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Abstract. We describe an integrated methodology for constructing a 3D multiclass model of a rock sample, 
based on X-ray microtomography (microCT) and quantitative evaluation of minerals (QEMSCAN) by 
automated SEM-EDS (Scanning Electron Microscopy, Energy Dispersive Spectroscopy). We focus on 
building an automated operator-independent workflow, allowing to distinguish between voxels featuring 
substantially different physical properties, such as void, quartz, denser and less dense clay aggregates. The 
workflow is demonstrated using a set of five ⌀8 mm Berea sandstone miniplugs. For each miniplug, a  ~40003 
voxel microCT image is acquired. Next, each miniplug is cut into smaller pieces, and the 45 resulting polished 
surfaces are subjected to the QEMSCAN analysis, producing ~40002 pixel mineral maps. Each mineral map 
is automatically spatially registered with the corresponding microCT image using an in-house surface-based 
algorithm. Further, the ground truth images for the supervised multiclass segmentation are constructed from 
the mineral maps. We compare 3D and 2D convolutional neural network (CNN) architectures with the 
baseline Naïve Bayes classifier, which is roughly equivalent to the approaches commonly used in practice 
today. We find that supervised CNN-based segmentation is fairly stable, despite microCT image quality non-
uniformness and achieves higher quality scores compared to feature based and baseline approaches. 

1 Introduction 

Nowadays, the Digital Rock approach is a well-known 
technique for core analysis. Generally, it consists of 
numerical simulation of physical phenomena on a digital 
representation of a core sample.  

Centimetre-scale Digital Rock models are usually 
created via X-ray microtomography (microCT) imaging 
and subsequent image segmentation. Binary solid/void 
segmentation using methods like Indicator Kriging [1] 
and Active Contours [2] is still most commonly used in 
practice. Such models proved to be suitable for estimating 
single-phase and multi-phase permeabilities of some rock 
samples, like Berea sandstone [3], where spatial 
resolution of the modern microCT scanners easily allows 
to resolve the pore throats. One major drawback, 
associated with these segmentation methods is the 
significant operator involvement; the operator’s choices 
might greatly influence the ultimate result, and it might be 
not clear which segmentation parameters are more 
appropriate. Due to the nature of the hydrodynamics, the 
required parameter selection precision increases 
dramatically as the pore throat sizes get closer to the 
microCT resolution limit. Another drawback is that the 
substances featuring sub-resolution porosity could not be 
appropriately represented in such models. This might 
limit the ability to model, for example, clayey sandstones 
or carbonates. Both difficulties could be handled through 

the use of multiclass operator independent segmentation 
process and a suitable physical properties simulator.  

Modern sophisticated simulation techniques allow to 
take into account a sizeable set of physicochemical 
properties (e.g., mineralogy, sub-resolution porosity, 
wettability) with respect to their volumetric spatial 
distributions [4,5]. In this paper, we focus on the 
segmentation part. 

2 Related works 

One of the first works, discussing the possibility of 
combining SEM and microCT images is [6,7]. The 
authors acquired microCT and QEMSCAN images of a 
sandstone sample, and spatially registered them. 
However, the segmentation technique, described by the 
authors is limited to a direct correlation between the 
microCT grayscale values and mineral types. Although 
such approach allows to distinguish minerals with 
significantly different X-ray effective linear attenuation 
coefficients, like quartz and pyrite, it is usually unreliable 
in most practical cases, like when distinguishing quartz 
and dense kaolinite. The contrast between different 
practically important minerals tends to be low on regular 
microCT systems, equipped with ~100 kV X-Ray tubes, 
although it could be significantly higher on 
monochromatic lower-kV synchrotron-based systems. 
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2.1 Extracting features 

Some works highlight the possibility to use additional 
features instead of just the grayscale value for CT image 
segmentation, for example, image gradients in [8]. The 
operator selects an area, attributed to a specific class on a 
2D intensity-gradient histogram, which improves 
segmentation quality, compared to grayscale-only 
methods.  

It is natural to assume that the segmentation quality 
could be further improved by increasing the number of the 
features (e.g. local average, median, variance, ...) taken 
into account. However, as the number of features grows, 
it becomes problematic to manually select ranges, 
attributed to specific classes. Thus, instead, operator 
directly specifies a set of voxels, attributed to each 
specific class, and the machine learning (ML) supervised 
segmentation task arises. The [9] was one of the first 
works to utilize the Fiji Trainable Weka Segmentation 
tool [10] for the microCT image segmentation task. The 
authors demonstrate that this approach allows better 
particle separation than the traditional, grayscale-based 
binary segmentation. 

Nowadays, multiple software packages, similar to the 
Fiji Trainable Weka Segmentation are available, namely 
ilastik [11] and Zeiss Zen Intellesis™[12]. However, they 
share the same basic idea — using manual brush strokes 
as a training set for a ML classifier. Each tool provides a 
different set of feature extraction filters. Their common 
drawback is increased memory requirements due to in-
memory architecture. Two more tools to mention are 
Thermo Scientific™ Amirа-Avizo™ (including the 
XImage PAQ plugin) and ORS™ Dragonfly™, which 
also provide the ability to train pre-configured CNN 
models. 

2.2 Training data 

Some authors use semi-automatic segmentation results to 
train their ML models. In [13] authors train 2D SegNet 
CNN [14] using a set of 20 images, 256×256 each. The 
classes they consider are mostly easily distinguishable by 
their grayscale values, except a single phase, that got its 
own distinct microstructure. In [15] authors also use a 
“mainly grayscale-based” method to create a training set 
for their CNN, even though they do have two QEMSCAN 
images of the same sample. The motivation for such a 
decision is that those two slices do not provide a large 
enough training set. Some image registration difficulties 
are also mentioned. The CNN is able to almost perfectly 
reproduce that ground truth labeling, achieving ~99% 
accuracy. However, it is not entirely correct to directly 
compare this score with the score achieved with an 
independent ground-truth data (such as QEMSCAN-
based). 

Considerable efforts were spent on inventing a better 
ground truth segmentation, suitable for training ML 
models. Some works, discussing microCT image 
segmentation use an “image degradation” approach to 
create a ground truth segmentation and the “image to be 
segmented” from a single source. In [12] an already 
segmented volume is forward-projected into the 

projection domain, then shadow projections are blurred, 
and Gaussian noise is added to them; and finally a new 
volumetric image is reconstructed from these shadow 
projections. According to the authors, this emulates the 
real noise generating processes, taking place in a microCT 
device. However, it should be mentioned that this simple 
model does not take many other possible imperfectnesses 
of the real microCT device into account. In [16] the 
ground truth segmentation is produced from real full-
quality X-ray projections, while the “image to be 
segmented” is produced from the decimated or 
downscaled subset of the same projections — this 
emulates faster microCT acquisition. 

Although such approaches are well-suited for 
development purposes, we believe that the usage of a 
naturally higher-resolution SEM data represents a more 
promising approach. 

In [17] authors use SEM-EDS to create a mineral map 
of the edge of a rock sample cylinder. This might not be 
the best option, because microCT images typically feature 
significant artefacts next to the outer edges of the sample 
being scanned, especially flat edges. In [18] both sample 
cylinder edge and a flat cut surface are scanned before the 
microCT, which might produce similar issues. The 
authors of the [19,20] also perform SEM-EDS on the top 
part of the cylindrical sample after the microCT 
measurement. They mention the imperfectness of the 
result, even after the histogram matching [19]. The 
authors utilize 2D SURF-based image registration [20] 
and also mention the imperfectness of the result, even 
though their sample contains large distinctive features. 
They conclude [19] that the feature based ML 
segmentation was unable to improve the quality, as 
compared to the grayscale-based segmentation. This 
result is also partially associated with the classes in 
question — all 3 classes being considered are easily 
distinguishable by their grayscale level. 

In [21] authors use spatially registered QEMSCAN 
images of internal miniplug cross-sections to construct the 
ground truth labelling. They mainly focus on a feature-
based segmentation of a coarse-grained sandstone via per-
grain classification. Indeed, for larger, easily separable 
(using a watershed transform) and fairly uniform grains, 
this provides an ability to accumulate a massive amount 
of statistics that characterizes each grain. The non-zero 
threshold rotation-invariant Local Binary Patterns (LBP) 
[22] feature extraction technique was recognized as one 
of the most robust, allowing to distinguish even such a 
similar minerals, like quartz and albite. The demonstrated 
proof-of-concept per-pixel feature-based segmentation 
result considers 5 classes, and the whole experiment uses 
a single QEMSCAN image. 

3 Imaging 

3.1. X-ray microCT imaging 

We use Bruker™ SkyScan™ 1172 cone-beam microCT 
scanner to obtain images of the five similar ⌀8 mm Berea 
sandstone miniplugs with ~2.2 µm voxel size, using 
100 kV tube voltage and the maximum available 10 W 
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tube power. Each sample is also ~8 mm high, which 
results in ~40003 voxel microCT image. It must be noted 
that the CCD detector being used got 4000×2096 pixels, 
and the conventional circular trajectory is used. Thus, the 
sample is scanned as two independent vertical segments, 
that are later stitched together by the scanner’s image 
reconstruction software. We would later discuss how this 
affects the segmentation quality. 

3.2 Sample slicing 

After the acquisition of the microCT images, we use a 
precision diamond saw to cut each sample into smaller 
blocks and embed them into epoxy resin. Each block 
undergoes standard SEM-EDS sample preparation 
procedures, namely polishing and carbon deposition. The 
resulting geometry is illustrated in Fig. 1. Each cutting 
plain is roughly orthogonal to the plug cylinder axis, but 

up to 5° errors are 
possible, due to 
overall mechanical 
tolerances. We 
avoid using 
original outer 
miniplug edges for 
the SEM-EDS 
mapping, not only 
because these areas 
are associated with 

significant 
artifacts, but also 
because we would 
like to use 3D CNN 
receptive field 
later. 

Furthermore, 
once the first set of 
the SEM images is 

acquired, we re-polish all blocks, to remove few extra 
microns, and repeat the imaging process. This allows us 
to obtain numerous slices from a limited physical volume. 
In this paper, about 9 slices were imaged from each of 5 
miniplugs. A total of 45 slices allows to investigate the 
segmentation quality as a function of the size of the 
training set, and the effects, associated with non-
uniformity of the microCT image quality. 

In a daily practice, the “densely packed cross-
sections” geometry allows to efficiently utilize the 
volume of the scanned sample, to save the most of the 
miniplug intact, e.g., for the subsequent laboratory 
experiments. 

3.3 SEM imaging 

We use Thermo Scientific™ QEMSCAN™ 650F SEM to 
acquire ~4000×4000 mineral maps of each cross-section. 
The bundled iMeasure® software acquires EDS spectra 
with about 1000 counts for each pixel of the mineral map 
and independently classifies each pixel in accordance 
with the pre-built mineral library [23]. We would refer to 
this image as QMS-mineralogy. Simultaneously, the 

BackScattered Electrons (BSE) image with the same 
resolution is acquired, we would refer to it as QMS-BSE. 
The software automatically moves the SEM table to 
sequentially cover the whole ⌀8 mm area of the sample 
with ~0.3×0.3 mm frames. The example mineral map is 
shown in Fig. 4a.  
We also utilize Thermo Scientific™ Maps™ software, to 
obtain a higher-resolution BSE (Backscattered Electrons) 
image of the same surface, we would refer to it as Maps-
BSE. 

4 Image registration 

To utilize classic supervised ML segmentation 
approaches, we must first spatially register the microCT 
and the SEM images. This task is complicated by the large 
size of the data (a single 40003 8-bit image takes 64 GB), 
and the lack of reliable “special” points — the whole 
image could be viewed as a semi-stochastic texture. Thus, 
most modern image registration techniques either incur a 
large computation cost [24], associated with the direct 
area-based registration, or require a rather fine manually 
selected initial starting point.  

In this work, each mineral map is automatically 
spatially registered with the corresponding microCT 
image using the following in-house registration approach, 
which consists of the three steps. 

4.1 Surface-based registration 

The aim of the initial step is to roughly locate the global 
minima, with the precision, comparable with the size of 
the grain (or pore), as required for the subsequent area-
based optimization process to start in the vicinity of the 
global minima. 

The general rigid-body image registration problem 
could be formulated as an optimization of six translation-
rotation parameters, and a scale parameter: 

 𝑇𝑇𝑚𝑚 =  [𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚 ,𝜑𝜑𝑚𝑚,𝜃𝜃𝑚𝑚,𝜓𝜓𝑚𝑚, 𝑠𝑠𝑚𝑚]. 

Here, 𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚 , 𝑧𝑧𝑚𝑚 are related to image shift along 
corresponding axes; 𝜑𝜑𝑚𝑚,𝜃𝜃𝑚𝑚,𝜓𝜓𝑚𝑚 are x-y-z Euler angles; 
and 𝑠𝑠𝑚𝑚 is image scaling. 

In this notation, we can significantly reduce the 
volume of the parameter space to look through. For the 
binarized versions of the images, namely 𝐼𝐼3𝐷𝐷 and 𝐼𝐼2𝐷𝐷, we 
extract the “center of mass” points. That is (𝑥𝑥2𝐷𝐷𝐷𝐷 ,𝑦𝑦2𝐷𝐷𝐷𝐷) 
for the 2D image. For 3D image, we use a number of z-
slices and the least-squares approach to estimate the 
cylinder axis position �𝑥𝑥3𝐷𝐷𝐷𝐷(z3D),𝑦𝑦3𝐷𝐷𝐷𝐷(z3D)� for each 
𝑧𝑧3𝐷𝐷 within the 3D image. 

The key point is the extraction of the outer contours of 
the images, as illustrated in Fig. 2. For 3D image, they 
could be formalized as 

  
Fig. 1. Positions of the surfaces 
scanned with the SEM and the 
miniplug, imaged with microCT 
(purely schematic). 
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𝑅𝑅2𝐷𝐷(𝜑𝜑2𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑟𝑟):(𝐼𝐼2𝐷𝐷(𝑥𝑥2𝐷𝐷 ,𝑦𝑦2𝐷𝐷) = 1)
𝑅𝑅3𝐷𝐷(𝜑𝜑3𝐷𝐷 , 𝑧𝑧3𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑟𝑟):(𝐼𝐼3𝐷𝐷(𝑥𝑥3𝐷𝐷 ,𝑦𝑦3𝐷𝐷 , 𝑧𝑧3𝐷𝐷) = 1)

𝑥𝑥2𝐷𝐷 = 𝑥𝑥2𝐷𝐷𝐷𝐷 + 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟(𝜑𝜑2𝐷𝐷)
 𝑦𝑦2𝐷𝐷 = 𝑦𝑦2𝐷𝐷𝐷𝐷 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠(𝜑𝜑2𝐷𝐷)

𝑥𝑥3𝐷𝐷 = 𝑥𝑥3𝐷𝐷𝐷𝐷(z3D) + 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟(𝜑𝜑3𝐷𝐷)
𝑦𝑦3𝐷𝐷 = 𝑦𝑦3𝐷𝐷𝐷𝐷(z3D) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠(𝜑𝜑3𝐷𝐷)

 

Having the surface profiles, we can estimate 𝑠𝑠𝑚𝑚 using 
the average radius values. The 𝑥𝑥𝑚𝑚 and 𝑦𝑦𝑚𝑚 could be 
calculated based on the axis position, once the rest of the 
parameters would be known.  

Thus, we would only need to optimize 4 parameters: 
[𝑧𝑧𝑚𝑚,𝜑𝜑𝑚𝑚 ,𝜃𝜃𝑚𝑚,𝜓𝜓𝑚𝑚], out of which for 𝜑𝜑𝑚𝑚 and 𝜃𝜃𝑚𝑚 we may 
consider only a quite limited discrete set of their values, 
because, in accordance with the assumption about the 
cutting geometry, they should not exceed 5°.  

By the simple geometrical means, the 
[𝑧𝑧𝑚𝑚,𝜑𝜑𝑚𝑚 ,𝜃𝜃𝑚𝑚,𝜓𝜓𝑚𝑚] parameterize the sine-like 𝑅𝑅2𝐷𝐷 curve 
position on the 𝑅𝑅3𝐷𝐷 surface (Fig. 3), and the aim is to find 
the matching set of parameters, that would define the 
correct position of the 𝑅𝑅2𝐷𝐷 curve (some additional details 
could be found in [21]). 

Due to relatively small size of the 𝑅𝑅2𝐷𝐷 and 𝑅𝑅3𝐷𝐷 arrays, 
which is unlikely to exceed 10 Mbytes, and a limited 
number of options to consider, even the exhaustive grid 
search only takes a few seconds on a modern CPU.  

According to our practice, the surface profiles are 
good unique descriptors, and the rock sample surface is 
never smooth, which allows to automate the whole image 
registration process. 

Moreover, the method works even if the outer surface 
of the sample is partially damaged. One could notice a 
perfectly smooth and round part of the surface in the top-
right area of the sample shown in Fig. 4b. This artefact 
resulted from a sample being slightly outside the cylinder-
shaped microCT reconstruction volume. Nevertheless, the 
surface-based registration works in this case as well. 

4.2 Area-based registration 

The aim of the second image registration step is to 
improve the result of the first step, still sticking to the 
rigid-body assumption. This is implemented as a direct 
iterative “black-box” optimization of all 𝑇𝑇𝑚𝑚 parameters, 

using area-based registration norm. To compare discrete-
index mineral map with continuous grayscale microCT 
image, we use mosaic-image Put’ev matching score [25] 
(or similarly, the explained variance score, calculated 
after assigning each mineral the grayscale value equal to 
the average of all the microCT image pixels, matching to 
that mineral, according to current 𝑇𝑇𝑚𝑚).  

4.3 Smooth non-rigid distortions compensation 

Although the miniplug usually represents a fairly good 
example of a rigid body, the rigid body approximation is 
insufficient for pixel-perfect SEM-microCT image 
registration. The issue arises mainly due to acquisition 
hardware imperfectnesses — even tiny sub-pixel SEM 
lens distortions tend to accumulate to several pixels–large 
smooth distortions, when multiple SEM images are 
stitched together. 

One possible workaround is to calibrate the SEM 
distortions using a special regular sample, and later apply 
the corresponding de-warping to all SEM images [7]. One 
of the drawbacks of this method is that it assumes that the 
distortions would not change after the calibration. 

Another drawback is that this method is unable 
to compensate the distortions, that arise from a 
limited SEM stage movement precision and 
the SEM image stitching algorithm glitches. 
 Instead, we directly apply an Optical Flow 
estimation method [26] to the pair of images in 
question. We use smooth large-scale 
components of the resulting vector field to de-
warp the SEM image. This ensures that small 
artefacts, like mechanically damaged grains 
would not result in major image distortions. 
The transformation is so smooth, that for each 
small sub-area, containing a few grains, it 
could be viewed as a plain translation. 
 It must be noted that this de-warping step only 
considers the 2D distortions in the plane of the 
SEM image. Thus, it is unable to fully replace 

 
 (a) (b) 

Fig. 4. Example 3D-to-2D image registration procedure result: (a) de-warped 
QMS-mineralogy image; (b) spatially corresponding microCT cross-section 

 

 
Fig. 2. Surface profiles of a miniplug sample  
(coarse-grained sandstone is used for readability). 

 
Fig. 3. Matching 2D and 3D surface profiles of a miniplug  
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the area-based registration step, which is fully 3D, even if 
the surface-based registration step provides a very good 
initial approximation. 

The ultimate result of the image registration procedure 
is shown in Fig. 4. Finally, to allow calculating features 
on the original microCT data, we scale the SEM image to 
match the original microCT voxel size. Also, for ML 
needs, we not only export a single matching microCT 
cross-section (Fig. 4b) but a 401-slices thick 3D block 
(e.g. ± 200 slices around the matching cross-section).  

5. Relabelling 

In [27] it was demonstrated that the QEMSCAN 
classification result could be misleading sometimes and 
not agree with the optical petrography results — the issues 
generally arise for minerals that are very close in their 
elemental concentration proportions, but considered very 
different from a petrography point of view. One simple 
example is the quartzite and quartz pair. These two 
minerals are usually easily visually distinguishable on a 
BSE image, but might be indistinguishable from the 
QEMSCAN’s “independent pixels” point of view. This 
particular pair could be separated via a joint 
QMS-mineralogy and QMS-BSE images post-processing, 

honouring some minimal neighbourhood of the pixel in 
question. In this work, we do not question the accuracy of 
the QEMSCAN image. However, the original 
QEMSCAN image is still poorly suitable for direct use as 
a ground truth labelling, mainly due to the noise-like 
patterns, shown in Fig. 5. 

Firstly, we note a number or single-pixel grains, that 
are definitely too small to be recognizable on a microCT 
image (Fig. 5a) — even though QEMSCAN pixel size 
(2 µm) is very close to microCT voxel size (~2.3 µm), the 
physical resolution of the SEM is significantly higher. 
Moreover, such objects would hardly influence any 
physical properties of the Digital Rock model anyway. 
However, the underlying grain still might be real, and 
might influence the microCT image somehow. Thus, the 
general principle we use is not to “smooth-out” such 
objects with a median filter or equivalent, but to re-assign 
them to the “Unknowns” class, which is later ignored by 
all the ML classifiers we use. The mask, highlighting such 
objects, is shown in the rightmost column in Fig. 5a. 

Areas featuring high concentrations of such single-
pixel grains are trickier. We found that removing 
relatively large areas around them stabilizes many 
classifiers, most probably because such objects are 
usually outliers in the ML sense. One might note that the 

 (a) 

 (b) 

 (c) 

 (d) 
Fig. 5. QEMSCAN mineral map relabeling examples: 1st column - QMS-BSE image; 2nd column - QMS-mineralogy image; 3rd 
column – spatially registered microCT image; 4th column – relabeling result; 5th column – the relabeled pixels in question (see 
text); (a) small objects; (b) Clay_mixture class; (c) Quartz_with_clay class; (d) Quartz_clay_cement class. 
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relabeled image in Fig. 5a contains more Unknowns than 
just the “small objects” mask, discussed in the previous 
paragraph.  

More importantly, there is a multitude of clay-related 
classes. The Fig. 5b-d demonstrate that some grains look 
fairly uniform on the scale of tens of pixels (especially on 
the BSE image) but produce single-pixel noise-like 
patterns on both mineral map and BSE. 

We relabel such objects, aiming to also distinguish the 
most important types of conglomerates. Most of them 
could be easily categorized into broad classes, each 
containing at least tens of such objects per a single 
QEMSCAN image. Namely, the grain shown in Fig. 5b is 
assigned to the Clay_mixture class. The grain, shown in 
Fig. 5c is assigned to the Quartz_with_clay class. The 
grain, shown in Fig. 5d is assigned to the 
Quartz_clay_cement class. Such relabelling not only 
makes sense from the further Digital Rock physical 
properties modelling point of view (and could be viewed 
as an upscaling step), but also greatly simplifies the 

segmentation task — now 
pixelwise classification 
losses begin to make sense. 

All the said relabelling 
was implemented using basic 
morphological image 
processing operations, and 
carefully hand-tuned for the 
specific dataset in question 
(but not for individual slices). 
Theoretically, such a 
“clustering” operation could 
be automated to avoid 
operator involvement, but 
that would require 
considerable additional 
research. 

Finally, slices are 
inspected manually, and the 
broad Unknown class strokes 
(black) are placed where 

major artefacts are noticed. An example of such a manual 
intervention is clearly visible in Fig. 6 on the top-right part 
of the image. The reason for this is the same artefact 
(resulting from a sample being slightly outside the 
cylinder-shaped microCT reconstruction volume) that 
was already discussed above. We also automatically 
detect the sample circle radius and fill the out-of-sample-
circle area with Background/pore class colour (white). We 
ignore this area in all further area-percentage calculations, 
including segmentation accuracy calculations. 

6. Feature-based segmentation 

For the feature-based segmentation results, demonstrated 
below, we build on the results, demonstrated in [21,28]. 
We only use 2 QEMSCAN slices for training and a single 
QEMSCAN slice (shown in Fig. 6) for validation —
feature-based approaches require less data before the 
result quality stops to increase, compared to the CNN-

  

Fig. 6. The ground truth image of the validation slice — the result of the relabeling procedure 
for the image, shown on Fig. 4a. The legend result and the area percentage for all the classes 
on the relabeled image. 

Color Class 
 

Area % 
64.99 Quartz_dense 

Background / pore 20.56 
K-Feldspar 04.15 
Quartz_with_clay 03.20 

01.99 Albite 
01.24 Kaolinite_degraded 

Quartz_clay_cement 01.23 
Muscovit
 

00.84 
Dolomit
 

00.39 
Chlorit
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00.28 
Siderite 00.23 
Rutile 00.22 
Zircon 00.03 
Pyrite 00.01 
Unknown 

 

Fig. 7. The result of the “Naïve Bayes” segmentation approach: validation slice segmentation (see legend in Fig. 6), confusion matrix 
(row-normalized), Precision and Recall (green-yellow-red palette highlights good-average-poor values). 
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based. Depending on the circumstances, this could be 
either a strength or a weakness. 

6.1 Naïve Bayes 

Our baseline “Naïve Bayes” approach actually utilizes 
only a single feature channel – the original microCT 
image, filtered with the manually tuned bilateral filter to 
suppress noise. We use parametric Naïve Bayes classifier 
assuming normal distribution. This is roughly equivalent 
to manually choosing a set of a threshold values after 
image pre-filtering. The result, shown in Fig. 7 highlights 
a set of substances that are easily distinguishable by their 
grayscale values with green background in Precision and 
Recall columns (definitions of the “Precision”, “Recall”, 
“accuracy” and “F1” terms could be found in [29]). A 
visual comparison with Fig. 4b confirms this assumption. 

Still, Naïve Bayes looks significantly better than the 
binary Otsu segmentation approach (Fig. 15, Fig. 16) 
which only achieves 0.813 accuracy and 0.109 F1, (we use 
micro-averaging) assuming that it distinguishes 
Quartz_dense and Background classes. 

6.2 LightGBM 

LightGBM [30] is a modern gradient boosting framework, 
providing both high performance and state-of-the-art 
classification accuracy in many benchmarks. We combine 
it with two 3D 8-bit cube-shaped rotation-invariant LBP 
patterns and a local window statistics feature vector (e.g. 
average, median, variance, skew, kurtosis, …). We fine-
tune LBP meta-parameters using cross validation (namely 
histogram windows size, pattern scale and threshold 
value). Also, we post-process the soft-classification 
result, provided by the LGBM using the Graph Cut 
approach [31] to make it a bit smoother. The result 
demonstrated in Fig. 8 achieves higher scores compared 
to Fig. 7. 

7. CNN-based segmentation 

 

Fig. 9. The result of the “3-slice U-net” segmentation approach. Designations are equal to Fig. 7. 
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Fig. 8. The result of the “LightGBM” segmentation approach. Designations are equal to Fig. 7. 
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The CNN-based segmentation results, demonstrated 
below, utilize the U-net architecture [32]. For the 
experiments in this section, we use the same single 
QEMSCAN slice for validation, and 44 slices for training. 
We use 3D receptive field, valid-mode convolutions and 
dense 2D output labelling (except that some pixels belong 
to the Unknown class). We argue that such a geometry is 
more efficient than sparse 3D labelling [33]. The training 
epoch corresponds to a number of randomly selected 
patches with a total area equal to the total area of the 
training set. We do not perform training data rebalancing 
or hard negative mining, despite severe imbalance. We 
use cross-entropy loss and Adam optimizer with learning 
rate 0.0002, β1=0.5, β2=0.99. Our experience suggests 

that further fine-tuning only provides specific minor 
improvements. Although they might be valuable in 
specific cases, they are out of the scope of the present 
article, aiming at a more general comparison. 

7.1 3-slice U-net 

Our first, most lightweight U-net 
model uses 3-slice [34] 
architecture (Fig. 10), that is — 
only the first single convolution 
is 3×3×3, while the rest are 3×3, 
thus being almost 2D. Some 
additional details are available in 
[28]. The training performance is 
about 100 epochs per day, on a 
single GK210 chip of the 
Nvidia® K80 GPU. The Fig. 9 

demonstrates the 1000-epoch training result, but scores 
only marginally improve after 200 epochs. On the large 
scale, this result is visually similar to the LightGBM result 
(Fig. 8), but the scores are significantly higher. Some 
differences could be seen in the Fig. 15 – the CNN 
generally produces less small infeasible details. The 3D 
rendering (Fig. 11) demonstrates adequate 3D geometry 
of the grains despite the “almost 2D” nature. 

7.2 3D U-net 

Our second U-net model (Fig. 14) is fully 3D and all 3 
spatial dimensions are (almost) equal. It uses 204×204×92 
input patches and 112×112 output patches. Specific patch 
sizes are used to ensure full symmetry in max pooling and 
up-convolution layers. Additional 3×3×1 convolution 
layer is added for the same purpose. Each convolution, 
except the last one, is followed by PReLU activation with 
0.25 activation parameter. The last convolution uses 
softmax activation. Up-convolution layers use transposed 
convolutions and halve the number of the feature 
channels. The training performance is, again, about 100 
epochs per day, but now a GPU sever with 7×RTX2080Ti 
is used. The training batch size is 7 (a single patch per a 
GPU) due to GPU memory limitations. After the first 

 

Fig. 10. The 3-slice U-net architecture. The number of feature channels is indicated in green; 
z-size is indicated in gray; x and y sizes are equal and are indicated in black. 
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Fig. 12. The result of the “3D U-net” segmentation approach. Designations are equal to Fig. 7. 
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Fig. 11. The 3D render of the 3-slice U-net segmentation result 
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100 epochs, 
accuracy score, 
calculated on 
our only 
validation slice, 
oscillates in 
[0.088, 0.0885] 
range.  

For the Fig. 
12, we select a 
result with the 
maximum 
accuracy 
observed. This 
result 
demonstrates a 
significant step 
forward, as 
compared to 
our previous results — the confusion matrix now looks 
much more like a clean diagonal. One exception is the 
most-common Quartz_dense class that is thus considered 
“the safest choice” when the U-net is not certain about a 
specific pixel. The Precision score is above 0.37 for all 
classes, but the Recall is still below 0.25 for the most 
difficult-to-distinguish classes, including clays. However, 
the confusion matrix suggests that in many cases clays are 
mostly mixed with other clays, which might be acceptable 
for many practical scenarios. Classes like 
Quartz_with_clay and Quartz_clay_cement are similar in 
their nature — there is no clear boundary between them. 

The fact that Pyrite is commonly mixed with Quartz 
and Background could be attributed to the small size of 
the Pyrite grains and mechanical damage of the sample 
surface during polishing. 

7.  3D U-net+GAN 3

The Generative Adversarial Networks (GAN) are 
algorithmic architectures that use two neural networks, 
competing against each other, e.g., while the first one 
attempts to generate realistic synthetic images, the other 

one attempts to distinguish between the synthetic and real 
images. This concept, originally proposed in [35], proved 
to be very successful for continuous data generation tasks, 
like grayscale or RGB image generation, including image-
to-image translation [36]. But only a limited success 
should be expected, when directly applying GANs to 
discrete data generation tasks, like the image 
segmentation task in question. The issue arises from a 
limited amount of information, available to the generator 
network through the argmax layer.  

Last but not least, almost all ground truth patches 
contain at least one Unknown (black) pixel (see Fig. 16b), 
while our segmentation methods are designed to produce 
none (see Fig. 16e-k). If we blindly pass such “real” and 
“fake” patches to the discriminator, it would be able to 
distinct between them by just that. Thus, it would not 
provide any meaningful information about the “fake” 
patch quality to the generator. To fix this, we make 
generated patches look like real in terms of the Unknown 
class distribution, by copying the Unknown pixels from 
the ground truth image.  

Our third U-net model utilizes effectively the same 
architecture as the previous one, but features an additional 
14-layer discriminator network, attached to its output. 

 

Fig. 13. The 3D U-net architecture. Designations are equal to Fig. 10. 
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Fig. 14. The result of the “3D U-net+GAN” segmentation approach. Designations are equal to Fig. 7. 
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Only 2D 3×3 convolutions are used, because we lack 3D 
ground truth data. For the 4th, 7th and 10th convolutions, 
stride equals 2, for the rest stride equals 1. The number of 
feature channels first doubles after each filter, starting 
from 32 and ending up at 512, and then halves back down 
to 32. Each convolution is followed by a LeakyReLU 
activation with 0.2 parameter and instance normalization. 
The last convolution is rather followed with a sigmoid 
activation. During the training phase, generator and 
discriminator are updated with 1:1 ratio, using minimax 
GAN loss. Dropout and hard-negative mining are not 
used. The training performance drops to about 60 epochs 
per day. 

Once again, in the Fig. 13 we just present the best 
result achieved. However, we must admit that in this case, 
the training performance is less stable, and results vary 
way more across different epochs, which is a typical for 
the architecture used. One promising point, however, is 

that this result is significantly better than those on Fig. 12 
in terms of the F1 score. Another promising point is that 
careful inspection of the smaller crops (Fig. 15) indicate 
some progress towards smoother, more realistic grains, 
with less unfeasible mineral mixtures. Even though this 
“smoothing” hardly ever provides a truly realistic result 
and sometimes results in an even more incorrect 
classification, like for a K-Feldspar grain in Fig. 16. 

8. Image quality uniformness 

To assess the microCT image quality uniformness, and 
the possible associated effects, we train 3-slice U-net on 
various sets of slices, and simultaneously evaluate it on all 
available slices (Fig. 17). One simple effect to mention is 
that training sets below 10 slices seem to be insufficient 
in terms of the F1 score. 

 
 (a) (c) (e) (g) (i) 

 
 (b) (d) (f) (h) (k) 
Fig. 16. Comparison of the different segmentation results for the fragment two: (a) original QMS-mineralogy; (b) Relabeling result 
(segmentation ground truth); (c) original QMS-BSE; (d) microCT; (e) Otsu; (f) Naïve Bayes; (g) LightGBM; (h) 3-slice U-net; (i) 3D 
Unet; (k) 3D Unet+GAN. 

 
 (a) (c) (e) (g) (i) 

 
 (b) (d) (f) (h) (k) 
Fig. 15. Comparison of the different segmentation results for the fragment one: (a) original QMS-mineralogy; (b) Relabeling result 
(segmentation ground truth); (c) original QMS-BSE; (d) microCT; (e) Otsu; (f) Naïve Bayes; (g) LightGBM; (h) 3-slice U-net; (i) 3D 
Unet; (k) 3D Unet+GAN. 
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The second, more interesting effect we notice in Fig. 17 is 
that the segmentation quality is not growing 
monotonously when adding training slices. In particular, 
it significantly drops (in terms of the F1 score) for most 
slices, when we add slices 38-43 to the training set. This 
might suggest that there are some “bad” slices, negatively 
affecting the segmentation quality. To assess this 
hypothesis, we train the same classifier using 12 best-
accuracy slices, however, the segmentation quality 
decreases on all slices (Fig. 18). Thus, one might conclude 
that there are no “bad” slices, just an intrinsic non-
uniformness, which is partially associated with microCT 
image quality non-uniformness.  

We found a strong correlation between the distance 
from a slice to the microCT optical axis (central slice) and 
the segmentation quality for that slice (the fact that the 
first slice from each block demonstrates lower 
segmentation quality than the second one should be 
probably attributed to the sample preparation issues). 
Gradual minor quality drop in the areas further from the 
optical axis is the expected effect for 
conventional cone-beam circular-trajectory 
microCT scanners, utilizing Filtered Back 
Projection (FBP) reconstruction algorithm. 
The multiclass segmentation relies on 
barely visible tiny features and thus it is 
highly sensitive to such effects. However, 
this is certainly not the only source of 
imperfectnesses. We assume that the only 
feasible mitigation measure is to train 
models on a larger datasets, covering more-
or-less all possible imperfectnesses. Later, 

such model could be 
fine-tuned for a 
specific smaller 
practical job. 

9. Learned 
super-resolution 

The ability of the 
CNN to resolve 
meaningful details in 
the microCT image 
could be also studied 
by using effectively 
the same CNN 
architecture and input 
data for a learned 
super-resolution task. 
For this purpose, we 
use a single full-slice 
Maps-BSE image for 
training, and another 
Maps-BSE image, 
from a different slice, 
for the visual 
comparison (Fig. 19). 
The result 
demonstrates that 

although our model is unable to reconstruct the Maps-
BSE image exactly, and locations of specific tiny features 
may not match real in a pixel-perfect manner, on a larger-
scale, the overall morphology and substance types are 
mostly reproduced correctly (which is actually more 
important than pixel-perfect positions for the subsequent 
physical properties modeling). Moreover, infeasible 
patches are uncommon. This is partially associated with 
the fact that continuous data generation task is more 
suitable for the modern GANs. This looks promising in a 
sense that there is still potential for segmentation quality 
improvement. 

It should be noted that such a super-resolution tool is 
also valuable by itself. In [37] authors discuss microCT-
to-microCT super-resolution and provide the visual 
comparison of the result with an SEM image. This super-
resolution task is also close to the conditional image 
generation [38], which could be viewed as effectively the 
same task with a weaker preconditioning. 

 
Fig. 17. The effect of the training set selection. Each block corresponds to a physical miniplug. 

 
Fig. 18. The “distance from the optical axis” effect. 
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 (a) (b) (c) 
Fig. 19. Super-resolution experiment image fragments comparison: 
(a) original Maps-BSE image; (b) microCT image; (c) super-resolution result 
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10. Conclusions 

Convolutional neural networks allow multiclass microCT 
image segmentation with a quality far beyond more 
traditional methods (Fig. 20). Larger 3D receptive fields 
are beneficial for the segmentation quality, but the 
associated computation cost is higher. Basic supervised 
training could be considered fairly stable and thus 
production ready. However, a tightly spatially matching 
sizable operator-independent ground truth labelling is 
required. The 3D GAN-based approaches have not 
demonstrated their full potential yet and are currently less 
stable in general. However, they already provide slight 
improvements and represent a promising subject for 
further research. 
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Fig. 20. The comparison of the segmentation quality scores. 
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