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Abstract. Integrated water resources management is exposed to the effects of several risks (climatic, socio-

economic, and political). Currently, climate change represents one of the greatest risks for many countries 

around the world and the agricultural sector in particular. In the literature, climate change is sufficiently 

researched but there are scarce studies that deal with the theme of risk in agricultural water management and 

in particular the management under climate change. In the paper, we first define out the characteristics and 

particularity of climate change risk and then we point the different approaches and methods for taking into 

consideration for climate change risk in the integrated water resources management models for the 

agriculture sector. In this work, we aim to appraise the quantification of uncertainties in systems modelling 

in watersheds and discuss various water resource management and operation models. Keywords: Integrated 

water resources management, climate change, risk, Uncertainty, modelling review.  

1 Introduction  
According to IPCC Report, climate change is likely to 

have a complex set of impacts on water resources 

throughout the world [1]. Climate change will affect the 

ocean and surface temperatures, precipitation patterns, 

agricultural water demand, evapotranspiration rates, 

frequency, storm intensity, timing, the magnitude of 

runoff, and sea level in coastal communities [2]. In this 

context, the problem of climate change and fear of its 

serious negative impacts has gained vast socio-

economic, hydrologic, and agronomic interest.  

In order to assess the impacts of climate change and to 

propose adaptation measures, integrated water resources 

management models have been developed by academics 

and policy-makers in recent decades. The consideration 

of potential CC effects on IWRM models introduces 

many forms of uncertainties in these models. 

In the literature, climate change is sufficiently 

researched but there are scarce studies that deal with the 

theme of risk in agricultural water management. 

This study aims to offer an updated review of the 

advances in hydro-agro-economic modeling in the last 

decade, focusing on the assessment of water 

management for the agriculture sector under climate 

change. In this paper, we first define the characteristics 

and particularity of climate change risk and then we 

review various approaches so far applied to address 

various sources of uncertainties in integrated water 

resource management models for the agriculture sector 

by highlighting key findings. 
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2 Characteristics and particularity of 
climate change risk for the agriculture  
It is commonly acknowledged that most climate change 

impacts will relate to water [3]. How water is managed 

will be at the center of climate change adaptation 

strategies. Globally, the negative impacts of climate 

change on water systems are expected to outweigh the 

benefits. This is particularly true in the agriculture 

sector, the largest consumer of water globally 

(agricultural water withdrawal represents 70 percent of 

all withdrawal) and where water plays a critical role in 

crop and animal production.  

Although agriculture is highly dependent on climate, so 

far evidence of observed changes related to regional 

climate changes, and specifically to water, has been 

difficult to find. One of the reasons for this is that 

agriculture is strongly influenced by factors unrelated to 

climate, especially management practices, technological 

advances, market prices, and agricultural policies. These 

factors have more immediate impacts on the water than 

those induced by climate change [4]. For this reason, it 

is important to understand the characteristics and 

particularity of climate change risk for water resources 

management particularly for the agricultural sector 

before assessing the potential impact of climate change. 

This part identifies the key risks and opportunities 

associated with long-term climate change by exploring 

the future impacts of climate change. 
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2.1 Climate change and crop production 

Throughout the production season, crops are sensitive in 

varying degrees to different weather events. Global 

warming changes not only the climate’s mean state but 

also its variability, which is projected to increase in most 

areas [5,6]. Both inter- and intra-annual rainfall 

variability affect the outcome of cropping systems 

during any particular season [7,8]. Increasing climate 

variability will put the sustainability of crop production 

at risk. The timing and interactions of stresses at 

different crop growth stages may cause higher losses 

and increase food insecurity in the future [9]. Many 

studies have gone into assessing the vulnerability 

agricultural sector to climate change. However, the time 

dimension of increased risk is often only implicitly 

included in the modelling, statistical and empirical 

studies.

2.1.1 Inter- and intra-annual rainfall variability:

- Growing research addresses the role of the timing and 

severity of climate hazards, to identify the adaptation 

policies required to improve resilience at the farm 

level [10,11]. Agronomy research typically uses 

experiments and modelling to discern cause-and-

effect relationships between weather variables, and 

crop yields but generally does not consider hazard 

frequency and associated vulnerability. For most 

crops, upper and lower thresholds of climatic 

parameters have been established for different 

phenological stages [12].

2.1.2 Extremes values:

- Weather parameter values extreme at different stages 

affect crop production [13,14]. Both Temperature and 

rainfall extremes, in the form of heat stress, cold stress, 

drought, and flood can damage crop production 

differently at different stages [15]. Temperature 

thresholds, critical months, and thresholds for critical 

crop stages have been studied at the regional level, 

such as for rice crops in Asia [16]. Rains with storms 

can be particularly damaging and mostly cause 

lodging that leads to heavy losses for example 60–70% 

diminishment of yield in wheat [17]. Other studies 

have further differentiated crop sensitivities to the time 

duration of exposure. Short exposure to high 

temperatures at anthesis drastically reduces spikelet 

fertility, which drops from 80% to 20% with a two-

hour exposure to 38 ◦C, and falls to zero if a rice crop 

is exposed to 41 ◦C for more than one hour [18].

2.2 Climate change and farm income

Net farm income is affected by crop yield and

production costs [19]. If a weather event coincides with 

a sensitive crop stage, the level of risk of impact on net 

farm income becomes significant [20,21]. In addition to 

impacting crop yields and quality, Climate change may 

also disrupt farm operations and field workability, 

affecting production costs. Even if farmers cope with a 

hazard, there may be a cost associated with these coping 

measures [22]. Socio-economic research analyses 

associations between, yields, hazards, and farm income, 

but often neglected the taking into account the risk 

aversion of farmers in terms of adaptation to climate 

change.

3 Approach and methods 
The climate is a very complex system composed of a 

large number of highly interconnected components and 

parameters.  The Relationships between the components 

are non-linear and very complex.  According to the 

IPCC rapport, Climate change will increase in the 

coming decades due to past greenhouse gas emissions 

and the inertia of the climate system [23]. However, the 

adaptation to climate change impacts has become a 

major source of concern for human development and 

optimal water resources management. In this context, 

the scientific community is devoted considerable efforts 

to addressing various aspects of climate change, 

including how to best adapt to future climatic conditions 

given the uncertainty associated with climate change

[24,25]. Water resource management models have been 

involved in the past four decades in several aspects of 

single and multi-purpose reservoirs, optimization 

models, imprecision and uncertainty quantifications, 

and climate change [26].

Agronomy modelling helps to quantify the effect of 

weather stresses on yield by crop stage but generally 

does not consider hazard frequency, the effectiveness, 

and costs of coping and associated vulnerability at the 

crop production system level. recently, integrated 

regional water resource management models   (or hydro-

agro-economic modelling) have been applied for the 

assessment of impacts and adaptation to climate change, 

and the associated uncertainties[27,28,29,30]. These 

models can represent climate change impacts on water 

resources and agricultural production based on 

economic sciences.

The integrated regional water resource management 

models are associated with various forms of climate 

change uncertainties accumulating from various stages 

of decision-making [31]. Uncertainties arise at each 

stage of the modelling and decision-making process due 

to the random nature of input variables, various 

parameters, models, imprecise goals of the users, 

priorities, and social importance in decision-making by 

various stakeholders. Addressing these uncertainties is 

very important for precise decision-making and 

avoiding the failure of water resource system 

management [32]. Identifying and addressing various 

sources of uncertainties is one of the crucial tasks in 

water resource modelling to have better water resources 

management policies 

Several review studies have articulated the evolution of 

water resource management systems modelling,

focusing on several key aspects in terms of the 

application of evolutionary algorithms and 

metaheuristic optimizations for optimal strategies of the 

planning and management of water resource systems 

[33,34]. 
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Review papers that can articulate various studies of 

water resource management and associated 

uncertainties are limited in the literature.

In this article, we review various approaches so far 

applied to address various sources of uncertainties in 

integrated water resource management models for the 

agriculture sector by highlighting key findings.

3.1 Data and input-parameter uncertainty

Due to the conjunction of hydrological, agronomic, and 

economic components, IWRM models are prone to data 

and input-parameter uncertainty from both the physical 

side of water availability as well as the socio-economic 

side of data demand and its complex interlinkages.

Regarding physical and climatic input parameters, it is 

mainly about:

- Inherent model uncertainty of climate models [35]; 

- Model chain uncertainty from deriving information 

from global to regional data and from regional to 

spatially more explicit climate data [36];

- Biases involved when using upscaling and 

downscaling methods [37];

- Economic inputs (water prices and cost of adaptation 

measures) [36].

Input parameter and data uncertainty can be addressed 

by: (a) various scenarios combined with a sensitivity 

analysis in the case of simulation IWRM models, or (b) 

stochastic programming, that is, through the 

introduction of a stochastic component in the 

optimization of the model [38].

3.1.1 Sensitivity analyses:

Are commonly used in IRWR models s to define the 

response of input parameters that are likely to suffer 

from uncertainty. In IWRM models it is used on 

outcomes of groundwater recharge, runoff, or crop 

evaporation, and crop yield under changing rainfall and 

temperatures [39]. D’Agostino et al. [27] used a 

sensitivity analysis of the major water balance 

components and agricultural water use for their 

integrated hydro-economic model for the case study 

area of Apulia in Italy to assess the impacts of Climate 

change. They explicitly accounted for uncertainty by 

considering different scenarios climatic and by 

conducting a nominal range sensitivity analysis.  

Sensitivity analyses were employed to determine the 

contribution of single-input parameters to variations in 

the simulation model output [38]. Their results revealed 

that climatic conditions, soil type, and cropping patterns 

exerted a major impact on the outcome of the model. 

The variance of the upper and lower bounds of irrigation 

water. 

El ouadi [40], used an integrated model for the case 

study area of Ait Ben Yacoub located in east Morocco 

to assess the impacts of CC on the agriculture sector. To 

identify the model input parameters that influence the 

results of the model and, taking into account the 

uncertainty, parametric sensitivity analysis is performed 

by the” One-Factor-At-A-Time” approach within the” 

Screening Designs” method. The results of this analysis 

show that 6 parameters affect significantly the objective 

function of the model, it is in order of influence: i) 

Coefficient of crop yield response to water, ii) Average 

daily gain in weight of livestock, iii) Exchange of 

livestock reproduction, iv) maximum yield of crops, v) 

Supply of irrigation water and vi) precipitation. These 

six parameters register sensitivity indexes ranging 

between 0.22 and 1.28. Those results show high 

uncertainties on these parameters that can dramatically 

skew the results of the model or the need to pay 

particular attention to their estimates. Keywords: water, 

agriculture, modelling, optimal allocation, parametric 

sensitivity analysis, Screening Designs, One-Factor-At-

A-Time, agricultural policy, climate change.

3.1.2 Climate modelling

To account for Climate change impact uncertainties, 

different climate scenarios can be applied to IWRM 

models. To this end, local HEMs need to be combined 

with global or regional climate models. Modelling 

global climate change is a branch of geophysical 

sciences that is hard to solve due to the difficulty of 

interpreting the cause-effect chains in a complex system 

driven by multiple factors. Many recent climate studies 

make use of simulations with the help of general climate 

models (GCMs) that represent mathematically the 

behavior of the global climate system and simulate the 

interactions of the oceans, atmosphere (temperature, 

wind, water vapor...), land surface, including the carbon 

cycle, biosphere, and water storage. Global climate 

models have been extensively used to simulate observed 

climate change during the 20th century [41]. Such 

models were fed with combinations of natural and 

anthropogenic forcings and proved to be able to 

reproduce broad, large-scale, features of the observed 

Earth’s climate of the past century. However, they 

cannot mimic important details of observed climate. 

This holds in particular for the global variability of 

climate and extreme values.

3.1.3 Upscaling/downscaling biases

Feeding IWRM models for basin scales with output data 

generated by climate models requires the downscaling 

of results from regional climate models that in turn 

derive their outcomes from global climate models. This 

process involves additional uncertainty and biases that 

are often ignored in HEMs [42]. Sophisticated methods 

are available to conduct downscaling with bias-

correction methods of global to regional information 

regarding land use and climate change [43,44]. To 

address model uncertainty upscaling/downscaling 

biases, various global models can be applied as 

robustness checks of the analysis [45]. It is 

recommended to employ several hydrological models 

and various emission or climate scenarios [45]. Wada et 

al. [45] suggested a multi-model approach to address 

uncertainties arising from model uncertainty and CC 

uncertainty in their analysis of irrigation water demand 

to provide robust modeling results.
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The majority of IWRM models addressing CC risks and 

uncertainties apply simulation models. Escriva-Bou et 

al. [46] selected six regional climate models that showed 

the best-fitting results when compared to historical 

precipitation and temperature data in the basin analysed

(Jucar River basin, Spain). Graveline et al. [47] 

constructed one CC scenario by downscaling 

precipitation, temperature, and climate data from 

regional climate models and combined them with two 

catchment-specific agricultural management scenarios 

to address the effect of climate and socio-economic 

changes on water resources in the Gallego catchment 

area (Spain).

3.1.4 Stochastic method

D’Agostino et al. [27] included stochastic components 

in their optimization model. The non-linear stochastic 

economic component of the HEM that maximizes 

farmers’ utilities takes uncertainties concerning prices 

and yields into account.  As a framework for planning 

investments and considering the interrelationships 

between CC and water resource systems, the concept of 

hydro-economics was used by Jeunland et al. [48]. 

These last two studies included both physical aspects of 

CC (changes in runoff, net evaporation, water demand, 

and flood and drought risks) as well as economic 

uncertainties (e.g., real value and productivity of water-

system-related goods and services). The innovation of 

this approach involves extending a hydrological water-

resource planning model to include economic 

uncertainty. Additionally, Jeuland [48] accounted for 

uncertainties by using a stochastic streamflow 

generator, a hydrological simulation model, and an 

economic appraisal model.  The economic appraisal 

model calculates the net present value (NPV) of 

hydrologic projects under a Monte Carlo simulation and 

considers various possible physical and economic states. 

Reynaud and Leenhardt [49] took economic risk into 

account by introducing a probabilistic component in the 

microeconomic production model and represented each 

farmer’s behavior in their integrated water-management 

framework, thereby representing agricultural, urban, 

and environmental water demand in the case of the river 

Neste (France). This model includes climate and crop 

price variation and farmers’ risk preferences and 

influences farmers’ choices regarding land use, sowing 

dates, and water use.  Also, [50] considered climate 

change uncertainties via stochastic programming 

methods in the economic model, which is combined 

with a hydrological model to form IWRM models. 

Graveline et al. [51] conducted Monte Carlo simulations 

to account for input-parameter uncertainty in their farm-

scale model applied to two regions in France.

3.2 Imprecise goals of the users

The next prevailing uncertainty in integrated water 

models is the imprecise goals of the users, which have 

been conventionally addressed using fuzzy set theory 

[52].  Ahmad [52] reviewed reservoir operation models 

with fuzzy optimization along with other optimization 

methods such as Artificial Neural Network (ANN), 

Genetic Algorithm (GA), artificial bee colony, and 

Gravitational Search Algorithm (GSA). 

4 Conclusion
In recent years, several IWRM models have taken into 

account uncertainties associated with Climate change 

and their feedback links, but limitations still persist. In 

this context, this study highlighted the mains 

uncertainties that have to be addressed by the integrated 

water resources management models for the agriculture 

sector in particular (input-parameter uncertainty; 

scenario uncertainty; model chain uncertainty). 

Additionally, this paper has reviewed the different 

approaches and methods for taking into consideration 

climate change risk in the integrated water resources 

management models for the agriculture sector. 

To summarize, Climate change uncertainties can be 

addressed by (a) including diverse climate change 

scenarios representing different states of certain aspects 

in optimization IWRM models (water availability, 

temperature, associated costs, and benefits, 

environmental or (b) incorporating stochastic 

components in optimization models.  The hybrid 

approaches combining simulation and optimization 

network-based IWRN models may be well suited to 

analyze water policies under CC at a river-basin scale.

Currently, the current challenges for the hydro-agro-

economic models are to include the food-energy-water 

nexus and the successful representation of micro-macro 

linkages and feedback under climate change 

uncertainties and risks.
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