insights into the
techniques and challenges of MPC for HVAC in build-
ings. Killian and Kozek (2016) pose ten questions that

should be considered for MPC in buildings, however of
the questions none related to building vs. room level tem-
perature. They emphasize that a main problem ”is the high
modeling efforts, where currently no commercial tools ex-
ist to derive easily a suitable model for MPC design”.
Drgoňa et al. (2020) provides a very comprehensive re-
view and overview of MPC of energy systems in building.
Not much on multi-zone temperature control is included,
though Table 5 lists several studies of modelling for con-
trol with multi-zone models, however none of these are
implemented in real-life experiments.
The the volume of literature on real-life experiments with
MPC in buildings is increasing. Liao and Dexter (2004)
identifies a single-zone model for a three storage building
where they model the mean room temperature of the en-
tire building. Each floor was similar in terms of the heat-
ing equipment, which made it easy to model. The results
were good in terms of controlling the mean temperature
to different levels, but no analysis on room-level is pre-
sented. Široký et al. (2011) present an experiment with
MPC of heating in a five-floor building block on a univer-
sity campus. The room temperature was measured in only
two reference rooms and parameters in a linear RC-model
was estimated using data from those rooms. An MPC ran
in closed loop for two weeks and energy savings were
achieved over a rule based control. However, the room
temperatures are not evaluated in detail in the paper and
there is no information about temperatures in other rooms
than the reference rooms. West et al. (2014) present an
MPC implemented in a large office building. They con-
sider varying costs in the objective function, however it
was implemented as constant in the demonstration period.
Indoor comfort were evaluated via feedback from occu-
pants, however no detailed evaluation of the measured
temperatures is presented. Huang et al. (2015) developed
an MPC for control of the indoor air temperature of an
airport terminal in Australia. They carry out a simulation
and an experiment to test the model and MPC both show-
ing increased comfort and cost reductions. De Coninck
and Helsen (2016) presents the results of implementing
an MPC in a two-storey office building. They do room
temperature averaging: ”To obtain a single-zone model,
all room temperature measurements are arithmetically av-
eraged into TZon.”. The objective was to minimize heat
demand, not with a varying price. A comparison to rule
based control is included, which showed 20% to 30% per-
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cent reduction in heat demand. No evaluation of tempera-
tures on room level is included. Finck et al. (2019) present
and implement EMPC for a Dutch building. The models
for the building heat dynamics and the weather forecasts
are based on artificial neural networks. They tested the
controller for flexibility optimisation and to regulate on-
site power generation and grid-consumption and feed-in.
The results showed that the EMPCs increased the flexibil-
ity of the heat demand while maintaining the same heat
costs.
The existing literature presenting multi-zone control sys-
tems don’t deal with flexible demand – only control of air
temperatures. Scattolini (2009) explains and review hi-
erarchical and distributed control. Moroşan et al. (2010)
presents a simulation study demonstrating how different
MPCs for multi-zone temperature control in a building
perform. The focus is on the interaction between the
rooms in form of heat exchange due to temperature differ-
ences. The results indicate, that either a centralized con-
trol, which has a full multi-zone model, or a distributed
control, where the room models exchange information, is
preferable over a fully decentralized control, which does
not take the interactions into account. Elliott and Ras-
mussen (2013) present temperature control of multiple
zones with a multi-evaporator vapor compression system.
An architecture that is decentralized and modular, avoid-
ing competing controllers and the practical difficulty of
implementing a centralized controller, is presented. Eini
and Abdelwahed (2019) presents a distributed control,
which in a simulation study has a better performance over
a centralized control. The model is a detailed multi-zone
model, where the parameters are known in advance. Zong
et al. (2019) present a case study of MPC-based BEMS for
a multi-family residential building where a hierarchy con-
troller design is applied. The performance of the decen-
tralized controller strongly depends on the level of inter-
actions between the subsystems: The distributed, as each
controller knows about control actions of its neighbors,
keeps the same performance as the centralized. Results
are not presented in detail, only a plot for a single zone is
presented.
In the modelling carried out for the present paper, a single-
zone grey-box model was identified using the approach
presented in Bacher and Madsen (2011) describes. The
particular model used is the model presented by Thilker
et al. (2021). Some development in terms of automatic
model selection has been made, as presented by Andria-
mamonjy et al. (2019). Interesting multi-zone model iden-
tification studies have been carried out by Joe et al. (2020),
who present a grey-box model of room temperature fitted
for each room individually and compared to a model fitted
to all at the same time. The total RMSE is smaller for the
decentralized approach. Arroyo et al. (2020) presents a
divide-and-conquer approach to grey-box multi-zone pa-
rameter estimation, where first the parameters are esti-
mated on single-zone level and then used an initial guess
in the multi-zone model parameter estimation.

Figure 1: Photo of the building in question.

From the literature, it’s apparent that focus on MPC and
the underlying data-driven modelling is increasing, how-
ever experimenting with MPC in real-life is in an early
stage – especially the implementation and application of a
price responsive control in real-life experiments is novel.
Main contributions of the paper

The main contributions of the present paper are, first, the
presention of a successful real-life experiment with a price
responsive MPC, and second, to highlight some of the
challenges encountered using a single-zone model. In par-
ticular, it’s emphasized that by using the mean room tem-
perature of all rooms as the reference, which must be kept
inside a comfort bound, worked well on the single-zone
(or building) level, but caused violations in the individ-
ual rooms: some rooms got too hot while others too cold,
while the mean was still within the comfort bound.
First the building and data setup is described, and there-
after the two experiments carried out: the system identi-
fication and the MPC experiment. Second, the results are
presented and discussed, and finally the conclusions are
drawn.

Building, systems and data

The building

The building is located in Høje Taastrup, Denmark, and is
a school with three floors. The uppermost floor is a part-
refurbished roof attic.
Build in 1929, the building is not insulated up to mod-
ern standards. Figure 1 shows a photo of the building. It
includes 10 classrooms that are ventilated by mechanical
ventilation using an air handling unit for air circulation.
The ventilation was not active during any of the exper-
iments (due to absence of occupants). The facade and
internal walls consist of solid bricks (300 mm and 180
mm thickness, respectively). The windows have wooden
frames and double-paned low-E glazings. Floors are made
from wood joists and the roof is a partly uninsulated and
partly insulated slate roof. The building is connected to
the district heating grid. The heating system is used for
domestic hot water, air handling unit, and space heating.
The space heating is a separate water-based circuit with
dedicated pumps. Radiators of different types (cast-iron
and plane conductors) with individual smart thermostats
distribute the heat in the rooms. The thermostats work as
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and plane conductors) with individual smart thermostats
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PI-controllers, which regulate the water flow into the radi-
ator units to maintain a pre-defined set point by the user.
See Bruun (2019) for further technical details about the
building.
Data

All main rooms are each equipped with a temperature sen-
sor (uncertainty is ±0.1◦C) to measure the indoor air tem-
perature. All radiators in rooms with a temperature sensor
are equipped with smart thermostats where a temperature
set point can be set remotely. Each thermostat have their
own temperature sensor, hence they are not controlled us-
ing the measured temperature included in the analysis.
The supply and return temperature of the water of the
building’s heating system is measured together with the
actual heat usage of the building.
Weather forecasts for the location are available with 6
hours delay and 48 hours ahead. The sampling time of
the forecasts is 1 hour. The forecasts were available in
real-time and were used in the filter update in the MPC.
To see how the weather was during the period, Figure 2
shows the observed ambient temperature and global solar
radiation. It can be seen that the weather conditions in-
clude both cold and mild days, as well as both sunny and
cloudy days.
System identification

The model used for the heat dynamics of the building is
based on stochastic differential equations. The identifica-
tion method is based on a maximum likelihood method
using a variant of the Kalman filter to compute the tran-
sition densities. The modelling procedure is thoroughly
described in Thilker et al. (2021). The model includes the
following states

x = [Ti, Tw,Φ, Th, Tret]
> ,

where Ti is the indoor air temperature, Tw is the tempera-
ture of the building’s wall, Φ is the water flow of the heat
system, Th is the temperature of the average surface tem-
perature of the radiators in the building, and Tret is the
return water temperature.
The model is a significant simplification of the heat dy-
namics of the building. We use the arithmetic mean of the
air temperature of the rooms as a measure of the indoor air
temperature in the building as a whole. Since we didn’t
have knowledge about the heat released in the individual
rooms, we cannot easily employ a multi-zone RC-based
model. Also, the dimensionality of the model increases
drastically if multiple rooms were modelled, which com-
plicates real-time MPC due to a bad scaling in compu-
tational requirements to solve the optimal control prob-
lem. For these reason, we used a single-zone model, well
knowing that it might cause issues in the individual rooms.
System identification experiment

The system identification experiment carried out was
planned in advance and designed to generate data suitable
for system identification. The main focus was to change
the control input, the thermostat set point, such that infor-

mation about the essential dynamics of the system can be
estimated. A sequence of the set point was designed with
four different parts. First part, contained a few long steps
to get information about the slow dynamics governing the
system. Second part, was a multilevel signal, where ex-
tremes were kept for longer periods than values closer to
20 ◦C. Third part, contained short periods with drops to
a minimum from the base temperature. Finally, a step se-
quence where the set point was stepped down and back
up again. The forward temperature of the space heating
water was set constant to 55 ◦C at all times. The entire se-
quence was slightly shorter than 7 days and was executed
during the Christmas vacation, where the building was un-
occupied. The experiment is described in more details by
Thilker et al. (2021).

MPC experiment

The MPC experiment was carried out during January and
February 2021. The building was no used in the period,
due to the pandemic lockdown. This section introduces
a direct multiple-shooting method for solving the particu-
lar non-linear MPC problem. It also discusses a method
to discretise the optimisation problem to make it numer-
ically tractable. The optimisation problem results in the
set points applied for the radiator thermostats. However,
solving the optimisation problem requires us to know the
entire state of the system. For reconstructing the system
states the continuous-discrete extended Kalman filter is
used Kristensen et al. (2004).
The implemented optimal control problem has the follow-
ing (Lagrange) form

min
x,u,s

'k =

Z tk+T

tk

`(x(t), u(t),d(t), s(t))dt, (1a)

s.t. x(tk) = x̂k|k , (1b)

dx(t) = f(x(t), u(t),d(t))dt, t 2 Tk, (1c)

u
min

(t)  u(t)  u
max

(t), t 2 Tk, (1d)

∆u
min

(t)  ∆u(t)  ∆u
max

(t), t 2 Tk, (1e)

Tmin(t)  Ti(t) + s(t)  Tmax(t), t 2 Tk, (1f)

where x̂k|k is the reconstructed system state, T is the pre-
diction horizon, ` is the cost function, L is the termi-
nal cost, and f is the model dynamics. The time set is
Tk = [tk, tk + T [. s(·) is a slack variable that softens the
temperature constraints. In the next section, we describe
how we penalise a non-zero slack.
Optimal control problem

To make the optimal control problem in (1) numerically
tractable, we use a multiple shooting method to discre-
tise the problem. The problem is discretised in the sense
that the system considers x at discrete time points tk <
tk+1

< · · · < tk+N = tk + T . Now, define a function
φ(x, u,d) that computes the solution at time tk+1

to the
following initial value problem

ẋ(t) = f(x(t), u(t),d(t)) , (2a)

x(tk) = xk . (2b)
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Figure 2: Observed weather during the period.

Thus, φ(x, u,d) = x(tk+1

) integrates the system forward
to the next time instance. Furthermore, we assume the
disturbances and input be constant between control points

u(t) = uk , t 2 [tk, tk+1

[ , (3a)

d(t) = dk , t 2 [tk, tk+1

[ . (3b)

The discretised optimal control problem can thus be writ-
ten as

min
xi,ui,si

'k =

k+N−1X

i=k

Li(xi, ui,di, si) , (4a)

s.t. xk = x̂k|k , (4b)

xi+1

= φ(xi, ui,di) , i 2 N , (4c)

u
min,i  ui  u

max,i , i 2 N , (4d)

∆u
min,i  ∆ui  ∆u

max,i, i 2 N , (4e)

Tmin,i  Ti,i + si  Tmin,i, i 2 N (4f)

where Li(·) =
R tk+i+1

tk+i
`(·)dt and the index set is N =

{0, 1, . . . , N − 1}. To approximate Li, we use a fourth-
order Runge-Kutta method with fixed step size of 3 min-
utes. The sampling time between control points is fixed
and is Ts = tk+1

− tk = 0.5 h.
We implement the optimal control problem using CasADi,
which offers easy numerical implementation and auto-
matic differentiation for optimal control problems as the
above.
Objective functions

The objective function in an optimal control problem has
the purpose of making solutions comparable. The objec-
tive function should thus reflect all considerations towards
the desired behaviour of the controller. We use the follow-
ing objective function

` = c · Ph + ⇢ · s2, (5)

where c is the heat price, Ph is the heat load, ⇢ is slack
penalty and s is the slack. The objective function is non-
linear due to the heat term, Ph = Φcw(Tfor − Tret), which

depends on the product of two states, Φ and Tfor, and the
quadratic slack.
In the experiment carried out, we wanted to shift the heat
load away from peak hours (also known as peak shaving).
Therefore, we constructed a price signal accordingly:

c(t) =

(
1000 if t 2 PEAKHOURS

10 otherwise
(6)

where we define the peak hours to be

PEAKHOURS = [06AM, 10AM[[ [5PM, 9PM[ . (7)

The price for heating is thus expensive during the morning
and evening hours where the district heating peak hours
usually are.
MPC tuning

During the experiment we tuned several parameters of the
objective function in an iterative process as we learned
how the MPC behaved. The objective function consists of
two terms that need to be weighted such that the controller
prioritises in an appropriate manner. We found ⇢ = 10 to
be suitable together with the price in Equation (6). The
reason for the quadratic slack penalty (instead of linear)
is that it ensures a smooth objective function. We found
that a linear slack penalty caused a more sensitive solution
when it is close to the temperature bounds.
To avoid too large variations in the input signal, dampen
oscillations and make the solution more robust, we choose
to restrict the allowed variation between control points,
furthermore, too large increases in the set point will cause
large increases in the return temperature, which in general
is not desired. We choose the maximum allowed absolute
change to be 3 ◦C per hour. With Ts = 0.5, Equation (4e)
becomes −1.5  ∆ui  1.5.
We chose the maximum and minimum bounds of the input
to be the maximum and minimum temperature bounds,
umin,k = Tmin,k and umax,k = Tmax,k. The rationale behind
this, is to avoid overheating in some of the fast reacting
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Figure 3: Results from the period running with the tuned MPC. Upper plot is of the price and heat demand.
Mid plot is of the temperatures considered by the MPC. Lower plot is of the individual room temperatures and
the mean temperature. The latter plots also contain the temperature constraints.

rooms to limit the chance that they violate the temperature
bounds.

Results

The MPC was tuned for a period and thereafter it was
run for a period of nine days. The results from the nine
days period is presented and analysed in the following.
Selected variables recorded during the period are plotted
in Figure 3. The upper-plot shows the price signal and the
realized heat demand. It clearly shows that the MPC was
able to lower the heat demand in the high price periods,
although it was not decreased all the way to zero. The
mid-plot shows the lower and upper temperature bounds,
together with the set point and mean room temperature.
It’s clearly seen that the MPC managed to keep mean
room temperature within the bounds, except during the
first four days in the morning hours where the lower tem-
perature bound is stepped up. The lower-plot shows the
individual room temperatures. It’s easy to see that there
was a huge spread in the temperatures among the rooms.
Some responded very fast and became very warm when
the set point was increased, others responded slow and the
coldest rooms didn’t even to reach the set point – these
issues will be discussed in detail later. Finally, it’s noticed
that there was an increasing trend in the mean tempera-

ture over the period, which was caused by the increase in
outdoor air temperature over the period, as pointed out in
previously. The pattern in the heat demand and tempera-
ture response to the price signal is very regular. In order
to get more insight into the details, a zoom on the two first
days is shown in Figure 4.
From the two presented plots of the results, it becomes
clear that the MPC was capable of controlling the heat
demand in response to the price signal. However, there
is a potential for improvements. Firstly, the heat demand
was not able to decrease fully to zero in the periods of high
price, especially in the morning price peak. We identify
the two main reasons for that as:

• Some hours before the price peak in the morning the
set point was stepped down, which can seem to be
too early to be optimal, however it’s a compromise
between decreasing the demand during the peak and
the temperature lower bound violation. This could
most likely be tuned to achieve a lower demand dur-
ing the morning peak.

• Due to technical issues, not all the radiators were
controlled, so there was a lower limit to the heat de-
mand – probably around the heat level in the after-
noon price peak.
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Figure 4: Two days plot of the MPC results. Upper plot is of the price and heat demand. Mid plot is of the
temperatures considered by the MPC. Lower plot is of the individual room temperatures.

However, the biggest issue encountered with the imple-
mented MPC is the resulting huge spread in room tem-
peratures. As seen in the lower plots of Figure 3 and 4,
the spread of the realized room temperatures was huge.
This pose a real problem, since the comfort of occupants
would have been compromised – essentially the tempera-
ture bounds in the individual rooms cannot be guaranteed
when a mean temperature over multiple rooms is used as
reference. It is noted here, that the thermostats were not
controlling using the measure temperature, they had each
a sensor. In order to see more details of the rooms tem-
perature response a two days plot of the temperatures is
presented in Figure 5. The rooms are divided between the
types of rooms in order to see if there are any similarities
because of the type of room.
The main findings from this plot are:

• Clearly, the temperature bounds are violated in
nearly all rooms – some gets too hot and some gets
too cold.

• Similarities due to the type of room is mainly seen
for the hallways.

• The response to the temperature set point is very dif-
ferent among the rooms. Some rooms respond very
fast, indicating that the radiators heating power is
high relative to the room size and heat losses. Some

rooms respond very slow, indicating that the radia-
tor’s power is not sufficient to heat the rooms under
the conditions during the period.

Discussion

From the presented results, it is clear that there are var-
ious trade-offs between controllability, stability, and per-
formance. The MPC input was quite regularized, which
resulted in higher heat usage during the morning peak
hours (since the set point could not be lowered further).
It overall affected the ability of the MPC to adjust demand
when the price changes – and therefore affected the con-
trollability. However, the regularisation was necessary for
the MPC to increase stability of the solution. The slower-
changing set point resulted in a lower return temperature,
since the temperature in the rooms has more time to adapt
to the increased set point.
The performance is of course also affected by the regular-
isation and the model’s ability to predict the air tempera-
ture, which could be improved. This could be done using
an adaptive parameter estimate update as observations be-
come available.
From the presented room temperature plots, it is apparent
that their individual properties, such as radiator capaci-
ties, dimensions, etc., have a huge impact in the rooms’
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Figure 4: Two days plot of the MPC results. Upper plot is of the price and heat demand. Mid plot is of the
temperatures considered by the MPC. Lower plot is of the individual room temperatures.

However, the biggest issue encountered with the imple-
mented MPC is the resulting huge spread in room tem-
peratures. As seen in the lower plots of Figure 3 and 4,
the spread of the realized room temperatures was huge.
This pose a real problem, since the comfort of occupants
would have been compromised – essentially the tempera-
ture bounds in the individual rooms cannot be guaranteed
when a mean temperature over multiple rooms is used as
reference. It is noted here, that the thermostats were not
controlling using the measure temperature, they had each
a sensor. In order to see more details of the rooms tem-
perature response a two days plot of the temperatures is
presented in Figure 5. The rooms are divided between the
types of rooms in order to see if there are any similarities
because of the type of room.
The main findings from this plot are:

• Clearly, the temperature bounds are violated in
nearly all rooms – some gets too hot and some gets
too cold.

• Similarities due to the type of room is mainly seen
for the hallways.

• The response to the temperature set point is very dif-
ferent among the rooms. Some rooms respond very
fast, indicating that the radiators heating power is
high relative to the room size and heat losses. Some

rooms respond very slow, indicating that the radia-
tor’s power is not sufficient to heat the rooms under
the conditions during the period.

Discussion

From the presented results, it is clear that there are var-
ious trade-offs between controllability, stability, and per-
formance. The MPC input was quite regularized, which
resulted in higher heat usage during the morning peak
hours (since the set point could not be lowered further).
It overall affected the ability of the MPC to adjust demand
when the price changes – and therefore affected the con-
trollability. However, the regularisation was necessary for
the MPC to increase stability of the solution. The slower-
changing set point resulted in a lower return temperature,
since the temperature in the rooms has more time to adapt
to the increased set point.
The performance is of course also affected by the regular-
isation and the model’s ability to predict the air tempera-
ture, which could be improved. This could be done using
an adaptive parameter estimate update as observations be-
come available.
From the presented room temperature plots, it is apparent
that their individual properties, such as radiator capaci-
ties, dimensions, etc., have a huge impact in the rooms’
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Figure 5: Plot of the temperature set point, the mean room temperature and the individual room temperatures.
The upper-plot contains the classrooms, the mid-plot the hallways and the lower-plot the smaller rooms.

individual response to set point changes. Potentially, an-
other interaction may be due to the thermostats opening
and closing at about the same time in all rooms, which can
create pressure losses, such that the radiators at the far end
of the heating circuit cannot supply enough heat. This is
a balancing issue, which may be fixed by tuning the max
valve openings of each radiator and installing additional
radiator capacity.
To which extend these results generalise to other buildings
cannot be concluded from the present results. Newer and
more well-insulated buildings are probably less likely to
suffer from dimensioning issues since less heat is needed
Knudsen et al. (2021).
Further work

Regarding the significant room temperature differences,
it’s a real fundamental issue, which must be solved for
MPC in buildings to be usable in practice. It’s possible to
make a few simple changes to the constraints, for example
keeping the upper limit of the set point to e.g. 23 ◦C could
avoid overheating rooms, however it also limits the control
capabilities.
Another approach could be to introduce a hierarchical and
distributed MPC (Scattolini, 2009; Moroşan et al., 2010):

• Constant room temperature model: Simply a room
temperature set point offset can be learned for each

room. This does not take the individual room dynam-
ics into account.

• Dynamic room temperature model: The dynamics of
the rooms taken into account by individual room tem-
perature models. One idea is to use an ARX model
(which are more black-box models compared to the
resistor-capacitor model in this paper) for each room
and have indivual MPCs run each room.

Conclusion

An MPC for price flexible heat demand was demonstrated
in an experiment. The results illustrate the ability of the
MPC to respond to a varying price and lower the heat de-
mand of the building in the high price periods, however,
there was potential for improvements.
Using the arithmetic mean temperature as a representa-
tive for all rooms led to a high spread in room tempera-
tures between rooms, thus violating the temperature com-
fort bounds. The rooms and radiator power in the building
were not uniformly sized, hence this behaviour is not sur-
prising, but pose a real problem for MPCs, which does not
take individual room’s dynamics into account. To which
degree this phenomena can be generalized to other build-
ings can of course not be concluded with the present study.
However, it is clear that when using temperature con-
straints on a mean temperature over multiple rooms, the
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constraints cannot be guaranteed for the individual rooms.
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