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Abstract. Analytical methods exist to solve the problems of 

hydromechanics and heat transfer, but it is not possible to obtain the 

solution to some inhomogeneous and nonlinear problems of 

hydromechanics and heat transfer by analytical methods. The solution to 

such problems is carried out using numerical methods. Currently, there are 

many textbooks and monographs on numerical methods for solving 

problems of hydromechanics, thermal conductivity, heat and mass transfer, 

and others. The article presents the results of a numerical study of the flow 

structure in the flow around a flat plate. The calculations are based on the 

numerical solution of a system of nonstationary equations using a two-fluid 

turbulence model. For the numerical solution of these problems, schemes 

of the second and fourth order of accuracy were applied. The control 

volume method was used for the difference approximation of the initial 

equations, and the relationship between velocities and pressure was found 

using the SIMPLE procedure. To confirm the correctness of the numerical 

results, comparisons were made with each other and experimental data. 

1 Introduction 
In recent decades, significant progress has been made in developing high-precision 

numerical methods for solving the Navier-Stokes equations for modeling turbulent flows of 

practical interest. Computational methods such as large LES vortices modeling and direct 

numerical DNS modeling are increasingly being applied to such flows. However, their use 

is still limited by grid resolution requirements and, therefore, by available computational 

resources. Therefore, their wide practical application is associated with the development of 

computer technology and, according to experts, can begin only at the end of this century. 

Therefore, shortly, semi-empirical methods will remain the main working tool for solving 

applied aerodynamics problems. Most semi-empirical turbulence models are based on the 

so-called RANS equation. With this approach, in the equations of hydrodynamics, after 

averaging over time, Reynolds stresses arise, which must be determined. Consequently, the 

resulting system of equations is obtained unclosed. Many different mathematical models 

have been proposed to close the resulting system of equations. These models are based on 

the hypotheses of Boussinesq [1], Prandtl [2], Karman [3], etc. The NASA turbulence 

database provides a comparative analysis of various semi-empirical models. From this 
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analysis, it can be concluded that the most accurate is the Spalart and Allmaras models [4]

and the Menter model k-ω SST [5-7]. To date, numerical solutions to many important 

practical problems have been obtained using these models. 

Recently, the two-fluid turbulence model has become increasingly popular [8]. This 

model is based on the dynamics of two fluids, which, unlike the Reynolds approach, leads 

to a closed system of equations. This model's peculiarity is that it can describe complex 

anisotropic turbulent flows. The problem under consideration is of great importance for 

aviation and rocket-space technology. In [9], a new two-fluid model was used to study the 

flow past a flat plate. In this case, a simplified, parabolize system of equations was used, 

i.e., the pressure was assumed to be constant. However, not in all streamlined flows the 

pressure can be considered constant. For example, the flow can occur in many technical 

devices in limited spaces. Therefore, in this work, there are two main goals, the first is to 

test the two-fluid model for the flow around a flat plate using the full system of turbulence 

equations, the second-first for the turbulence equation, the finite difference schemes of the 

second and fourth order of Runge-Kutta accuracy were used, and the results were compared 

with experimental data. This problem is described in the NASA database [10].

1.1 Physical and mathematical statements of the problem 

A two-dimensional turbulent flow in a flat channel is considered. The physical picture of 

the analyzed flow and the configuration of the computational domain are shown in Fig. 1. 

Fig. 1. Diagram of the computational domain in a flat channel

The unsteady system of equations of a turbulent two-fluid model in Cartesian 

coordinates has the following form [11]:  
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Here  

In the above equations,  are the axial and transverse components of the averaged 

flow velocity vector, respectively, p is the hydrostatic pressure,  are the relative 

axial and transverse components of the fluid velocity,  are the molecular 

kinematic viscosity,  is the effective molar viscosities, d is the nearest distance to the 

solid wall,  is the largest root of the characteristic equation. The constant coefficients 

are equal to 

,306.0,7825.0 21 �� CC 0.2.sC �

1.2 Calculated grids 

In this study, the thickening of the mesh near the wall of the plates and the vertical 

position of the beginning of the plate were used. The calculated grid is shown in Fig. 2. 
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Fig. 2. Calculated condensed mesh size 100x200
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The )  parameter is about 1 and regulates the degree of grinding. The value 

1.0005, 8) �� �  is used in work. 

The system of equations (1) after the transformation of coordinates in dimensionless 

parameters has the following form 
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For numerical implementation, the system of equations (5) is reduced to a 

dimensionless form by correlating all velocities to the average velocity of the incoming 

flow. All linear dimensions are the length of the plates L.  

Obvious boundary conditions of adhesion are set on all fixed solid walls: 0x GV �  and 

0y GV �  , where G is a solid boundary. At the channel output for horizontal, vertical 

velocities, and relative velocities, the conditions of extrapolation of the second order of 

accuracy are accepted. Uniform profiles of the longitudinal component of velocity with 

0xV U�  are applied at the inlet, and the transverse component of velocity and pressure is 

zero 0yV P� � . For the numerical implementation of the system (5), the following 

conditions were set at the input for relative velocities: 0.03x� � , 0y� � . 

2 Solution method 
The finite volume method is used for the numerical solution of the system of initial 

nonstationary equations (1). Due to the difficulties of matching the velocity and pressure 

fields, a grid with a spaced structure of the arrangement of grid nodes for dependent 

variables was used to discretize the equations of motion in directions and the continuity 

equation. This means that the velocity and pressure components are determined at different 

nodes. This approach is similar to the SIMPLE methods and gives certain advantages when 
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calculating the pressure field [13].  

The fractional step method achieves the implicit connection of the terms pressure and 

velocity, which consists of two stages [14]. In the first stage, the intermediate velocities, 
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In the second stage, the intermediate velocities are projected onto vector fields without 

discrepancies using the Poisson equation, which calculates the increment of the pressure 

field, �p:
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   (8) 

where ∇
2
 is the Laplace operator. Equation (8) is solved iteratively using the multigrid 

method [15], and the velocity field is updated as follows: 
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Then the Poisson equation is solved using this new pressure, and an iterative process is 

established. The iteration continues until the condition that there are no discrepancies in the 

calculated velocity field within a certain tolerance is met.  

The exact second-order approximations of the partial derivatives of the cell center in the 

continuity equation are read: 
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Due to the staggered arrangement, the equations of x− and y-pulses are solved on the 

faces of the cells.  

The exact discretization of the convective terms of the second order in the equation for 

longitudinal and transverse velocity is as follows: 
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a molar longitudinal and transverse velocity: 
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The exact discretization of the second-order diffusion terms in the equation for all 

velocities are as follows: 
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,

2
.

i j i j i j

i j

i j i j i j

i j

p p pp O h
x x

p p pp O h
y y

- - --

- - --

� 


� 



 �� 	�
� �� �� + �


 �� 	�
� �� �� + �

 (17) 

Exact approximations of the fourth order of partial derivatives along the center of the 

cell in the continuity equation: 

� � � � � � � � � �

� � � � � � � �
� �

1, , 1, 2, 4

,

, 1 , , 1 , 2 4

,

27 27
,

24

27 27
,

24

x x x xi j i j i j i jx

i j

y y y yy i j i j i j i j

i j

V V V VV O h
x x

V V V VV
O h

y y

� 
 


� 
 



 � 
 ��� 	 � �� �� + �


 � 
 ��� 	
� �� �� + �

 (18) 

The exact discretization of the convective terms of the fourth order in the equation for 

longitudinal and transverse velocity is as follows: 
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� � � � � � � �
� �

� � � � � � � � � � � � � � � �
� �

2 2 2 2

2
2, 1, , 1, 4

,

, 1 , 1 , , , 1 , 1 , 2 , 2 4

,

27 27
,

24

27 27
,
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x x x xi j i j i j i jx
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C C C C C C C C

x y x y x y x yx y i j i j i j i j i j i j i j i j

i j

V V V VV O h
x x

V V V V V V V VV V
O h

y y

� � 


� � 
 
 
 



 � 
 �� 	�
� �� �� + �


 � 
 ��� 	
� �� �� + �

� � � � � � �2 2 2 2� � � � � �27 27� �V V V V� � � �27 27� �V V VV� � �27 27� �

� � � � � � � � � � � � � � �2 2� � � �C C C C C C C C� � � � � � � � � � � � � �V V V V V V� � � � � � � � � �27 27� � � �V V V V V VV V V V� � � � � � �27 27� � � �
(19) 

� � � � � � � � � � � � � � � �
� �

� � � � � � � �
� �

1, 1, , , 1, 1, 2, 2, 4

,
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, 2 , 1 , , 1 4

,

27 27
,

24
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.
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V V V V V V V VV V
O h

x x

V V V VV
O h

y x
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� � 



 � 
 ��� 	
� �� �� + �


 � 
 �� 	�
� �� �� �� + �

� � � � � � � � � � � � � � �27 27� � � �C C C C C C C C� � � � � � � � � � � � � �V V V V V V V V� � � � � � � � � �27 27� � � �V V V V V VV V V V� � � � � � �27 27� � � �

� � � � � � �2 2 2 2� � � � � �2 2� �V V V V� � � �27 27� �V V VV V� � �27 27� �
(20) 

a molar longitudinal and transverse velocity: 

� � � � � � � � � � � � � � � �
� �

� � � � � � � � � � � � � � � �
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,
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,

27 27
,
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V V V VV O h
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y y

� � � ��
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 � 
 ��� 	 � �� �� + �


 � 
 ��� 	
� �� �� + �

CC C CC C ��� �V�� �C �V � ��V � � V� � � � �27 27� � � �� � � � � � � � � � � � �C� �C C C� � � � � � � � � � �C C CC C� � � � � � � � � �� � � �� � � � � � � � � � � �27 27� � � �V V VV V� � � � � �27 27� � � �V VV VV V� � � � �27 27� � � �

CC C CC C ��� �V�� �C �V � ��V � � V� � � �� 27 27� � � �� � � � � � � � � � � � �C� �C C C� � � � � � � � � � �C C CC C� � � � � � � � � �� � � �� � � � � � � � � � � �27 27� � � � V V� � � � �� 27 27� � � � V� � � �� 27 27� � � �
� �4 .O h

(21) 
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,
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 ��� 	
� �� �� + �
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 ��� 	
� �� �� + �

CC C CC C ��� �V�� �C �V � ��V � � V� � � �� 27 27� � � �� � � � � � � � � � � � �C� �C C C� � � � � � � � � � �C C CC C� � � � � � � � � �� � � �� � � � � � � � � � � �27 27� � � � V V� � � � �� 27 27� � � � V� � � �� 27 27� � � �

CC C CC C ��� �V�� �C �V � ��V � � V� � � �� 27 27� � � �� � � � � � � � � � � � �C� �C C C� � � � � � � � � � �C C CC C� � � � � � � � � �� � � �� � � � � � � � � � � �2 2� � � � V V� � � � �� 27 27� � � � V� � � �� 27 27� � � �
� �4 .O h

(22) 

The exact discretization of the fourth-order diffusion terms in the equation for all 

velocities are as follows: 

� � � � � � � � � �
� �
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2
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,
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,
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 * � * 
 * � * 
 *� 	� *
� �� �� + �


 * � * 
 * � * 
 *� 	� *
� �� �� + �

* �

(23) 

Where � �
,

x i j
V �V  and � �

,
y i j

V �V  are the interpolated velocities: 

� � � � � � � � � � � �

� �
� � � � � � � �

� �

1, , 1, 2, 4

,

, 1 , , 1 , 2 4

,

9 9
,

16

9 9
.
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x x x xi j i j i j i j
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y y y yi j i j i j i j
y i j

V V V V
V O h

V V V V
V O h
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 � � 

� �


 � � 

� �

� �
V � ��

�
�
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��

  (24) 

E3S Web of Conferences 365, 01011 (2023) https://doi.org/10.1051/e3sconf/202336501011
CONMECHYDRO - 2022

9



and � �
,
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x i j
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,
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,

C
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� , � �

,

C

y i j
� �C
�  are the interpolated velocities: 
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�
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�
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 � � 
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� �C
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�
�C

V �
��

� �C �
�

��
�

�
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�
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�

  (25) 

Table 1. Two types of a sample of a finite difference scheme and their order of accuracy. 

Of course,

the

difference 

scheme and 

their order 

of accuracy

,

, ,

, .

x

y

x y

x y

V
x

V
y
V V

� �

� *� 	
� �� �
� *� 	

� �� �
* �

2

2

2

2

,

, ,

, , .

x y

x y

x

y
V V

p� � -

� 	� *
� �� �
� 	� *
� �� �
* �

2

2

2

2

,

.

p
x

p
y

-

-

� 	�
� �� �
� 	�
� �� �

,

, .

, , .

x y

xy xx yy

x x

y y

v v v
� �

� 	� �*� 	/� �� �� � � �
� 	� 	� �*

/� �� �� � � �
* �

/ �

,
yx VV

x y
�� 	�� 	

� �� �� � �  �

Scheme A 2 2 2 2 2

Scheme B 4 4 2 2 4

The integration was carried out in time steps for Scheme A-Δt=0.001 and for Scheme 

B-Δt=0.0001.

3 Results and Discussion 
The comparisons of the numerical results obtained with the known experimental data are 

shown below. 3 shows the numerical results of changing the Reynolds number of the 

momentum loss's thickness from the plate's dimensionless length. The Reynolds number of 

the momentum loss thickness was found by integrating the equation 

Re
0.5 .f

d C
dx

0 �     (26) 

Here fC is plate friction coefficient: 

2
.

Re

x
f

VC
y

� 	�
� � �� �

    (27) 

Figure 3 shows experimental results for the comparison of rhombuses 
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Fig. 3. The dependence of the Reynolds number of the pulse loss thickness on the length of the plate: 

1 is results of scheme A, 2 is results of scheme B. 

Figure 4 shows a solid line showing the dependence of the coefficient of friction on the 

dimensionless thickness of the momentum loss according to the proposed model. Lozenges 

is also illustrated by the results of the Karman-Schoenherr theory [16].

Fig.4. The dependence of the coefficient of friction on the Reynolds number of the thickness of the 

momentum loss: 1 is results of scheme A, 2 is the results of scheme B. 
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In figure 5, a solid line shows the result of numerical calculation for a dimensionless 

longitudinal flow velocity depending on the dimensionless distance to the plate. The 

formulas determined dimensionless speeds and distances 

* *

*
, Re , 0.5 .x

f
Vu y yu u C
u

� �� � �   (28) 

Here, for comparison with the results of the rhombic model, the results of the Coles 

theory are also shown [17, 18].

Fig. 5. The transverse distribution of the longitudinal velocity: 1 is results of scheme A, 2 is results of 

scheme B. 

4  Conclusion 
The paper presents numerical solutions for the flow of an incompressible viscous fluid into 

the flow around a flat plate using a new two-fluid turbulent model. The dependence of the 

Reynolds number on the thickness of the momentum loss, the dependence of the coefficient 

of friction on the Reynolds number of the thickness of the momentum loss, and the 

transverse distribution of the longitudinal velocity are demonstrated. For the numerical 

implementation of the turbulence equation, second- and fourth-order accuracy schemes are 

used. From the figure, it can be seen both schemes satisfy the experimental results. But 

when using methods of the fourth order of accuracy, an increase in the algorithm's accuracy 

has to be paid for by increasing the calculation time and complicating the difference 

scheme. This should be carefully considered when choosing a method for solving partial 

differential equations. Usually, for most problems of hydrodynamics, sufficient accuracy 

can be obtained by methods of the second order of accuracy. 
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