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Abstract. The destruction process of the rock by the tool of the impact device occurs 
with an impulsive load on the tool from the recoil reaction from the side of the rock, not 
only in the axial, but also in the transverse direction. A model of the tool part of the impact 

device is considered, which takes into account the transverse and longitudinal tool 
oscillations. The tool model has the form of a rod for longitudinal loading and a beam of 
constant cross section for transverse loading. Transverse and longitudinal oscillations of 
the tool sections are considered independent. When calculating transverse oscillations, the 
tool is considered as a cantilever beam with a rigid mount at one end. The calculation 
scheme of longitudinal oscillations is represented by a rod with reduced elastic resistance 
at the end. Impulsive loads are modeled by the initial velocity distribution on the contact 
part of the tool. The initial-boundary value problem with wave equations of the second 

and fourth orders is formulated. The solution of the initial-boundary value problem by the 
Fourier method, realized in the Mathcad system, is proposed. 

1 Introduction 

The study of the interaction of the impact device tool with the working environment was 

carried out by a number of authors [1-7]. In the works, longitudinal oscillations arising under 

the action of axial impulsive loads were considered. Loads from the side of the striker [3-8] 

and also, as a recoil reaction, from the side of the processed rock [9,10] were considered. 
Impulsive loads were modeled by the initial velocity distribution along the length of the tool 

[11]. It should be noted that when the tool interacts with the processed medium, transverse 

impulsive loads occur, which lead to transverse oscillations of the tool. In the works [12, 13] 

the studies of transverse oscillations of a constant cross section beam were carried out under 

various transverse loads and ways of fastening the beam. The formulated initial boundary 

value problems were solved by the Fourier method. The study of transverse and longitudinal 

oscillations of the impact device tool allows to get a more complete picture of the stresses 

that occur in the cross sections of the tool. 

The purpose of the work is to build a model that takes into account the asymmetric impulsive 

load, as a recoil reaction from the rock, on the working end of the tool. It is aimed to solve 

the formulated initial-boundary value problems by the Fourier method and present the results 
in a common computer program. 
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The following tasks are solved in the research process: 

1) An initial-boundary value problem is formulated for the transverse and longitudinal 

oscillations of a tool with a round cross section with a rigid fastening in the transverse 

direction and taking into account the elastic resistance in the longitudinal direction;  

2) The initial boundary value problem is solved by the Fourier method; 

3) The decision analysis is carried out using the program in the Mathcad system. 

2 Setting of the initial-boundary value problem 

The diagram of the load on the tool of the impact device by the recoil reaction from the side 

of the processed rock is shown in Fig.1. 

 
а 

 
b 

Fig. 1. The diagram of the load on the tool of the impact device mounted on the manipulator: 

 а) structural diagram of the impact device: 1 – body of the impact device, 2 – a striker, 3 – a 
tool, 4 – pneumatic accumulator chamber, 5 – control chamber, 6 –structural elements of the 
manipulator, P(x) – recoil reaction; b) the design scheme of the tool load: Px,  Pw– the 
components of the recoil reaction, C – unit stiffness of the impact device elements (striker and 
pneumatic accumulator); ε , L, L1– dimensions of the edge section, the cantilever part and the 
tool as a whole, d– tool diameter,  x–coordinate axis. 

 

The structural diagram (Fig. 1, а) of the impact device, mounted on the manipulator, includes 

a striker 2 and a tool 3 coaxially located in the body 1. Moreover, the pneumatic accumulator 

4 is charged by the mechanism for cocking the striker 2 with a working fluid, which is 

alternately supplied through the control chamber 5, which has an alternating hydraulic 

connection through the control device, with the hydraulic pressure and drain lines, 

respectively. At the same time, the striker moves and compresses the working medium, for 

example, neutral gas is carried out its energy charging in the chamber of the pneumatic 

accumulator when it is connected to the pressure line of the control chamber. When the 

control chamber is connected to the drain line, the pneumatic accumulator is discharged and, 
in its final phase, the striker strikes the tool. Taking into account the different position of the 

tool relative to the processed medium, the direction of the recoil reaction at a certain angle to 

the tool axis is the most likely case. Based on the structural scheme (Fig. 1, a), a design 

scheme (Fig.1, b) is given, which includes a tool with a constant circular cross section, loaded 

with the initial recoil reaction impulse or the distribution of the initial displacement. It is 

supposed to limit the movement of the tool as a rigidly fixed beam at one end in the transverse 

direction and elastic resistance to the movement of the tool in the longitudinal direction.  
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The transverse oscillations of the tool, like beams of constant section, are described by fourth-

order differential equations (1), and the longitudinal oscillations of the tool are described by 

second-order equations with partial derivatives (2): 
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where E–the modulus of elasticity of the tool material, J – the moment of inertia of the cross 

section, 64

4dJ 
,  – the density of the tool material, S  –the cross section area,

225.0 dS  , 
1 Eax ,

  14 
 EJSa 

,  xtw , – the transverse displacement of the tool 

x section at time t,  xtu , – the longitudinal displacement of the section x of the rod. Assumed 

the shape of beam fastening determines the type of boundary conditions. With a cantilever 

rigid limitation of transverse displacements, the boundary conditions have the form 
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For longitudinal displacements, the boundary conditions have the form 
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Initial conditions: 
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where 
  cosxPPx  ,  

  sinxPPw 
. Conditions (3) mean the absence of displacement and 

rotation in the section Lx  . Conditions (4) express the fact that there is no resistance to 
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transverse displacement and bending in the section 0x . The functions )(1 xf and )(2 xf  set 
the initial distribution of the longitudinal and transverse displacements of the tool sections 

along the length , the functions  xF1 and  xF2  set the distribution of the 

longitudinal and transverse velocities of the tool sections along its length at the initial moment 

of time. The shock impulse is modeled by the distribution of the initial velocity in a finite 

small section ε (Fig. 1) [9–11]. The parameter ε is chosen based on the results of 

computational experiments in the range L)2.0...1.0( for longitudinal and transverse impulse 

loads. 

3 The solution of the initial-boundary value problem by  

the Fourier method 

The solution of the problem can be found by the method of separation of variables [13 - 15]. 

Let us consider this method for the longitudinal and transverse displacements of the tool 

sections. The solution of equation (2) has the form of a product of two functions 

     xXtTxtu ,                                                (10) 

The boundary eigenvalue problem for a function  xX has the form: 

02  XX   ,    00 X ,     11 LXCLXES                     (11) 

General solution of differential equation (11): 

  xCxCxX  sincos 21   

From the first boundary condition (11) we get 

  xxX cos                                                  (12) 

From the second boundary condition, we find the values , by solving numerically in the 

Mathcad system using the root(…) function  of the equation  

 ctg
CL

ES


1                                                 (13) 

where 1L  . Diagrams of the left and right parts of equation (13) and the Mathcad program 

with an error estimation are shown in Fig. 2. 

The general solution of the second equation (14), relatively to the function  tT  

    022  tTatT x                                                    (14) 

has the form                   

                                                   
     taBtaAtT xx  sincos                                     (15) 
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Fig. 2. The solution of equation (13) in the Mathcad system using root(…)function: С 
= 5.6 106 N/m;  a=5189 m/s. 

 

The dynamic parameters of a hydraulic hammer with an impact energy of 3...5 kJ, for 

example, a hydraulic hammer GPM-300, were taken for the study. 

Particular solutions of the oscillation equation that satisfy the boundary conditions are 

obtained for various values L
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The constants kA  and kB  are chosen so that the initial conditions (6) are satisfied 
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As a result of the transformations, formulas for determining the coefficients of the Fourier 
series were obtained: 
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The coefficients Bk where 0 have limiting values, i.e. 
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Fig. 3, a shows the solution over a long time interval, Fig. 3,b shows the solution on a small 

interval. The exclusion of the first term of the Fourier series made it possible to separate the 

deformation of the rod from the displacement due to the deformation of the elastic element. 

The first term of the Fourier series reflects the motion of the rod as a discrete element, the 
mass of which is equal to the mass of the rod, for a given incentive impulse. This can be 

shown by comparing the solution (20) of the initial problem (19) with the first term of the 

Fourier method (Fig. 4). 
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                                         а                                                            b 

Fig. 3. Longitudinal oscillations of the rod: 1) U(t,0), 2) U(t,L1), Px=394 Ns;  α=100, 
d=0,135m; L=1m, ε=0,2m,   1) U(t,0),  2) U(t,L);  a) the first 12 members of the series; b) the 
first member of the series is missing. 
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Moreover, the initial speed is determined from the condition of equality of the initial impulses 

applied to the rod and to the discrete mass: 

1
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a                                                                  b 

Fig. 4. а) Comparison of solutions: 1) the first term of the series;  2) solution (20) of the 
initial problem b) relative difference of solutions. 

 

The relative difference between the solutions was less than 3% (Fig. 4, b). 

Let us consider the method of separation of variables for equation (1), which is similar to the 

method for equation (2). The solution must be looked for in the form of a product of two 

functions, one of which depends only on x, the other function depends only on t. So the 
solution should have the form 

     tVxUxtw , .                                                 (21) 
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After separating the variables, we obtain an identical equation from which it follows that the 

represented ratio is a constant 

4

2

2
4

4

4 11


dt

Vd

V
a

dx

Ud

U .                                       (23) 

E3S Web of Conferences 371, 03047 (2023) https://doi.org/10.1051/e3sconf/202337103047
AFE-2022

 
6



We obtain two ordinary differential equations of the fourth and second orders with constant 

coefficients with this choice of constant (
4 ): 
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Solving the boundary value problem for eigenvalues, we first find the general solution of the 

fourth-order differential equation (24). The differential equation corresponds to the 

characteristic equation 
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This equation has four roots: two real and two complex: 
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In solution (28), С1, С2, С3, С4 are arbitrary constants. To determine the constants С1, С2, С3 

and С4 , we use the boundary conditions (3) and (4). 
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We write down the system of equations for determining the constants using the boundary 
conditions (28) and (29): 
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The system of equations (30) is homogeneous and has nonzero solutions when the 

determinant is equal to zero, or 

                                                01cos  LchL  .                                             (31) 
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We introduce a function 
 

chx
xx

1
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and we find a solution to the equation by the 

method of successive approximations  

  0
1

cos 
chx

xx
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The diagram of the function and a program fragment of searching for an approximate solution 

of equation (32) in the Mathcad system are shown in fig. 5. 

 

 
                                     а                                                                  b 

Fig. 5.   а) The diagram of the function Φ(x);   b) solution of the equation 
  0 x

. 

 

We get the formula for the eigenvalues of the boundary value problem and the 

eigenfunctions: 
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Thus, the eigenfunctions of the boundary value problem have the form 
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 The characteristic equation for differential equation (25) is written as 
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The equation (37) has complex conjugate roots (purely imaginary): 
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The general solution of differential equation (25) has the form 
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In equation (38), С1 and С2 are arbitrary constants. For each value λ = λn we have linearly 

independent solutions. Independent solutions of equation (1) satisfy the boundary condition 

and will have the form: 
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To perform the initial conditions (4), a series is made 
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From the initial condition (4) it follows 
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Multiplying both sides of identity (41) by  xUn and integrating, we obtain 
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From here we obtain a formula for calculating the coefficients of the Fourier series 
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We get the formula for calculating the coefficient nB
:  
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4 The interval calculation of the Fourier series in the Mathcad  

system 

The initial velocity distribution along the length of the tool is shown in fig. 6, a. The initial 
impulse load is applied to the right free part of the tool. The velocity distribution of the cross 

sections of the beam according to formula (9) simulates an external transverse impact. It is 

also possible to set the initial distribution of transverse displacements along the length of the 

shaft (Fig. 6, b). 
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Fig. 6.  а) Initial velocity distribution of beam cross sections;   
b) Initial distribution of displacements of beam cross sections. 

 

The distribution of transverse displacements and velocities is shown in Fig.7. Fourier series 

coefficients are calculated in the Mathcad system. The transverse displacement of the shaft 

sections is calculated in the presence of the first ten terms of the Fourier series. 

 

 
а                                                        b 

Fig. 7.  а) Displacements of various beam sections in time in the presence of only the initial 
impulse load: b) Dependence of speed on time for various sections of the tool: L=0.9 m; 
d=0.135m; Pw=17.45 Ns; 1) x = L/2 m;  2) x =3L/4 m;   3) x =9L/10 m. 

 

The deflection beam shape at a given time is shown in Fig. 8,a in the presence of a finite 

number of terms in the Fourier series. 

 

 
                                      a                                                                       b 

Fig. 8. а) Transverse beam deflection at t = 80 μs:  (1) 10 terms of the series; (2) the third term of 
the series;  (3) the fifth term of the series;  b) The total deformation of the section x=0  in the 
plane Охw time period [0, 3.3] ms. 

 

The total displacement of the tool in time is of interest. The displacement area can be obtained 

by excluding time, that means, to plot in the phase plane Oxw and determine the vector sum 

of the transverse and longitudinal ),( in xtS  (Fig. 8,b). 

The obtained diagrams for various sections of the tool give an idea of the change area of the 

longitudinal and transverse displacements of the cross sections of the tool. 
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5 Conclusion 

As a result of this work we can conclude as follow. 

1. A mathematical model is proposed that takes into account the asymmetric load on the tool 

face of the impact device from the side of the processed rock. The model assumes an 

independent division of the load into axial and transverse components. The shock impulse is 

modeled by the distribution of the initial velocity over a short length of the contact part of 

the tool. The equations for transverse and longitudinal oscillations are separated for different 

initial and boundary conditions. 

2. The solution of the initial-boundary value problem with wave equations for longitudinal 

and transverse oscillations under an impulse initial load is found by the Fourier method using 

the built-in functions of the Mathcad system in a common computer program. The program 
allows you to highlight the main forms of oscillations in the transverse and longitudinal 

directions. 

3. The analysis of solutions obtained by the Fourier method in the Mathcad system was 

carried out. The amplitudes of the transverse and longitudinal displacements of the tool 

sections, the total displacement of the tool sections, built in the phase plane with the exception 

of time, are estimated. When changing the angle of inclination of the tool within (0-100) at a 

pulse of (300 -500) Ns, the ranges of parameters of transverse and longitudinal oscillations 

of the contact part of the tool were obtained. It must be taken into account when designing 

impact devices to ensure the required reliability. 
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