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Abstract. The paper presents an approach to the implementation of the
model of eutrophication of the Sea of Azov waters using variational methods
for assimilation of data obtained during expeditionary studies. The current
fields are calculated on the basis of a mathematical model of the
hydrodynamics of shallow water bodies, which includes the equation of
motion (the Navier-Stokes equation) and the continuity equation. The
developed software package uses the materials of expeditionary work and
allows you to refine the model of pollution of the aquatic environment and
biota through the use of variational methods of data assimilation. Based on
the developed software package, a forecast of water pollution with harmful
substances is given, which in turn leads to the development of harmful
diatoms and toxic blue-green algae.

1 Introduction

Methods of mathematical modeling have long been considered an effective tool for studying
and predicting natural processes and for solving scientific and practical problems based on
them. Thus, the implementation of large-scale engineering projects aimed at ensuring the
safety of navigation requires forecasting the silting of shipping lanes, as well as predictive
modeling of the consequences of man-made disasters. For example, a catastrophic storm in
the Kerch Strait in November 2007 led to the wreckage of more than 20 ships. Oil spills have
led to pollution of the coastline and bottom sediments with oil products and other harmful
substances. Compounds of oil products in the form of bitumen and resins were subsequently
discovered on the coast of the Black and Azov Seas, with a length of more than 200 km in
2008-2011. For a long period of time, there has been an unfavorable movement of bottom
sediments from the mouth areas of the Don River in a westerly direction, leading to the
displacement of traditional species of flora and fauna from the eastern part of the Taganrog
Bay, intensive blooming of the waters of the bay and reproduction of the bell mosquito in the
vast areas of the Taganrog Bay.

According to Decree of the Government of the Russian Federation dated December 31,
2020 No. 2451 “On approval of the Rules for organizing measures to prevent and eliminate
oil and oil products spills on the territory of the Russian Federation, with the exception of the
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internal sea waters of the Russian Federation and the territorial sea of the Russian Federation,
as well as on the recognition invalidated some acts of the Government of the Russian
Federation" "calculation of the sufficiency of forces and means to eliminate the maximum
estimated volume of oil and oil products spills, taking into account the technologies used for
these purposes, as well as the time of oil and oil products spill containment from the moment
the oil and oil products spill is detected or from the moment of receipt information in case of
a spill on surface water bodies (including their water protection zones) within 4 hours, in case
of a spill on the land part of the territory of the Russian Federation - within 6 hours" [1] .
According to the regulatory documents in force on the territory of the Russian Federation,
the time for making a decision and eliminating an emergency (ES) of a natural and man-made
nature is from several hours to 2-3 days, the time allotted for building forecasts of the state
of the ecological system of a reservoir in the event of an emergency is limited. Thus, the
construction of complex mathematical models that take into account hydrophysical and
hydrobiological processes, wind currents, complex geometry of the coastline and bottom,
surge phenomena, friction on the bottom and wind stresses, turbulent exchange, Coriolis
force, river flows, evaporation, etc. and at the same time, allowing to make calculations in a
limited period of time, is an urgent task.

At the same time, it should be noted that it is often not possible to completely explain the
observed behavior of natural processes, as well as to make a qualitative prediction of their
evolution, by calculating only the state functions of process models. One of the ways to
overcome this problem is to complement the models with related tasks and research
technologies - variational principles that connect models with observational data. [2]. This
approach has shown its effectiveness in solving various classes of applied problems, for
example, problems of nuclear physics [3, 4] and optimization problems of mathematical
physics [5]. For problems in the physics of the atmosphere and the ocean, conjugate equations
were successfully applied in the works of G.I. Marchuk [6], he also considered general issues
of constructing adjoint operators for linear and nonlinear models [7].

To organize the interaction between models and data, an approach based on variational
principles using a combination of basic and related tasks for process models using
assimilation methods turned out to be promising. These methods represent a specific class of
inverse and optimization problems developed since the 1960s. To date, two directions have
been most developed. The first direction is based on the ideas of the classical Lagrange
variational principle with the use of adjoint problems [8]. The second direction can
conditionally include optimization methods such as weighted least squares [9, 10].

The assimilation of observational data has already firmly entered the operational practice
of forecasting and studying natural processes. Now the task is to develop new highly efficient
methods that could work in real time.

2 Use of variational methods of data assimilation

When building models for predicting natural phenomena and processes, one of the main
problems is the question of how adequately the constructed mathematical model and the
results obtained on its basis reflect the observed behavior of the natural system and how the
influence of uncertainties can be reduced.

When constructing mathematical models of hydrodynamic and hydrobiological
processes, information about the initial conditions and model parameters is required, which
can be obtained using observational data. Thus, when constructing prognostic scenarios, it is
necessary not only to evaluate the quality of the constructed mathematical model, but also to
assimilate observational data, investigate the sensitivity of the constructed models to changes
in input data, detect, evaluate the power of pollutant sources and manage them.
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The first attempt at objective data analysis was made by G. Panowski [11] using two-
dimensional (2-D) polynomial interpolation of observational data. Later this approach was
developed by B. Gilchrist and G. Cressman [12], who introduced the region of influence for
each observation and suggested using the so-called initial approximation field (background)
- the field from the previous forecast.

An important breakthrough in solving data assimilation problems was the use of statistical
interpolation technique or optimal interpolation (OI - Optimal Interpolation), which became
known in the Earth sciences thanks to the monograph by L.S. Gandin [13]. These methods
are discussed in detail in [14].

A significant breakthrough in solving data assimilation problems was the use of
variational methods and, in particular, optimal control methods based on the idea of
minimizing some functional associated with observational data on the trajectories (solutions)
of the model under consideration. The variational approach was first used in meteorology by
Sasaki [9] and in problems of dynamic oceanography by Le Provost and Salmon [15].

When solving minimization problems, it becomes necessary to calculate the gradient of
the original functional. The use of conjugate equations for the study and numerical solution
of data assimilation problems (including for calculating the functional gradient) has received
wide practical application [16, 17].

Let us consider the application of variational principles on the example of the problem of
eutrophication of the waters of the Sea of Azov.

3 Water eutrophication model

Consider the model of water eutrophication, that is, the process of saturation of water bodies
with biogenic elements, accompanied by an increase in the biological productivity of the
water area, is described. Eutrophication can be the result of both natural changes in the water
body and anthropogenic impacts. The model is a set of equations for each - the value of the
concentration of the i-th impurity [18, 19]:

%+6(MSI,)+6(vSi)+5((W+W\,,i)Si)
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where Vz{u,v, w} are the components of the velocity vector, w,;are the gravitational

settling of the i-th component, if it is in suspension; p, vare the horizontal and vertical
components of the turbulent exchange coefficient; .- a chemical and biological source

(drain) or a term describing aggregation (sticking-spreading), if the corresponding
component is a suspension, the index i indicates the type of substance, i =1,15: 1 - hydrogen
sulfide (H,S); 2 - elemental sulfur (S); 3 - sulfates (SO, ) ; 4 - thiosulfates (and sulfites);

5 - total organic nitrogen (N); 6 - ammonium (NH, ) (ammonium nitrogen); 7 - nitrites
(NO,) ; 8 - nitrates (NO, ); 9 - phytoplankton; 10 - zooplankton; 11 - dissolved oxygen (O,)
; 12 —silicates ( SiO,— metasilicate; SiO, — orthosilicate); 13 - phosphates (P04) ; 14 - iron
(Fe*); 15 - silicic acid ( H,SiO, - metasilicic; H,SiO, - orthosilicic).
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The computational domain G is a closed basin bounded by the undisturbed surface of the
reservoir X, the bottom X, =3, (x, y) and the cylindrical surface o for the time interval

0<t<T,. 2 =2,V o is the piecewise-smooth boundary of the domain G . Let be n
the vector of the outer normal to the surface 2., be the u, component of the water flow

velocity vector that is normal with respect to . 2.

Initial conditions for model (1): S, |l:0 =8, (x,y,2z), i=LI15.

Boundary conditions for model (1):

—on the surface o: S, =0if u, <0 ; %zo,ifu >0,i=115;
n

-0on 20: %:q)(&), izl,l 5

oS,
— at the bottom X, : 6_l:_gSS“ i=115,
. ,

where &g is the coefficient of absorption of the i-th impurity by bottom sediments.

With calms and wind situations close to them, anaerobic conditions arise in the bottom
layers of shallow water bodies (for example, the Sea of \u200b\u200bAzov). Restoration of
surface water-saturated sludge entails the release into solution (except for hydrogen sulfide)
of sulfates, divalent manganese and iron, organic compounds, ammonium, silicates and
phosphates. Using model (1), supplemented by a model of hydrodynamic processes in a
shallow water body [20], the processes of ammonification, nitrification, nitrate reduction
(denitrification), assimilation NH,, oxidation H,S, sulfate reduction, oxidation and

reduction of manganese can be described, and it is also possible to study the mechanism of
conditions for the formation of kills as a result of anthropogenic eutrophication, predict
changes in oxygen and biogenic regimes.

4 Variational Approach for the Water Eutrophication Model

Let us represent the structure of the model of eutrophication of the waters of the Sea of Azov
(1) in operator form:

L(s,y)EB‘Z_SH(s,Y)_\,,_r:o, @
t

where S is the state vector function; S= {Si (x,1),i= m}, S=S(x,r)eQ(1,),
1], =Gx(0,T;), (x,t)eL];; Bis a diagonal matrix; J(S,Y)— “spatial” nonlinear matrix
differential operator containing convective and diffusion operators; y = {W,- ( X, t),l' = m} -
source functions; r= {r,. (x,l),i = m} are functions that describe the uncertainties and

errors of the model equations. Functions u,v,w,v,, coefficients Wyis by 1= 1,15, internal

parameters of operators, input data of initial and boundary conditions for model ( 2) are
included in the set of components of the parameter vector Y R(U p ) .

Initial conditions for the model (2) at # = 0 and the parameters of the models in the form:
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S=S8"'+&, Y=Y'+(, 3)

where S’ and Y! are a priori estimates of the state vector function and parameter vector,
respectively; &, { are functions of uncertainties.

We write the variational statement of the problem of eutrophication of the waters of the
Sea of Azov (2) — (3) in the form of an integral identity (an energy-type functional):

1(8,Y,87)= [(L(S,Y),8" WGdt =0, (4)

1,

where §* € Q" (1, ) are functions conjugate with respect to S .

After transformations (4) will be written in the form:

1(S.Y.8")= i{(AS,S*)i - j (v, +r,.)Sfdet} =0, 5)

i=1 big

where the forms (AS, S ) contain the transfer and turbulent exchange operators.

Let us introduce a conditional division: models of observations and models of processes.
The model of hydrodynamics [20] and the model of eutrophication of the waters of the Sea
of Azov (1) are used for diagnostic and prognostic purposes to describe the formation of the
corresponding processes in a shallow water body. And in inverse problems and in data
assimilation problems, these same models also participate as spatiotemporal interpolants, i.e.
belong to observational models. An observation model is a mathematical description of the
transformation that associates the state function with the image of the quantity that is
measured by the observation device. Let us include observational data in the modeling
system, for this we formulate a functional relationship between field data and state functions
in the mode of direct and feedback:

0, =[W(S)], +n(x1), (6)

where @, is the set of observed quantities; [W(S)Lf set of observation models; n(x,t)f
errors and uncertainties in these data and models.

Values ¢, are determined on a set of points I{;" € [],. The symbol [ ]m denotes the
operation of transferring information from IJ to []”with the help of projection or

interpolation operators.
In order to assimilate and identify the parameters, we will include observational data (6)
in the modeling system, construct the “quality” functional:

@, (S)= {((Pm -[W(S)],) Mz (@, -[W(S)], )}u =(ncm). @

i

where y, is the weight function that determines the configuration of the space-time carrier
of observations [{"in [],and the measure for representation (7) in the form of the
corresponding integrals over the area [],; M is the weight matrix for forming the scalar

product on the set of observational data, C, = My, (x,1).
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When planning observations and detecting sources, (7) is supplemented by a sequence of
functionals describing individual observations in (6).

The most important goal of environmental research and forecasting is to establish
relationships between the meteorological, hydrodynamic and chemical parameters of the
water system and areas of environmental risk and vulnerability for specific receptor areas.
For quantitative estimates of the quality of forecasts, we introduce a special set of functionals
®,(S) {k=1,2,....K},K2>1. @, (S)defined on a set of state functions, are generalized

characteristics of the behavior of an aquatic ecological system depending on variations in
parameters and external sources:

'[F V. (x,1)dGdt = (F,, x,), x. <O (1), k=1LK.

Here F; (S) , are estimated functions of a given type, bounded and differentiable with
respect to Se O(1],); x,(x.1), x, (X,1)dGdt are non-negative weight functions and the
corresponding Radon measures (in the case of space-distributed values of the functions
F, (S)) or Dirac measures (if F, (S)defined on a discrete set of points in the domain 1], );
o (U,)is the space of conjugate functions. The regions of nonzero values of the weight
functions (their carriers) will be interpreted as receptor regions in [J,, whose form
(configurations) are specified as input parameters in the construction for the functionals
@, (S).

Let us compose the main functional for a system that includes forward and reverse

modeling. It will take into account all models, as well as available data:

h

. +((s0 —s0) ey (s —sg)) ;

' e

& (S):d)f(S)+{(n’ m),, +(rCur)

) (8)

+((Y°—Yf)rC4(Y°—Ya°))( }/2+1h(S,Y,S*),k21.
R

Functional (8) will be used to minimize uncertainties, the first term in it is the objective
functional; the second, third, fourth and fifth are the measures of uncertainty of observation
models, process models, initial data and parameters, respectively; the sixth is the description

of the model in the variational formulation (see formula (5)); C, are weight matrices,i =1,4.

Discrete approximations of models and modeling algorithms are obtained from the
conditions of stationarity of functionals dm)i ( ,6‘) with respect to variations of its functional

arguments [ € {S,S*,r,e’;,g} . We obtain a system of operator equations:

oD

=BAS+J"(S,Y)-y-r=0;
s
ey}
ag; = (BA,)'S; + 47(S,Y)S; +d, =0 ©)

https://doi.org/10.1051/e3sconf/202236302019
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St ()|, =0+ d, == (! (8)+0.5(n°Com))

S =8 +C;'S;(0), 1=0; r(x,1)=C,'S; (x,1);

o
_ -1 . — h * ).
Y=Y, +CT; T=—21 (S.v.8;);

Jk>1.

a=0

’ a ’
A(S,Y)S =£{Jh(5+as,y)}

Here A,, is the operator of time derivatives or their discrete approximations; A4° (S,Y)
is the spatial operator of the adjoint problem; I', are the sensitivity functions of models to

parameter variations; « is a real parameter; S’ = JSis a variation of the state function.

Differentiation operations in system (9) are carried out for all grid components of the state
function, conjugate function and parameters, implemented using the Gateaux derivatives for
functionals (5), (8) with respect to all their functional arguments in a discrete representation.
The second equation of system (9) (adjoint problem) contains gradients of functionals that,
with respect to the components of the state function at the nodes of the grid domain, act as
source functions when organizing procedures for assimilation of data from remote and
contact observations and when taking into account, using objective functionals, constraints
in optimization problems of control and design. The associated task in terms of structure and
functional content closes all the internal connections between the various elements of the
modeling system, which are taken into account in the main functionality. In system (9), the
following functions are unknown: S,S",r,S°,Y . The constructed system can be solved by
iterative procedures starting from r=0,8’=S_, Y=Y, .

Let us consider modifications of the splitting scheme (9). Let us describe additive real-
time data assimilation algorithms. Consider the problem of assimilation of information. Let
the time interval be an [0,7})] input parameter for it, where 7jis the current moment of time
for which the data to be assimilated is specified. Let us construct efficient procedures for
assimilation of the data of successive observations coming into the modeling system from

various observational means. We will use a combination of decomposition methods and
splitting methods. The decomposition scheme is as follows:

=

N, -1 -1 p
1=

gl =y 0, i, =G"x[t,,,1,]; ®(S,8.Y.9)= > > ¥, (10)

n=1 n=1 1

where éz ,is the part of the general functional (9) related to the time interval [tH,tn],

n= I,_N, and to the splitting stage /, p is the total number of splitting stages. Since the time
steps are rather small, then all the measurement data ¢, on []", falling within the
assimilation window, will [z, ,,7, | be assigned to 7 =1, _,. Variation of the functionals in (8),
(10), containing the results and measurement models (6), will be carried out in the vicinity
of the values of the function S"' obtained at the time time 7 =¢_,.If #=1,,then S’ is given
from (3). For discretization of functionals and models, additive-averaged splitting schemes
are used. The solution will be determined sequentially on ] with the main time grid:
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o = {tn,n =0, Nt} . We form an auxiliary subgrid structure with four-dimensional phase

spaces, which has a parallel organization according to the splitting parameter / :

(s s =1 =Uot (1)) =o' ()

5 Algorithm for solving the problem of data assimilation

Let us describe an algorithm for solving system (9), which must be performed for all
n=1N

e

1. The transition from the main structure to the subgrid parallel decomposition
structure occurs when 7 =¢,_,

-

{S”_] c Qh (Uth )} , {87—] c th (uth )}’ S7—] =Sn—l’ /= G

2. Solution of a set of direct and adjoint problems in a parallel subgrid structure of
splitting stages:

AS —y'—x'=0.[=1p.p=>1.
n-1

AS)" = acpg;S(SLUTCI ((Pm—[w(s)]m)} ’

I

S/ =0. 1" =(Cy) 8.1, <t <1,

n

The values S;”l are included in the functions v, , the functions r," take into account all
the uncertainties inherent in the corresponding splitting steps in the step [ 1 ] Operations

of all points of the algorithm are implemented in parallel for all stages of splitting. The
equations of the second paragraph of the algorithm are solved by direct methods. They are
solvable with respect to S;, S;”, which follows from the properties of approximation,

stability, and monotonicity of the operators A;, A;"
3. Return from the subgrid to the main structure Q" (U ! ) whent =t .
r
Ulsi cet (i)} = s <0 (). = 33si.
=

1 P/l

Modification 1. Let the splitting scheme contain stages. The first stages are implemented
in the first equation of system (9) (direct problem). The last stage, based on the goals of data
assimilation, can be written in operator form:

A,S" -y -1l =0, (1D
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where A S"is an operator approximating part of the model of the pth stage of splitting;
', — source functions; r; is a function that describes not only the uncertainties of the model

in the original formulation (2), but also the uncertainties that are introduced into the discrete
model by splitting at the decomposition step [t,H , tn] . If the observation points coincide with

some nodes of the grid area I]” € 1] . The weight matrices C,, and C,, for the estimates of

the uncertainties of models and observations in the functionals (8), (10) are set to be diagonal.
The problem, locally conjugate with respect to problem (11) from the composition of the
second equation and the relation for estimating the uncertainties r(x,t) of system (9), will

have the form:

ALS" =a,C (0" =S (12)

r=(C,/a, )8, (13)

P

where the estimate of the discrepancy between the measurements and the simulation result is
taken from the information at the moment of time 7 =¢_, and is the initial for the forecast on

the interval [tH ,tﬂ] . Let us describe an algorithm for finding a solution.

1. From equation (12) we find S™ .
2. From equation (13) we find r; .
3. From equation (11) we find S”.

Items (1) - (3) of the algorithm will be performed for all elements of the splitting scheme
at the stage under consideration; to implement items 1 and 3, you can use the direct three-
point sweep method.

Modification 2. We will assume that the acquired information arrives formally at time
t =t,. The scheme with local conjugate problems has the form:

A,S" =a,C, (‘Pn -8’ ) ; (14)

A,S" " =(Cy /e, )" =0. (15)

The system of discrete equations (14) — (15) is solved by the direct algorithm of the three-
point matrix sweep method with second-order matrices. The stability of calculations
according to the schemes for the problem of eutrophication of the waters of the Sea of Azov
(1) is ensured by the property of diagonal dominance in the matrices A, and A . The
stability of the above data assimilation schemes for the two considered modifications is
ensured by the overall stability of the splitting schemes (the first two equations of system
(9)), which is guaranteed by the energy balance property of identities (4) and in their
approximations in functionals (8). If it contains S* =S, then it gives the ratio of the energy
balance of the system under study, but if S* = const - the balance ratio of the first order.
Modification 3. We write the quality functional in the form:

®,, (8)=0,5[ e (n}#,m, )+ e, (6, )| (16)

r,=A,S, -y, n,=9,-S, 5 a+a=1 a,a,>0. 7
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We substitute (17) into (16), write down the conditions for minimizing the resulting
functional with respect to the function S”, as a result we get:

aln

A, G, (A, S =W )+=2C, (8" —¢")=0. (18)

2n

System (18) is uniquely solvable. For diagonal positive definite weight matrices
W,k :1,_2 in (16), the matrix of system (8) turns out to be five-diagonal. System (8) is
effectively solved by the five-point sweep method.

Schemes of additive sequential assimilation represent a new class of real-time assimilation
methods, their modifications are equivalent (because they are generated by the stationarity
condition of the same quality functional in the discrete representation (8)) and are highly
effective for the class of problems under consideration, because implemented using parallel
algorithms. It is convenient to use real-time schemes with information fields representing the
results of observations ¢, in the form of digital images and maps, providing a high data

density in the area [], . Uncertainty functions estimated in algorithms by formulas (9) and

(13) are used to plan observations. Additional observations should be made where the
uncertainty functions are large.

6 Results of numerical experiments

To solve the problem of eutrophication of the waters of the Sea of Azov (1), a set of parallel
programs was developed, including:
—  amodule of hydrodynamic processes that calculates the field of currents based on a

mathematical model of shallow water bodies [19];

—  aquatic environment and biota pollution module (1), which allows assessing the
impact on the biological productivity of the water area;

—  map of the depths of the Sea of Azov;

—  base of expeditionary data, which makes it possible to refine the model of pollution
of the aquatic environment and biota through the use of the data assimilation methods
described above.

Figure 1 shows the results of calculating the concentration of a pollutant nutrient for a
model of harmful algae dynamics. The initial distribution of current fields in the Sea of Azov
was set at the north wind. Model input: zz; =5-107; v, =107°; B=0,001; S, =1 f=3;

7,=0,1; pe{X,S,M}; &, =0,8.

Phytoplankton density fluctuations were so great that they cannot be explained by random
fluctuations, and the visual picture is such that relatively small areas of high density (“spots”,
“clouds”) are separated by spaces with low densities, sometimes not fixed by standard
observation methods. This phenomenon is especially pronounced in those places of the
reservoir, which are characterized by the need for biogenic elements.

10
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a) T =10days

¢) T =22days d) T =28days

Fig. 1. Pollutant concentration distribution over time.

As noted in the work of A.I. Azovsky [20], diffuse processes act in the direction of
smoothing the spatial distribution and scattering of "spots". One of the attempts to explain
the “spot” stability paradox with the help of numerical experiments is to assume that
heterotrophic organisms (zooplankton and fish) actively move in the direction of the “food”
gradient, which ensures the fixation of the spatial heterogeneity of biogenic substances in the
aquatic environment. The stable heterogeneity of the spatial distribution can be, for example,
due to diffusion processes and the presence of an ectocrine regulation mechanism in
phytoplankton, i.e. regulation of the growth rate by isolating biologically active metabolites
into the medium.

7 Conclusion

As noted above, when building models for predicting natural phenomena and processes, one
of the main problems is the issues related to the adequacy of the mathematical model and the
results obtained on its basis, their correspondence to the behavior of the natural system. When
constructing mathematical models of hydrodynamic and hydrobiological processes,
information about the initial conditions and model parameters is required, which can be
obtained using observational data. Thus, when constructing prognostic scenarios, it is
necessary not only to evaluate the quality of the constructed mathematical model, but also to
assimilate observational data, to investigate the sensitivity of the constructed models to
changes in input data.

The paper presents an approach to the implementation of the model of eutrophication of
the Sea of Azov waters using variational methods for assimilation of data obtained during
expeditionary studies. The developed software package uses the materials of expeditionary
work and allows you to refine the model of pollution of the aquatic environment and biota
through the use of variational methods of data assimilation. On the basis of the developed
software package, a forecast of water pollution with harmful substances is given, which in
turn leads to the development of harmful diatoms and toxic blue-green algae.

11
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The developed software package can be used to determine approaches for maintaining the
ecological system in a state of homeostasis, optimal management of sustainable development
in the biological rehabilitation of the Sea of Azov. The concept of sustainable development
management was applied to the task of combating eutrophication of shallow water bodies
like the Sea of Azov. The dynamic problem of minimizing the cost of maintaining the
ecosystem of a reservoir in a given state is solved, which is interpreted as a requirement for
sustainable development.
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