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Abstract. A risk assessment technology based on a fuzzy Bayesian network is proposed to improve the degree 
of gas control management in the coal mining face and avoid gas overrun. Five characteristics of the coal 
mining working face, i.e., geological structure, ventilation conditions, gas extraction, mining activities, and 
coal mine management affecting the coal mining working face, were examined for 17 risk variables and a gas 
overrun assessment model was created. A priori information and sample data indicate that there is a 3% chance 
of gas overflow. The reverse reasoning test found that the main reasons for gas overrun were unreported gas 
anomalies, ventilation modes, gas content in coal seams, goaf extraction volume, and coal mining rate in coal 
mining face. The research results show that the approach can assess the risk of gas overflow in coal mining 
face. 

1.Introduction 
In the process of mine safety production, gas is one of the 
main threats, and its concentration is too high to prevent 
accidents such as gas explosions. The coal mine law 
stipulates that when the gas concentration in the return air 
duct exceeds 1%, underground production operations 
must be stopped, employees must be evacuated, and 
specific emergency measures must be taken to reduce the 
gas concentration. The diffusion of coal seam gas and the 
severity of the gas compound environment worsen with 
the increase of mine depth [1]. The largest gas leak in 
mining occurs during recovery operations, where gas 
concentrations are also high and prone to gas overruns, 
resulting in personal injury and property damage. 
Therefore, it is essential to carry out a risk assessment on 
gas overrun in the coal mining face to ensure safe and 
effective coal mining. 

The two main categories of coal mine risk assessment 
are quantitative and qualitative techniques. Qualitative 
approaches include event tree analysis (ETA), fault tree 
analysis (FTA), hierarchical analysis, support vector 
machine, neural network, etc. Quantitative methods 
include pre-danger analysis, expert interviews, 
brainstorming, and fuzzy comprehensive assessment 
methods. The evaluation items include the assessment of 
coal mine geology [2] and water hazards [3], as well as 
human factors [4] and occupational risk [5]. 

Fuzzy Bayesian networks have currently been 
successfully applied in some fields, including the analysis 
of unsafe information regarding the transportation of road 
tankers [6], the risk assessment of shields under existing 
tunnels [7], and the assessment of the collision risk of the 
Floating Production Storage and Offloading (FPSO) oil 

and gas outbound transmission system [8]. The 
aforementioned findings suggest that further risk 
diagnosis and prediction studies on system hazards using 
fuzzy numbers combined with Bayesian networks are 
feasible when direct access to risk information is 
challenging.  

There are more studies assessing gas hazards than gas 
overrun risks, although many factors influence gas 
overrun and a lack of accurate statistics make proper 
assessment challenging using conventional techniques. 
For this reason, this paper proposes a risk assessment 
method for gas overrun in coal mining face based on a 
fuzzy Bayesian network, using fuzzy numbers to describe 
the ambiguity of event occurrence state and probability of 
occurrence, and using the expert scoring method to obtain 
the occurrence probability of risk events, and determining 
the risk state and risk probability of various gas overrun in 
coal mining face through fuzzy Bayesian network. 

2.Construction of the gas overrun 
likelihood index in coal mining faces 
Developing consistent assessment models is challenging 
due to the complex factors affecting gas overrun and the 
diversity of evaluation techniques. In this research, an 
evaluation index system with five influencing variables, 
including ventilation conditions, geological structures, 
gas extraction, mining activities, and coal mine 
management of coal mining faces, was constructed in 
Mine Safety [2021] No. 9 notice. 

Ventilation Conditions (Y1). Ventilation is a key 
means to prevent gas overrun, and the ventilation 
condition of the working face directly affects the 
occurrence of gas overrun at the working face. The 
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amount of underground air distribution is directly affected 
by variations in mine ventilation resistance. In the mine, 
several ventilation methods such as U type, Y type, and 
U+L type are utilized, which affects the further leakage of 
gas. Therefore, the working face windage (Q1), air 
volume (Q2), and ventilation modes (Q3) are the key 
influencing factors of ventilation. 

Geological Structures(Y2). The early gas composition 
of the coal seam accounts for a significant amount of gas 
flowing out of the mining face. The thicker the coal seam 
in a well site, the more gas in that well site. With the 
increase of the complexity of the coal seam, the coal gauge 
produced in the coal seam increases, which in turn has a 
certain impact on the gas emission [9]. As the degree of 
damage increases, the complexity of coal seam gas 
content (Q4), coal seam thickness (Q5), coal seam texture 
type (Q6), and coal seam failure type (Q7) also increases 
[10]. 

Gas Extraction (Y3). Gas extraction can greatly reduce 
the possibility of gas surges and gas overflows. During the 
whole extraction process, when the gas pressure in the 
coal seam gradually decreases, the gas volume can be 
effectively reduced. The amount of gas released is also 
affected by the separation between drill holes used for 
extraction. As the gas extraction increases, the gas 
concentration decreases and the gas outflow also 
decreases. The diameter of coal seam drilling and sealing 
holes is directly related to the efficiency of gas extraction 
[11]. Therefore, the variables affecting gas extraction are 
extraction time (Q8), sealing quality (Q9), borehole 
interval (Q10), and goaf extraction volume (Q11). 

Mining Activities (Y4). During the mining process, 
the gas gushes out high or even abnormally, which leads 
to the situation of gas overrun. The coal left in the mining 
area will continuously release gas. Increasing the recovery 
rate can reduce the coal left, thereby reducing the gas 
gushing out [12]. The periodical incoming pressure is 
closely related to gas overrun at the working face, and the 
two have a consistent increasing and decreasing 
relationship. Meanwhile, due to the concentrated stress, 
the coal seam sheet side blocks the space, and the wind 
flow gushes into the mining area, resulting in gas overrun 
[13]. Mining is mainly affected by the coal mining rate of 
the coal mining face (Q12), weighting step (Q13), and 
coal seam spalling (Q14). 

Coal Mine Management (Y5). The main reasons for 
gas overrun due to poor management and human error are 
non-reporting of non-reporting of gas abnormalities (Q15), 
poor implementation of gas management measures (Q16), 
and unreliable ventilation systems (Q17). 

3.Safety risk assessment model based 
on fuzzy Bayesian network for coal 
mine gas overrun   
A directed acyclic network called a Bayesian network (BN) 
consists of many conditional probability tables (CPT) and 
a directed acyclic graph (DAG). There are multiple nodes 
and control behaviors in a DAG. DAG is composed of 
many nodes and directed edges, where the nodes represent 

variables, and directed edges point from root nodes to the 
leaf nodes, reflecting the dependencies between the 
variables [14]. Each root node combination is represented 
by the conditional probability of each node. The following 
is the joint probability formula.   
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Typically, the state node of the Bayesian network has 
two states: state0, indicating that the risk event specified 
by the node has not occurred (state0), which indicates that 
the risk event has occurred (state1). Having only two 
states does not adequately describe the situation because 
the state of the node cannot be assessed in a practical 
example. Therefore, this study uses three different types 
of node states (0, 1, and 2) to denote whether an event 
occurs, may occur, or does not occur. 

3.1 Description of nodal probabilities 

This study explores the use of fuzzy numbers to represent 
the probability of risk events, in order to solve the problem 
of the lack of a large number of correct data for risk events. 
Fuzzy numbers exist in various shapes [15], but the 
triangle fuzzy number operation is the most 
straightforward and user-friendly, therefore this work 
employs it to illustrate the likelihood of a gas overflow 
risk event. The following is a display of the affiliation 
function. 
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Where a denotes the minimum value of the state of this 

node, m denotes the most probable value of the node state, 
and b denotes the maximum value of the state of this node. 

This study produced a questionnaire in which the 
language evaluation values of the four experts were 
divided into seven categories, from very low to very high: 
“low,” “On the low side,” “medium,” “On the high side,” 
“high,” and “very high.” This is done to integrate expert 
judgment with fuzzy numbers. The corresponding 
quantitative values are 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1. 
Fuzzy triangular numbers translate the expert language 
into fuzzy interval values, as shown in Table. 1. If an 
expert evaluates a node in a certain state as “high”, then 
the linguistic value corresponding to this level is 0.9, and 
its upper limit, most probable value, and lower limit of 
fuzzy number are 0.7, 0.9, and 1, respectively, as shown 
in Table 1. 

Table 1 Expert linguistic evaluation. 
No. Semantic Fuzzy number 
1 Very low (0, 0, 0.1) 
2 Low (0, 0.1, 0.3) 
3 On the low side (0.1, 0.3, 0.5) 
4 Moderate (0.3, 0.5, 0.7) 
5 On the high side (0.5, 0.7, 0.9) 
6 High (0.7, 0.9, 1) 
7 Very high (0.9, 1, 1) 
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3.2 Node probability calculation 

Assume that the Bayesian model consists of m root nodes, 
denoted as (X1, X2, …, Xm), and the root node Xi has Kj 
states, and its state space is (0, 1, …, Kj-1). The probability 
that the root node is in a different state is determined by 
the judgment n experts, and the linguistic variables for 
determining the probability of the root node being in a 
certain Xi in a certain h state provided by the I experts are 
converted into a triangular fuzzy number with the 
following formula. 

[ ] [ ], , , ,( , , ), 1, , 1, , 1, 1i i i i
j h j h j h j h jn a b c i n j m h k = ∈ ∈ ∈ − 

       (3)   

Where ,
i
j hn

 denotes the score of an expert’s judgment 
on the node state. 

To more accurately quantify the probability of risk 
events using fuzzy quantification, the arithmetic average 
method is used to calculate the evaluation results given by 
each expert, and the formula is as follows 

` 1 2 ` ` `
, , , , , , ,( , , )n

j h j h j h j h j h j h j hn n n n a b c= ⊕ ⊕ ⊕ =                (4) 
Where ,

i
j hn  denotes the status score of the node after 

integrating all experts’ opinions. 
Since fuzzy numbers are not conducive to direct 

Bayesian network inference, it is necessary to defuzzify 
the fuzzy probability. The methods currently used for 
defuzzification include the center of gravity method, 
affiliation limit element averaging method, mean area 
method, weighted average method, integral method, etc. 
Among them, the mean area method is simple and 
convenient to calculate. This method is used to calculate 
the mean value of triangular fuzzy probability given by 

experts. 
` ` ` `

, , , ,( 2 ) / 4j h j h j h j hn a b c= + +                  (5) 
To ensure the normalization of the probability, the 

exact probability of the node needs to be normalized to 
ensure that under different risk levels, the sum of 
probability values is always 1, and the probability value is 
required for the final inference calculation. The formula is 
as follows. 
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Where ,j hn  denotes the probability of occurrence of 

the state j at a point h after normalization, 
`

,j hn  denotes the 
probability of occurrence of the j node h state before 
normalization. 

After deriving the probability values, the subsequent 
inference calculation is completed with the help of Genie 
software. In the Bayesian network structure of gas overrun 
evaluation at the recovery face, “State0” means the event 
does not occur, “State1” means the event may occur, and 
“State2 “ represents the event that must occur. 

3.3 Construction of Bayesian network structure 
model 

The existing gas overrun risk evaluation index system in 
mining face is shown in Table 2, and the Bayesian network 
structure is used to visually represent the coupling 
relationship between various risk factors and gas overflow 
events, as shown in Table 2. 
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Figure 1 Bayesian network model of gas overrun at the recovery stage. 

 

Table 2 Fuzzy Bayesian node indicators. 
No. Indicator No. Indicator 
T Gas overrun in coal mining face Q7 Coal seam failure types 
Y1 Ventilation conditions Q8 Extraction time 
Y2 Geologic structures Q9 Sealing quality 
Y3 Gas extraction Q10 Borehole interval 
Y4 Mining activities Q11 Goaf extraction volume 
Y5 Coal mine management Q12 Coal mining rate of the coal mining face 
Q1 Windage Q13 Weighting step 
Q2 Air volume Q14 Coal seam spalling 
Q3 Ventilation modes Q15 Non-reporting of gas abnormalities 
Q4 Coal seam gas content Q16 Poor implementation of gas management measures 
Q5 Coal seam thickness Q17 Unreliable ventilation system 
Q6 Coal seam texture types   
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3.4 Calculation of a priori probability of the root 
node 

Based on the fuzzy triangular numbers provided in 

Equation (3), four experts evaluate the prior probabilities 
of the nodes, which are then determined using Equations 
(4), (5), and (6). Taking the Q1 node as an example, the 
previous probability of various states of the Q1 root node 
is calculated, and the results are shown in Table 3. 

 
Table 3 Prior probabilities of different states of the Q1 root node. 

Condition Triangular fuzzy probability of different experts A priori probability 

A1 A2 A3 A4 
T0 (0.7,0.9,1) (0.7,0.9,1) (0.7,0.9,1) (0.9,1，1) 0.77 
T1 (0.1,0.3,0.5) (0,0.1,0.3) (0,0.1,0.3) (0,0.1,0.3) 0.14 
T2 (0,0.1,0.3) (0,0,0.1) (0,0.1,0.3) (0,0.1,0.3) 0.08 

4.Fuzzy Bayesian network model 
inference 

4.1 Quantitative analysis 

After building a Bayesian network through an indexing 

scheme, the prior probability of an accident at each root 
node must be established. Since the prior likelihood of a 
root node cannot be determined from the literature alone, 
the prior probability of each root node of gas overrun was 
determined by looking at mine production, talking to 
pertinent specialists, and synthesizing numerous reference 
sources, as shown in Table 4. 

 
Table 4 Prior probability of each root node. 

Symbol Root node Prior probability Symbol Root node Prior 
probability 

Q1 Windage 0.087 Q10 Borehole interval 0.023 
Q2 Air volume 0.091 Q11 Goaf extraction volume 0.085 
Q3 Ventilation modes 0.070 Q12 Coal mining rate of the coal mining face 0.067 
Q4 Coal seam gas content 0.091 Q13 Weighting step 0.070 
Q5 Coal seam thickness 0.068 Q14 Coal seam spalling 0.087 
Q6 Coal seam texture types 0.089 Q15 Non-reporting of gas abnormalities 0.087 

Q7 Coal seam failure types 0.070 Q16 Poor implementation of gas management 
measures 0.086 

Q8 Extraction time 0.027 Q17 Unreliable ventilation system 0.087 
 

Q9 Sealing quality 0.027    

Four senior experts were invited to evaluate the 
degree of correlation between the leaf nodes and root 
nodes, as well as to examine and evaluate expert linguistic 
factors and their associated triangular fuzzy numbers. The 
results are shown in Table 5. The information in Table 5 

was homogenized and fuzzification to obtain the 
conditional probabilities of each leaf node. Taking 
ventilation (Y1) as an example, the results are shown in 
Table 6. 

 
Table 5 Exert assessment results. 

Conditions 
The first exert The second exert The third exert The fourth exert 

state 
0 

state 
1 

state 
2 

state 
0 

state 
1 

state 
2 

state 
0 

state 
1 state 2 state 

0 
state 
1 

state 
2 

P(Y1=0|Q1=0,Q2=0,Q3=0) VH VL VL VH VL VL VH VL VL VH VL VL 

P(Y1=0|Q1=0,Q2=0,Q3=1) VH L VL VH VL VL VH L L H L L 
P(Y1=0|Q1=0,Q2=0,Q3=2) VH L VL VH L L H FL L H L L 

P(Y1=0|Q1=0,Q2=1,Q3=0) H VL VL VH L VL H L L VH L L 
P(Y1=0|Q1=0,Q2=1,Q3=1) H L VL VH L L VH FL L H L L 

P(Y1=0|Q1=0,Q2=1,Q3=2) H L L VH L L H L L H VL FL 
P(Y1=0|Q1=0,Q2=2,Q3=0) H VL VL H L VL H FL VL FH L L 

P(Y1=0|Q1=0,Q2=2,Q3=1) H L L FH FL FL H M L FH L L 
P(Y1=0|Q1=0,Q2=2,Q3=2) H FL L FH FL L H L L H L L 

P(Y1=1|Q1=1,Q2=0,Q3=0) VH VL VL VH VL VL VH L VL VH VL VL 
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Conditions 
The first exert The second exert The third exert The fourth exert 

state 
0 

state 
1 

state 
2 

state 
0 

state 
1 

state 
2 

state 
0 

state 
1 state 2 state 

0 
state 
1 

state 
2 

P(Y1=1|Q1=1,Q2=0,Q3=1) H VL VL H VL L VH L L VH L L 

P(Y1=1|Q1=1,Q2=0,Q3=2) VH L FL VH L L H L FL H L L 
P(Y1=1|Q1=1,Q2=1,Q3=0) H L VL H FL L H FL L H L L 

P(Y1=1|Q1=1,Q2=1,Q3=1) H L L H L VL H L VL FH L L 
P(Y1=1|Q1=1,Q2=1,Q3=2) H VL L H L L H L L H L L 

P(Y1=1|Q1=1,Q2=2,Q3=0) H L L FH FL VL H L L VH L L 
P(Y1=1|Q1=1,Q2=2,Q3=1) H L L FH L VL H FL L VH L L 

P(Y1=1|Q1=1,Q2=2,Q3=2) H L L H L L H L L VH L FL 
P(Y1=2|Q1=2,Q2=0,Q3=0) VH VL VL VH VL VL H VL L VH L VL 

P(Y1=2|Q1=2,Q2=0,Q3=1) H L VL H L L FH L L H FL L 
P(Y1=2|Q1=2,Q2=0,Q3=2) VH L L H L VL H L L H L VL 

P(Y1=2|Q1=2,Q2=1,Q3=0) H VL VL H VL VL H L VL VH L VL 
P(Y1=2|Q1=2,Q2=1,Q3=1) H VL VL FH VL VL H L VL VH L VL 

P(Y1=2|Q1=2,Q2=1,Q3=2) H VL VL FH VL VL H L VL H VL VL 
P(Y1=2|Q1=2,Q2=2,Q3=0) H L L H L L H VL VL H VL VL 

P(Y1=2|Q1=2,Q2=2,Q3=1) H L L H FL L H FL L H L L 
Y1=2|Q1=2,Q2=2,Q3=2) H FL L H FL L H FL L FH FL L 

 
Table 6 Conditional probabilities of each leaf node. (a) 

Conditional probability State 0 State 1 State 2 
 P(Y1=0|Q1=0,Q2=0,Q3=0) 0.95121951 0.024390244 0.024390244 
 P(Y1=0|Q1=0,Q2=0,Q3=1) 0.84444444 0.088888889 0.066666671 
 P(Y1=0|Q1=0,Q2=0,Q3=2) 0.7628866 0.13917526 0.097938144 
 P(Y1=0|Q1=0,Q2=1,Q3=0) 0.84090909 0.090909091 0.068181818 
 P(Y1=0|Q1=0,Q2=1,Q3=1) 0.77486911 0.14136126 0.083769633 
 P(Y1=0|Q1=0,Q2=1,Q3=2) 0.77005348 0.085561497 0.14438503 
 P(Y1=0|Q1=0,Q2=2,Q3=0) 0.81097561 0.1402439 0.048780488 
 P(Y1=0|Q1=0,Q2=2,Q3=1) 0.68478261 0.22826087 0.08695652 
 P(Y1=0|Q1=0,Q2=2,Q3=2) 0.71122995 0.18181818 0.10695187 
 P(Y1=1|Q1=1,Q2=0,Q3=0) 0.92857143 0.047619048 0.023809523 
 P(Y1=1|Q1=1,Q2=0,Q3=1) 0.83333333 0.095238095 0.071428572 
 P(Y1=1|Q1=1,Q2=0,Q3=2) 0.73267327 0.16831683 0.099009901 
 P(Y1=1|Q1=1,Q2=1,Q3=0) 0.73684211 0.17894737 0.084210527 
 P(Y1=1|Q1=1,Q2=1,Q3=1) 0.80606061 0.12121212 0.072727273 
 P(Y1=1|Q1=1,Q2=1,Q3=2) 0.79545455 0.11363636 0.090909091 
 P(Y1=1|Q1=1,Q2=2,Q3=0) 0.76111111 0.15 0.088888889 
 P(Y1=1|Q1=1,Q2=2,Q3=1) 0.77486911 0.14136126 0.083769633 
 P(Y1=1|Q1=1,Q2=2,Q3=2) 0.7539267 0.14136126 0.10471204 
 P(Y1=2|Q1=2,Q2=0,Q3=0) 0.9047619 0.047619048 0.047619047 
 P(Y1=2|Q1=2,Q2=0,Q3=1) 0.76111111 0.15 0.088888889 
 P(Y1=2|Q1=2,Q2=0,Q3=2) 0.81818182 0.11363636 0.068181818 

(b) 
 P(Y1=2|Q1=2,Q2=1,Q3=0) 0.77005348 0.14438503 0.085561497 

 P(Y1=2|Q1=2,Q2=1,Q3=1) 0.69191919 0.17171717 0.13636364 
 P(Y1=2|Q1=2,Q2=1,Q3=2) 0.73888889 0.15 0.11111111 

 P(Y1=2|Q1=2,Q2=2,Q3=0) 0.81395349 0.11627907 0.069767442 
 P(Y1=2|Q1=2,Q2=2,Q3=1) 0.72164949 0.17525773 0.10309278 

 P(Y1=2|Q1=2,Q2=2,Q3=2) 0.66169154 0.23880597 0.099502488 
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4.2 Positive reasoning 

Figure 2 illustrates the forward inference of the Bayesian 

network used in this study to determine the probabilities 
of events occurring at T0, T1, and T2, respectively. Since 
the likelihood of gas overrun in this functioning face is 
generally considered to be less than 5%, the probability of 
gas spillage at this working face is very low. 

  
Figure 2 Bayesian network prior probability distribution. 

 

4.3 Backward reasoning 

This paper uses the diagnostic inference function of the 
Bayesian network to carry out reverse inference to find out 
the main reasons for the gas overrun risk in the coal 
mining face and the key factors affecting the occurrence 
of the event. Starting from the target node, the probability 
of occurrence of the target node T, i.e., gas overrun at the 
coal mining face, and its parent nodes Y1, Y2, Y3, Y4, 
and Y5 with state-level T2 are set to 100% at the same 
time, while the other risk state values are 0, as shown in 
Figure 3. 

From the perspectives of ventilation technology, non-
reporting of gas anomalies, ventilation methods, coal 
seam gas content, goaf extraction volume, and coal 
mining face at phase 2, the posterior probability of non-
reporting of gas abnormal is greater than 15%. it can be 
seen that the factors that have the greatest impact on gas 
overrun in the 312 coal mining faces are non-reporting of 
gas anomalies, ventilation modes, coal seam gas content, 
goaf extraction volume, and coal mining rate of the coal 
mining face. 

To prevent gas overrun in the coal mining face, the 

management should be strengthened, and the main 
measures are as follows. 

(1) We should standardize the operator specifications, 
pay attention to the impact of gas overrun in the coal 
mining faces, and collect on-site gas anomaly information. 
To reduce accidents related to human error, technical 
managers and plant inspectors must properly apply gas 
control and prevention procedures. 

(2) To reduce the gas gushing before the initial 
pressure or periodic pressure of the old roof, it is needed 
to select the appropriate ventilation method, strengthen 
the observation and evaluation of mine pressure in the 
mining face, and increase the ventilation rate 
appropriately. 

(3) It is necessary to understand the gas transfer 
situation in geological structure belts, adjust measures to 
local conditions in a timely manner, and reduce the 
likelihood of uncontrollable gas disasters. When the gas 
concentration increases, we ought to increase the number 
of local ventilators and select the power of the ventilators 
to increase the air supply volume. 

(4) To satisfy the requirements of the extracted gas 
pressure, it is important to use any type of hole, including 
waste holes, to increase the sealing of the quality of the 
hole and prevent the gas from escaping from the holes. 
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Figure 3 Bayesian network posterior probability distribution. 

 

5.Summary 
Based on the empirical analysis of a mine in Sichuan, this 
study proposes a gas overrun risk assessment method for 
coal mining face based on a fuzzy Bayesian network and 
draws the following conclusions. 

(1) Gas overrun in coal mining face is affected by 
various risk factors. An in-depth analysis of the coal 
mining faces reveals 17 risk factors in five categories 
including geological structures, ventilation conditions, 
gas extraction, mining activities, and coal mining 
management, and constructs coal mining faces based on a 
fuzzy polymorphic Bayesian network. 

(2) According to the favorable inference evaluation 
results, the coal mining face gas overrun grades are 
divided into the probabilities for T0, T1, and T2, 
corresponding to 90%, 6%, and 3%, respectively. It 
proves that the model has real-world application value 
when combined with the actual circumstance. 

(3) The results of reverse reasoning show that the 
influencing variables that lead to gas overrun the limit 
include non-reporting of gas anomalies, ventilation modes, 
coal seam gas content, goaf extraction volume, and coal 
mining rate of the coal mining face. Combining these 
aspects with the assessment model will help the 
investigation of accident causes and procedures, which 
will also lay the foundation for reducing gas overrun in the 
coal mining face. 
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