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Abstract. The paper discusses the possibility of using Lagrangian 

coordinates to predict the transformation of long waves of different origins 

near the coasts, necessary in the design, construction, and operation of 

protective structures, as well as a wide range of environmental problems 

related, among others, to the spread of pollutants. Results of numerical 

investigations, compared with analytical solutions, showed satisfactory 

coincidence. 

1 Introduction 
Engineering problems associated with the propagation of long waves and their interaction 

with hydraulic structures require hydrodynamic calculations of currents in areas with 

variable boundaries where it is necessary to predict: 

� transformation of surge, tidal, and tsunami waves coastal security; 

� breakwater and flood propagation parameters 

� water movement during furrow irrigation; 

or carry out 

� ecological assessments of shallow waters and coastal marshes 

� predicting HPP-PSPP operation regimes. 

The most common mathematical model for solving hydrodynamic problems in shallow 

unstratified open water bodies is the Saint-Venant equation (Stoker J.J., 1959, Wiseman J., 

1997, Wolzinger N.E., Pyaskovsky R.V., J. A. Künge, F. M. Holly, A. Verwey., 1985, D.A. 

Drew, 1983, J.F. Gerbeau, B. Perthame, 2001, T. Buffard, T. Gallouet, J.M. H´erard, 1998). 

Two approaches are commonly used to solve problems with variable boundaries: 

� pass-through method (Belikov V.V., Norin S.V., Shkolnikov S.Ya., 2014) 

� methods related to separating boundaries and developing movable grids (V.M. 

Lyatkher, Y.S. Yakovlev, 1976). 

Three approaches for implementing pass-through methods are described in (Fedotova 

Z.I., 2002): 

� on land, a thin film of water held on the surface by frictional force is assumed, 

� a body of water of simple geometry is embedded into the area occupied by land, 
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� In the non-flooded area, the depth and flow velocity are set to zero. 

In pass-through, the calculations are carried out in Eulerian coordinates. 

In the case of boundary selection, coordinates that are not purely Euler coordinates but 

some coordinate's line that moves with the boundary of the computational domain(Belikov 

V.V., Norin S.V., Shkolnikov S.Ya., 2014). 

The motivation for this research was to overcome the problem of separating the physical 

and schematic diffusion of a fluid using Eulerian coordinates in numerical calculations of 

wave processes and also the fact of wide application of computational methods using 

Lagrangian coordinates in the solution of gas dynamics problems in regions with variable 

boundaries (Samarskiy A.A., Popov Yu.P., 1992). 

The following is an explicit finite-difference method for calculating wave currents off 

the coast, using Lagrangian coordinates under the assumption of planar symmetry. 

2 Methods and Materials 

2.1 Saint-Venin equations in Lagrangian coordinates 

Currently, the most widely used mathematical model describing currents in open 

unstratified bodies of water is the Saint-Venin system of equations. This system is based on 

the hypothesis of hydrostatic pressure distribution over depth. As a rule (not always), this 

hypothesis is supplemented by the hypothesis that the velocity epure is close to a 

rectangular one and that the friction laws used in steady-state currents apply to unsteady 

currents. 

The Saint-Venin equations in Lagrange coordinates assuming planar symmetry can be 

represented in integral form (Krutov, A.N. Shkolnikov, S.Ya., 2022): 
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� �XtX ˆ,  is the spatial Eulerian coordinate of the station moving with the fluid flow, linked 

with the Lagrangian coordinate of the station by the relation: 

�

t

VdtXX
0

ˆ ,     (2) 

� �XtV ˆ, is velocity of liquid particles, q is specific water flow, h is depth, g=9,8 m/s is

acceleration of gravity,
2

2gh� is hydrostatic pressure divided by width unit, ρ is liquid 

density, ρR is the projection onto the X axis of the pressure acting from the bottom on the 

fluid, numerically equal to the projection onto the same axis of the fluid pressure on the 

bottom of the stream, opposite in direction to it,
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bZ is stream bottom mark, not changing in time in Eulerian coordinates,
dX
dZI b�
 is

bottom slope, ρ 	 is hydraulic friction stress at the bottom of the stream, using the Darcy-

Weisbach formula (McKeon, B. J.; Zagarola, M. V; Smits, A. J. 2005: 

VV
2

�

	     (4) 

� is coefficient of hydraulic friction using Manning's formula (Manning, R., 1891, 

Gauckler, Ph. 1867): 

3/122 hgn
�    (5)

n is bottom roughness coefficient, the value of which depends on the underlying surface 

(Kiselev P.G. (ed.), 1974), ρ,� is other forces affecting the flow: wind stress on the free 

water surface, projection of the tidal force on the flow axis, etc. In this paper, it is assumed 

that the influence of these forces is negligible and �  is not taken into account further in 

the calculations. 

The first equation of the system (1) expresses the law of conservation of mass of an 

incompressible fluid; the second equation is the law of conservation of momentum for this 

fluid.

Note that, for flows in areas with variable boundaries, drying of zones within an initially 

single-bonded area is possible. Such phenomena are not considered in this paper.

2.2 Numerical implementation of the Saint-Venin equations in Lagrangian 
coordinates without bottom topography and friction 

In (Krutov, A.N. Shkolnikov, S.Ya., 2022), an explicit finite-difference scheme for a 

channel without gradient and friction and without considering the bottom relief is proposed, 

implementing (1.1), in which the value R=0 has the following form:
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here: subscript k: 1≤k≤K is cell number of the finite-difference scheme, fractional lower 

index (subscript) k+1/2 indicates that the corresponding value is assigned to the boundary 

between k-th and k+1-th cells, τ is time step,

� � ��
� ��� 2/12/1 kkkk XXh     (7) 

is specific (by flow width) fluid volume in k-th cell of the finite-difference scheme, located 
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between moving sections and 2/1�kX and 2/1�kX ; k��  does not change with time and 

can be calculated once, at the beginning of calculations; hereinafter the values with upper 

index "1" refer to a new time step, without indices - to the old one, scheme parameters of 

flow are marked the same way as their analogs in the description of the mathematical model 

in section 1.

The proposed explicit finite-difference scheme (6) has a time step limit Courant condition 

(R. Courant, K. Friedrichs, H. Lewyt ,1928.):
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2/12/1

2/12/1

1:
2min

kk

kk
Kkk VV

XX�  .    (8)

As a test case, the solution to a classical hydrodynamic problem - the problem of dam 

failure with an outflow into a filled or dry downstream - was considered (Stoker J.J., 1959, 

Kochin N.E., Kibel I.A., Rose N.V., 1963). It is assumed that a finite-difference grid that 

has a constant length step at the initial moment of time Xk+1/2-Xk-1/2=const k� , on the left 

boundary of the calculation domain, at X=0, an impermeable wall is given 

00ˆ|0| 

 

 xx VV  and the dam site at the initial time t=0 coincides with the initial left-hand 

boundary of the calculation area, i.e., the solution of the problem corresponds to the 

analytical one until the downgoing wave reaches the right boundary of the calculation area 

0
X . 

Here it should be noted that the system of equations (5) does not require a boundary 

condition on this (right) boundary in the case of dam failure with a spill into a dry channel 

or at shallow downstream, as the flow in its vicinity will be turbulent (

)1/

2

/ ���
�

�
��
�

�

 

 LXLX gh

VFr . However, the layout view for the right boundary cell is not 

obvious and will be discussed below.

Next, consider a more general problem in which it is assumed that there is a device on 

the right-hand boundary of the calculation area that ensures that a constant depth is 

maintained on it: 

consthh RLX 


/ .    (9)

Note that the solution to the long-wave fluid flow problem under this boundary 

condition is contained in the solution to the "dam break" problem (Fig. 1) at the initial 

depth in the tailwater h∞≠0.
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Fig. 1. Diagram of the problem solution for dam failure with a spill into the filled downstream 

reservoir (solid line) and onto a dry downstream (dashed line). At the initial point in time at X=0,

there is a depth discontinuity in the upstream and downstream reaches - the "dam". a) - wave profile,

b) - velocity graph along the flow.

I-II is undisturbed part of the upstream; II-III and II-III-VII are simple depression wave 

for filled and dry downstream, respectively;

III-IV is “flat” (plateau); V-VI is undisturbed downstream; VII-VIII is unflooded part of 

the downstream.

X is length, t is time, h is depth, V is velocity, g is acceleration of gravity, H is reservoir 

depth, h∞ is downstream water depth, VR and hR are speed and water depth on the flat D –

boron propagation speed.

Indeed, the line with the self-similar coordinate gHVR  separates the liquid which has 

escaped from the reservoir and the downstream liquid which has been perturbed by the 

breakthrough wave, and if condition (9) is fulfilled, the analytical solution coincides with 

the solution of the dam failure problem, where the boundary of the calculation area moves 

with the velocity of water on the “flat” RV . In this case  

ℎ =
⎩⎪⎨
⎪⎧ � at � �	
� < −1⁄
� ��/	����� �� at -1 ≤ � �	
ℎ < �� 	
� − 	ℎ� �⁄⁄⁄

ℎ� at � �	
ℎ⁄ ≥ �� 	
� −	ℎ� �⁄⁄ (10)

� = � 0 at � �	
� < −1⁄�/�	
� − 2 at -1 ≤ � �	
ℎ < �� 	
� − 	ℎ� �⁄⁄⁄at � �	
ℎ⁄ ≥ �� 	
� − 	ℎ� �⁄⁄ (11)

In this case, the length of the computational domain at time t becomes equal to
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tVLL Rt �
 
0|      (12) 

Velocity at the “flat”

� �RR ghgHV �
 2    (13) 

Froude number at the “flat”

� �1/2 �
 RR hHFr .   (14)

Thus, at 9/4/ �HhR  the current on the shelf is turbulent, and at the position of the 
destroyed dam 9/4/ 
Hh and 1
Fr  (Stoker J.J., 1959, Kochin N.E., Kibel I.A., 
Rose N.V., 1963), and at 9/4/ �HhR the flow at the “flat” is smooth. 

In this paper, there were two variants of approximation used consthh RLX 


/ : at

1�RFr , from the point of view of the Saint-Venant equations, it is a boundary condition, 

but even with 1�RFr  it does not contradict the conditions of the task since there is such a 

filling of the downstream with which the depth at the “flat” is equal to Rh . 
Option 1: One of the boundary conditions was that the depth in the last cell of the area 

at the initial moment of time is hR, and it did not change with time, nor does the length of 
the last cell �  2/12/1 , �� KK XX : 

2/12/1
1

2/1
1

2/1 ���� �
� KKKK XXXX , 1
2/1

1
2/1 �� 
 KK VV .   (15)

Numerical experiments have shown that at 9/4/ �Hhs  there are strong circuit pulsations 
in the zone of the boundary K-sell (Fig. 2 and 3).

Fig. 2. Wave profile and longitudinal velocity plot when formula (2.8) is applied at the boundary 
point.

Legend: 1 is initial depth profile with a discontinuity at Х=0; 2 is wave profiles: 
analytical and calculated according to (6); 3 is velocity graphs analytical and calculated 

according to (6). H=10 m, hR=1 m. 118 �

 RRR ghVFr . T=79 sec. K=1000. 
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Fig. 3. The graph of the calculated depth change over time at the design points closest to the right-
hand boundary. The symbols are the same as in Fig. 2.

Pulsations increase as the value of Hhs /  decreases, and at small values of Hhs / ,
they are so strong that calculations become impossible. Note that the solution becomes 
unstable only in the nearest vicinity of the K-cell, which is explained by the fact that the 
turbulent flow "blows away" the arising oscillations and does not let them penetrate deep 
into the computational area. 

Option 2: The velocity of the right-hand boundary of the area was calculated using the 
finite-difference formula: 

� �22
2/1

1
2/1 2 KR

k
KK hhgVV �

�
�


�
��

�
,    (16) 

which formally coincides with the third formula (2.1), that is, under the assumption that 
there is a "borderline" K+1-cell with specific volume KK ��� �
� 1  and constant depth hR.
Numerical experiments have shown that wave flow calculations using formula (16) give 
satisfactory results for all values of hR<H, including hR =0. It can be seen that using 
formula (16), the results of the numerical experiment do not practically differ from the 
analytical solution.
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Fig. 4. Wave profile and longitudinal velocity plot when formula (15) is applied.

2. 3 Numerical implementation of the Saint-Venin equations taking into 
account bottom topography and friction 

In the same way, as for the horizontal bottom, a spaced finite-difference grid is used (Fig. 
5). To account for the bottom topography, we assume that the bottom shape is set 
independently of the finite-difference grid by the function � �xZb , which can be found for 
any x (for example, set at some node points, and for points located between them is found 
by interpolation).  

Fig. 5. Spread out finite-difference grid for non-horizontal bottom.

The following values have been determined in the whole-numbered sections:
- 1

fskZ is water surface mark (consider it within the interval �  1
2/1

1
2/1 , �� kk XX  constant) 

- k��  is specific (relative to flow width unit) water volume at interval �  1
2/1

1
2/1 , �� kk XX  (

k��  does not change over time).  
The following values have been determined in the half-integer number sections:
- 1

2/1�kX is Eulerian coordinate of k+1/2 is line,

- 1
2/1�kV is velocity of k+1/2-cell line.

The bottom is set independent of the moving Lagrangian finite-difference grid, e.g., on a 
separate time-invariant grid, so that the bottom mark of the  k+1/2-cell line 1

2/1�bkZ   is 
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calculated from the Eulerian coordinate of 1
2/1�kX the line. The finite-difference scheme 

(17) generalizes the above-constructed scheme (2.1) for the Saint-Venin equations in 
Lagrangian coordinates with a horizontal bottom to the case of an arbitrarily shaped bottom 
(under flat symmetry and without considering hydraulic friction):
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 (17) 

here: 1
cmkh и

1
1�cmkh is water depths at the center of mass of the fluid compartments in the 

intervals �  1
2/1

1
2/1 , �� kk XX and �  1

2/3
1

2/1 , �� kk XX  respectively (here indices “k” and

“k+1” and the positions of the centers of mass of the corresponding compartments 1
сkX and

1
1�сkX  (should be calculated); ρ 1

2/1�kR  and ρ
1

2/1�	k  respectively the projections of the 
pressure and friction forces, referred to the unit of flow width, acting on the fluid 
compartment �  1

1
1 , �сkсk XX . The overline over the values 1

2/1�kR  and 1
2/1�	k  is made to 

distinguish between forces and their constituent distributed loads. 
Consider two ways of defining n

fskZ 2/1� , bearing in mind that it is an arbitrary value: 

Option 1. n
fsk

n
fsk ZZ 
� 2/1
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fsk

n
fsk ZZ 12/1 �� 
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Construction of a finite-difference scheme for the K-th cell, similar to (16): 
The constant water level hypothesis is unsuitable for the 'overseas' liquid compartment, 

as plausible results are also obtained at hR=0. This paper accepts the hypothesis that the 
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water level in this compartment varies linearly from 1
KZ to fsRZ  in the line XR, with the 

bottom mark rbZ  (Figure. 6).  

Fig. 6. Diagram of the vicinity of the boundary of the computational area with adjacent to a 
border compartment ΩK and transborder compartment ΩR. (hR=ZfsR-ZbR).
The task is to determine the coordinate n

RX , he rightmost point of the transborder liquid 

compartment with volume R�� , given by the initial conditions. In contrast to the 

horizontal-bottom situation, in which coordinate 1
RX  was not involved in any way, when 

calculating the flow in an area with complex bottom topography, it is necessary to know 
1
RX , as the pressure on the bottom side must be determined. 

There are also 2 possible variants of the scheme on the boundary, which are analogous to 
schemes (18) and (19).
Option 1. n

fsK
n
fsK ZZ 
� 2/1

� � � ��  211211
1

1/1
2/1

1
2/1 2 bRfskbRfsk

RK
KK ZZZZgVV ���

���
�
 �

���
��

�
  (20) 

Option 2. 1
1

1
2/1 �� 
 fsKfsK ZZ

� � � ��  211211
1

1/1
2/1

1
2/1 2 bckfskbckfsk

RK
KK ZZZZgVV ���

���
�
 �

���
��

�
  (21) 

In the conducted numerical experiments, the difference in results when using variants of 
the finite-difference scheme (18) and (19) was insignificant. However, in the case of 
velocity setting at K+1/2-th point, when using (20) to solve the problem of coastal slope 
runup, the scheme loses its stability. When using (21), the results obtained are satisfactory. 
Apparently, in case of coastal escarpment problem, for the boundary velocity better to use
(18), because application of (19) results in instability. 
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3 Results and Discussion 
As an example of a numerical experiment to calculate wave run-up on a slope, the problem 
of wave flow during an initial water level jump in an area bounded on the left by a vertical 
wall and on the right by a slope was considered. In this numerical experiment, friction was 
not considered. Figure 7 shows the wave profiles for several consecutive points in time. 

Fig. 7. Wave profiles in the area bounded on the left by the vertical wall and on the right by the shore 
slope at different points in time. (1 - "outboard" liquid compartment).

At the time t = 100 s, a boron is formed at the wavefront that has not collapsed even in 
the relatively shallow coastal area. The boron cannot move along the dry land (Belikov 
V.V., Norin S.V., Shkolnikov S.Ya., 2014); therefore, after the onset of coastal flooding, 
the boron collapses and flattens out (t = 125 c). After the maximum inundation (t=235 c), 
the outflow begins, with a turbulent flow regime in the upper zone of the flooded area, 
coupled with a calm flow at a sufficiently deep depth through the boron (t=375 c). The next 
period of bank inundation then begins (t=430 c).

When a rollback occurs in the vicinity of a zero-depth boundary point, the flow is 
formally turbulent (Fr>1), and two boundary conditions are required to solve the flow 
problem. One boundary condition is that hR=0; the second condition seems to be 
insignificant in rollback problems since, at small values of h, there is no momentum 
entering the calculation domain (the same statement can be formulated differently: the role 
of the second boundary condition is played by the equality to zero of the water flow coming 
through the boundary qR=0).

4 Conclusion
1. The proposed calculation method has no schematic mass diffusion, which is essential 

when modeling water quality. 
2. Testing of the proposed finite-difference schemes showed good agreement with 

analytical solutions. 
3. The proposed method allows modeling the transformation of the surge and tidal waves 

near coasts and the interaction of waves, including tsunamis, with coastal defenses, 
forecasting the operation of tidal HPPs, HPP-GHPPs, and the spread of pollutants. 
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4. Long-wave transformation studies in areas with water exchange are envisaged as a next 
step. 

References 
1. Al-Raben A. H., Gunay N. On the application of a hydrodynamic model for a limited 

sea area. Coastal Engineering. 17(3–4), pp.173-194 (1992) 
2. Belikov V.V., Norin S.V., Shkolnikov S.Ya. On Breaking of Polder Dams. 

Hydrotechnical Construction. 12, pp. 25-34 (2014) 
3. T. Buffard, T. Gallouet, J.M. Herard. Un sch´ema simple pour les ´equations de Saint-

Venant, C. R. Acad. Sci. Paris S´er. I Math., 326 (3), pp.385-390 (1998) 
4. J.J. Cauret, J.F. Colombeau, A.Y. LeRoux. Solutions g´en´eralis´ees discontinues de 

probl`emes hyperboliques non conservatifs, C. R. Acad. Sci. Paris S´er.I Math., 302,
12, pp.435-437 (1986) 

5. Chalabi Y. Qiu, Relaxation schemes for hyperbolic conservation laws with stiff source 
terms: application to reacting Euler equations, J. Sci. Comput., 15(4), pp.395-416 
(2000) 

6. R. Courant K., Friedrichs H., Lewyt, On the Partial Difference Equations of 
Mathematical Physics. Mathematische Annalen 100, pp. 32-74 (1928) 

7. C.M. Dafermos. Hyperbolic conservation laws in continuum physics, Grundlehren der 
Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) 
325, Springer-Verlag, Berlin (2000) 

8. C.M. Dafermos, L. Hsiao. Hyperbolic systems and balance laws with inhomogeneity 
and dissipation, Indiana Univ. Math. J., 31(4), pp. 471-491 (1982) 

9. D.A. Drew. Mathematical modelling of two-phase flow. Department of Mathematical 
Sciences, Rensselaer Polytechnic Institute, Troy, Annual Review of Fluid Mechanics, 
15, pp.261-291 (1983) 

10. P. Garcia-Navarro, M.E. V´azquez-Cend´on. On numerical treatment of the source 
terms in the shallow water equations, Comput. and Fluids, 29, pp. 951-979 (2000) 

11. Fedotova Z.I. Substantiation of numerical method for modeling of long waves run-up 
on a shore. Computational Technologies. 7(5), pp.58-76 (2002) 

12. S.L.Gavrilyuk, J.Fabre. Lagrangian coordinates for a drift-flux model of a gas-liquid 
mixture. International Journal of Multiphase Flow. 22(3), pp. 453-460 (1996) 

13. J.F. Gerbeau, B. Perthame, Derivation of viscous Saint-Venant system for laminar 
shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B1(1), pp.89-102 
(2001) 

14. L. Gosse. Localization effects and measure source terms in numerical schemes for 
balance laws, Math. Comp., 71(238), pp. 553-582 (2002) 

15. N. Goutal. Finite element solution for the transcritical shallow-water equations, Math. 
Methods Appl. Sci., 11(4), pp. 503-524 (1989) 

16. N. Goutal, F. Maurel, Proceedings of the 2nd workshop on dam-break wave 
simulation, EDF-DER Report HE-43/97/016B (1997) 

17. Gauckler Ph. Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des 

Eaux, vol. Tome 64, Paris, France: Comptes Rendues de l'Académie des Sciences, 

pp.818–822 (1867) 
18. Kiselev P.G. Reference Book for Hydraulic Calculations. Fifth edition. M.-L. Energy. 

E3S Web of Conferences 365, 03013 (2023) https://doi.org/10.1051/e3sconf/202336503013
CONMECHYDRO - 2022

 

12



p. 313 (1974) 
19. Krutov A.N. Shkolnikov S.Ya. Numerical Modelling of Long Waves in the Lagrange 

Coordinates. S.Ya. Proc. N.N. Zubov State Oceanographic Institute. 72, p. 250 (2022) 
20. Kochin N.E., Kibel I.A., Rose N.V., Theoretical hydromechanics. Part 1. 6th edition,

revised and supplemented, p.583, Moscow (1963) 
21. J. A. Künge, F. M. Holly, A. Verwey. Numerical methods in river hydraulics problems. 

Moscow: Energoatomizdat, p. 255 (1985) 
22. V.M. Lyatkher, Y.S. Yakovlev. Dynamics of Continuous Media in Calculations of 

Hydraulic Structures. Moscow: Energia, (1976) p. 391. 
23. R.J. LeVeque, H.C. Yee. A study of numerical methods for hyperbolic conservation 

laws with stiff source terms, J. Comput. Phys., 86(1), pp. 187-210 (1990) 
24. S.F. Liotta, V. Romano, G. Russo. Central schemes for balance laws of relaxation type, 

SIAM J. Numer. Anal., 38(4), pp. 1337-1356 (2000) 
25. Manning R., 1891. On the flow of water in open channels and pipes. Transactions of 

the Institution of Civil Engineers of Ireland. 20, pp. 161–207 
26. McKeon B. J., Zagarola M. V., Smits A. J. A new friction factor relationship for fully 

developed pipe flow". Journal of Fluid Mechanics. Cambridge University Press. 538,
pp. 429–443 (2005) 

27. Militeev A.N. Solution of problems of hydraulics of shallow reservoirs and pools of 
hydroschemes with application of numerical methods. Мoscow (1982)

28. Pal Arya S., Plaie E. J. Modelling of the Stably Stratified Atmospheric Boundary 
Layer. Atmos. Sci. 26(4), pp. 656-665 (1969) 

29. Samarskiy A.A., Popov Yu.P., Differential methods of solving gas tasks. Textbook. - 
3d edition, supplement. M.: Nauka. Gol'shov. ed. in Physics and Mathematics, (1992) 
p. 424. 

30. Stoker J.J., Waves on water. Mathematical theory and applications. Translated from 
English, (1959) p. 620. 

31. Wiseman J., Linear and non-linear waves. Translated from English by V.V. Zharinov. 
Edited by A.B. Shabanov. Edited by A.B. Shabat. p.624, Moscow (1977)

32. 3. Wolzinger N.E., Pyaskovsky R.V., Shallow Water Theory. Oceanological Problems 
and Numerical Methods, Gidrometeoizdat (1977) p. 206. 

E3S Web of Conferences 365, 03013 (2023) https://doi.org/10.1051/e3sconf/202336503013
CONMECHYDRO - 2022

 

13


