
 

* Corresponding author: 2758368169@163.com 

Optimization Analysis of Energy Structure in Jinhua City, 
Zhejiang Province Based on Carbon Peak Constraints 

Jiansheng Hou1, Honghui Huang1, Lina Zhang2, Yingcong Wang 1* 

1State Grid Jinhua Power Supply Company, Jinhua Zhejiang 321000, China 
2Jinhua Electric Power Design Institute Co. LTD, Jinhua Zhejiang 321000, China 

Abstract. As China's economic development has entered a new normal, it is in China’s self-interest to 

achieve carbon peaking before 2030. and the decomposition and analysis of the influencing factors of carbon 

emissions are not only conducive to predicting the peaking time of carbon emissions, but also crucial to 

develop differentiated emission reduction policies in Jinhua. This paper firstly decomposes and analyzes the 

influencing factors of carbon emissions in Jinhua based on LMDI decomposition technology and hidden 

Markov chain, and then the dynamic relationship among the influencing factors of carbon emissions in Jinhua 

is explored by the panel vector autoregressive model. In addition, this paper also uses STIRPAT model to 

forecast and analyze the peaking time of carbon emissions in Jinhua and puts forward targeted suggestions. 

1. Introduction 

Currently, countries around the world are facing severe 

environmental challenges caused by global warming. The 

primary cause of this problem is the increasing emissions 

of greenhouse gases, especially carbon dioxide. 

Recognizing the urgency, countries worldwide have 

proactively adopted effective measures to slow down or 

prevent further temperature rise (Lin, 2019)[1]. As a 

populous country and a major energy consumer, China is 

the world’s largest emitter of carbon dioxide, imposing 

even greater challenges and responsibilities for emission 

reduction. In response to climate change, China has set the 

carbon reduction targets of “committing to peak carbon 

dioxide emissions before 2030 and achieve carbon 

neutrality before 2060”. The goals of “carbon peaking” 

and “carbon neutrality” (hereinafter “dual carbon” goals) 

have been included as key priorities in the “14th Five-Year 

Plan” of every province across the nation, accompanied by 

the development of respective carbon reduction policies 

(Ji et al., 2023)[2]. 

In recent years, an increasing number of scholars have 

conducted research on the implementation of the “dual 

carbon” goals. When analyzing the influencing factors, 

scholars mostly associate economic factors with these 

goals, particularly discussing the Environmental Kuznets 

Curve (EKC), which suggests an inverted U-shaped 

relationship between economic growth and environmental 

pollution (Yuan et al., 2014)[3]. Zhang and Wang (2022)[4], 

using panel data from Chinese provinces for the years 

1997-2019, found that the regression results between 

China’s economic growth and carbon emissions 

consistently decrease and remain positive, indicating that 

China is still in the ascending phase of the EKC. Zhu et al. 

(2019)[5] explored the influencing factors of carbon 

emissions in China using data from 1978 to 2014 and 

found that population and energy consumption structure 

significantly affect carbon dioxide emissions. 

Additionally, many scholars have investigated the impact 

of carbon emissions from the perspectives of industrial 

structure, urbanization, and other factors (Xu et al., 2023[6]; 

Liu et al., 2023[7]; Wang et al., 2018[8]). Since the 

introduction of the “dual carbon” goals, many scholars 

have made predictions. Mujeeb Sana et al.（ 2023）
[9]quantifies the impact of carbon emission projections and 

renewable energy based on deep learning.Li et al. 

(2023),[10] utilizing a GA-ELM model and panel data from 

30 provinces (autonomous regions and municipalities) in 

China from 1997 to 2020, suggested that in a green 

development scenario, seven regions in China could 

achieve the carbon peaking before 2030. Wang et al. 

(2019)[11] argued that for mega-cities, peaking carbon 

dioxide emissions before 2030 is contingent on a rapid 

decline in energy intensity. Wang et al. (2022)[12], from an 

industry perspective, proposed that accelerating the 

development of clean and renewable energy is an 

inevitable choice for the power industry to achieve the 

carbon peaking before 2030.Rahmaditio M R et 

al.(2023)[13] projections of diesel, biodiesel and pure 

electric vehicle carbon emissions in Indonesia based on 

the transportation sector to compare their carbon reduction 

policies. 

It is a well-established fact that energy consumption 

and production, as the primary sources of greenhouse 

gases, contribute to climate change and global warming 

issues(Aras Serkanet al.,2022)[14].Against the backdrop of 

rapid economic growth and a continuous increase in 

population, China’s demand for energy consumption has 

been growing day by day. As a result, carbon emissions 
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related to energy consumption have also been on the rise. 

In order to promote high-quality and sustainable 

development of the Chinese economy, it is necessary to 

adjust the energy mix, develop a low-carbon economy, 

and improve energy efficiency (Zhou et al., 2011)[15]. 

Improving the energy mix has become an important 

pathway to promote the development of a low-carbon 

economy. Fan et al. (2015)[16] pointed out that the main 

influencing factors of energy consumption structure 

include energy consumption constraints, carbon emission 

constraints, economic growth, population, and industrial 

structure. Specifically, when energy intensity and carbon 

intensity remain constant, constraints on energy 

consumption and GDP growth directly drive the 

optimization of the energy consumption structure, while 

constraints on carbon emissions and energy consumption 

overall have a restraining effect on the optimization of 

energy consumption structure. Tang et al. (2023) [17] 

argued that the optimization and transformation of the 

energy mix are a prerequisite and a key measure to achieve 

the goal of carbon neutrality. 

Answering the call of “dual carbon” goals, Zhejiang 

province has enacted policy documents on a regular basis 

such as the Regulation of Zhejiang province on 

Environment Protection, the "14th Five-Year Plan" for 

energy development in Zhejiang province, and the 

Zhejiang province 14th Five Year New Energy Storage 

Development Plan. These policies aim to align with the 

requirements of ecological civilization construction and 

the “dual carbon” goals, leveraging digital reforms to 

support and promote green and low-carbon transformation 

of the energy sector, ultimately aiming to become a 

nationally recognized province for clean energy 

demonstration. As the core city in central Zhejiang 

province, Jinhua recorded a regional gross domestic 

product (GDP) of 535.544 billion yuan in 2021, with 

industrial added value reaching 119.826 billion yuan. The 

energy consumption of large-scale industries in Jinhua 

amounted to 8.7478 million tons of standard coal, while 

the energy consumption of seven energy-intensive 

industries reached 4.7009 million tons of standard coal. As 

GDP has been increasing year by year, carbon emissions 

have also been rising. However, in order to achieve the 

goal of “enable carbon dioxide peaking before 2030”, 

active participation and coordinated cooperation from 

various departments in Jinhua are necessary. 

Based on this, this paper takes Jinhua in Zhejiang 

province as an example to analyze its current carbon 

emissions, identify important factors influencing carbon 

emissions, sort out the dynamic relationships among these 

factors, and use scenario analysis to reasonably forecast 

the peaking time of carbon emissions. This research holds 

theoretical significance and provides valuable references 

for provinces and cities across the country in achieving 

their carbon peaking goals. 

2. Decomposition of Carbon Emissions 
Influencing Factors 

2.1 Calculation of Carbon Emissions 

Considering the representativeness and generalizability, 

this paper adopts the methodology provided in the IPCC 

Guidelines for National Greenhouse Gas Inventories 

published by the Intergovernmental Panel on Climate 

Change (IPCC) in 2006 to calculate carbon dioxide 

emissions. The specific calculation equation is as follows: 

 
2 *

44
* * * *

12

i ii

i i i ii

CO E

E NCV CEF COF

=

=




 (1) 

where CO2  denotes carbon dioxide emissions, i 

represents the type of energy, E  signifies energy 

consumption, NCV  means the average lower heating 

value, which is the carbon content per unit of heat 

generated. CEF represents the carbon emission factor, 

indicating the carbon content level per unit of heat. COF 

denotes the carbon oxidation factor, indicating the carbon 

oxidation rate during energy combustion. 44/12 is the ratio 

of carbon dioxide to carbon molecular weight. δ 

signifies the carbon dioxide emission factor of energy. 

Table 1 shows the carbon dioxide emission factors for 

various types of energy. 

Table 1 Carbon Emission Accounting Parameters of Various 

Energy Sources 

Energy Type 

Lower 

Heating 

Value 

(𝐤𝐉/
𝐤𝐠;  𝐤𝐉/

𝐦𝟑) 

Carbon 

Content Per 

Unit of 

Calorific 

Value 

(𝐤𝐠/𝐆𝐉) 

Carbon 

Oxidation 

Ratio 

(%) 

Carbon 

Emission 

Factor 

(𝐤𝐠/
𝐤𝐠;  𝐤𝐠/

𝐦𝟑) 

Raw Coal 20908 26.37 94 1.90 

Cleaned 

Coal 
26344 27.40 94 2.49 

Other 

Washed 

Coal 

10454 27.40 94 0.99 

Briquette 17761 33.60 90 1.97 

Coke 28435 29.50 93 2.86 

Coke Oven 
Gas 

16726 12.10 98 0.73 

Other Gases 15054 12.10 98 0.65 

Crude Oil 41816 20.10 98 3.02 

Gasoline 43070 18.90 98 2.93 

Kerosene 43070 19.60 98 3.03 

Diesel 42652 20.20 98 3.10 

Fuel Oil 41816 21.10 98 3.17 

Liquefied 

Petroleum 

Gas 

50179 17.20 98 3.13 

Refinery 

Dry Gas 
45998 18.20 98 3.01 

Natural Gas 38931 15.30 99 2.16 

2.2 Decomposition of Carbon Emissions 

Regarding the decomposition of carbon emissions, this 

study applies the Logarithmic Mean Divisia Index 

2

E3S Web of Conferences 466, 02006 (2023)   https://doi.org/10.1051/e3sconf/202346602006
ICAEER & CEEST 2023



 

 

(LMDI), which effectively addresses residual and zero-

value issues and is more suitable for carbon dioxide 

emissions decomposition research (Meng et al., 2022)[18]. 

The Kaya identity expands on the IPAT model, and it 

holds significant importance in the field of carbon 

emissions influencing factors research (Hu et al., 2018)[19]. 

The calculation expression of the Kaya identity is as 

follows: 

 * * *
C E GDP

C P
E GDP P

     
=      

     
 (2) 

where C  represents carbon emissions, P  denotes 

population size (representing electricity demand scale), E 

signifies energy consumption, 
C

E
 means carbon emissions 

per unit of energy consumption, 
E

GDP
 indicates energy 

intensity per unit of GDP, 
GDP

P
 represents per capita GDP. 

The Kaya identity simplifies the decomposition of 

carbon emissions into important indicators such as 

population, economy, and technology. By quantifying and 

simplifying these factors, it achieves a decomposition 

result without residuals and provides strong explanatory 

power for the influencing factors. As electricity scale also 

influences carbon emissions, the carbon emissions factor 

decomposition model constructed in this study based on 

the LMDI model is as follows: 

 * * * *i i
ii i

i

C E E Y
C C N

E E Y N
= =   (3) 

where C  signifies carbon emissions, Ci  denotes 

carbon emissions for i energy, E indicates total energy 

consumption, Ei  means energy consumption for i 

energy, Y represents regional GDP, N signifies the total 

population of the region. The five terms on the right side 

of the equation are: Ci Ei⁄  denotes the carbon emissions 

per unit of a specific type of energy, i.e., the carbon 

emissions coefficient for i energy. Ei E⁄  indicates the 

proportion of energy consumption for the i  energy, 

representing the energy mix. E Y⁄  means the energy 

consumption required per unit of output, i.e., energy 

intensity. Y N⁄  indicates per capita GDP, representing 

the level of economic development. N represents the scale 

of electricity. 

Furthermore, the total carbon emissions can be 

decomposed into carbon intensity effect (I), energy mix 

effect (S), energy intensity effect (E), economic 

development effect (G), and electricity scale effect (N), as 

follows: 

 
* * * *i i

ii i
i

i ii

C E E Y
C C N

E E Y N

I S EGN

= =

=

 


 (4) 

According to the equation, the change in carbon 

emissions from year to year can be represented as: 

 

1

1 1 1 1 1

t t

t t t t t t t t t t

i i i ii i

I S E G N

C C C

I S E G N I S E G N

C C C C C

+

+ + + + +

= −

= −

= + + + +

   (5) 

where ∆CI  represents the carbon intensity effect, 

∆CS  signifies the energy mix effect, ∆CE  denotes the 

energy intensity effect, ∆CG  means the economic 

development effect, and ∆CN  indicates the electricity 

scale effect. If the value of a decomposition factor is 

greater than 0, it indicates that the factor positively affects 

carbon emissions, i.e., increasing carbon emissions. If it is 

less than 0, the factor negatively affects carbon emissions, 

i.e., reducing carbon emissions. 

Using LMDI decomposition technique, the effect 

equation of each decomposition factor from year to year is 

as follows: 

 ( )
1

1, ln
t

m t t

I i i ti

I
C L C C

I

+
+  

=  
 

  (6)  
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1

1, ln
t
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G

+
+  

=  
 
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1

1, ln
t

m t t

N i i ti

N
C L C C

N

+
+  

=  
 

  (10) 

where ( ) ( ) ( )1 1 1, / ln lnt t t t t t

i i i i i iL C C C C C C+ + += − −  

2.3 Dynamic Relationship of Influencing Factors 
of Carbon Emissions 

The VAR model is a vector autoregressive model, which 

utilizes Ordinary Least Squares (OLS) estimation to 

obtain its parameters. Due to the consistency of the 

parameter estimation, it is challenging to interpret the 

economic significance of individual parameter estimates. 

To analyze the VAR model and understand the dynamic 

relationships among the four influencing factors of carbon 

emissions, this study conducts further research using 

impulse response functions and variance decomposition. 

2.3.1 Impulse Response Functions 

Impulse response functions illustrate the trajectory of 

variables after being subjected to shocks, displaying the 

dynamic relationships among variables in the VAR model 

with different degrees of variance adjustment. Impulse 

response functions provide conditional predictions. In this 

study, “ exogenous shocks ”  are applied to the four 

variables: carbon emissions, economy, energy 

consumption, and electricity consumption. The values at 

different time points after the shocks are estimated, and 

the impulse response graphs are obtained based on the 

changes in the trajectories following the shocks. 

In the impulse response graphs, the plots in the same 

row depict the response trajectories of different variables 

to the same exogenous shock, while the plots in the same 

column compare the effects of different exogenous shocks 

on the same variable. The horizontal coordinates represent 

the unit time estimated by the VAR model (in this study, 

it is yearly), and the vertical coordinates represent the 

corresponding units of each variable. Figure 1 presents the 

impact results within 10 years after the shocks occur. 
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Figure 1. Dynamic response between carbon emissions and 

economy, energy consumption, and electricity consumption 

After applying a one-standard-deviation shock to 

Jinhua ’s economy, the response trajectory of the VAR 

model is shown as the graph in the first row. The economy 

absorbs the shock entirely and shows an increase in the 

corresponding unit percentage, continuously affected 

throughout the 10-year observation period. Energy 

consumption responds to the shock by initially rising and 

then starting to decline after the fourth year. Electricity 

consumption exhibits a similar pattern to energy 

consumption, while the trajectory of carbon emissions 

shows a decrease followed by an increase and subsequent 

decrease. The second row represents the results of the 

shock on energy consumption. The economy, energy 

consumption, and electricity consumption all experience a 

slight decline in the first seven years, followed by a stable 

period, with a minor overall decrease in carbon emissions. 

The third row illustrates the results of the shock on 

electricity consumption. Both energy consumption and 

electricity consumption exhibit a significant initial 

increase followed by fluctuating declines, while the 

changes in the economy and carbon emissions remain 

relatively stable. The fourth row presents the results of the 

shock on carbon emissions. The impact of carbon 

emissions on the economy, energy consumption, and 

electricity consumption gradually rises, and this impact is 

not fully absorbed even after 10 years. 

2.3.2 Variance Decomposition 

Variance decomposition in the VAR model is used to 

analyze the contribution of structural shocks to the 

endogenous variables. It helps determine the importance 

of the relationships between variables. By conducting 

variance decomposition, information regarding the 

relative importance of each random disturbance in 

influencing the variables in the VAR model can be 

obtained. Orthogonal variance decomposition methods are 

well-suited for describing the degree of influence. 

Therefore, this study adopts orthogonal variance 

decomposition. According to the equation: 

 
( )(0) (1) (2) (3)

1 2 3

1

1,2,..., , 1,2,...,

k

it ij jt ij jt ij jt ij jt

j

y c c c c

i k t T

   − − −

=

= + + + + 

= =


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we can derive: 
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q
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j q
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i k t T




= =

 
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 

= =

 
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Defined as the contribution of the uncorrelated 

variables in k , the degree to which the measuring 

variance contributes to the shock is as follows: 

  
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1 0
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q q
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 
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This is known as the relative variance contribution 

(RVC), which shows the dynamic relationship between 

variables relative to the benchmark variance. 

Generally,

( )q

ijc
of s =   is used to analyze the result, 

and the corresponding shock effect can be obtained by 

analyzing the variance. 

The forecast error variance for the early period of the 

VAR(p) model is: 
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where ( )j i sRVC → satisfies: 

(1) ( )0 1, , 1,2,...,j i sRVC i j k→  =  

(2) ( )1
1, , 1,2,...,

k

j i sj
RVC i j k→=

= =  

By conducting variance decomposition on the 

economic factor in the carbon emissions influencing 

factors, it is found that the forecast variance of the 

economic factor is entirely derived from the economic 

factor itself (60.03%), while the remaining 25.62%, 

11.23%, and 3.12% come from energy consumption, 

electricity consumption, and carbon emissions, 

respectively. This result indicates that the economy is 

mainly influenced by itself, while the roles of energy 

consumption, electricity consumption, and carbon 

emissions are relatively small. The variance 

decomposition results for energy consumption show that 

79.45% of the variance comes from energy consumption 

itself, with 17.11% coming from the economy, 2.69% 

from electricity consumption, and 0.74% from carbon 

emissions. For electricity consumption, 7.15% of the 

variance is from itself, 60.34% is from energy 

consumption, 30.60% is from the economy, and 1.91% is 

from carbon emissions. The variance decomposition 

results for carbon emissions show that carbon emissions 

are primarily influenced by the economy (66.64%), 

followed by energy consumption (27.03%), electricity 

consumption (16.12%), and finally, by itself (1.03%). 

3. Analysis of Jinhua “Carbon Peaking” 
Goal 

3.1 Prediction Method of Carbon Emissions 

The STIRPAT model has been widely used in 

environmental impact assessment (Zhu et al., 2010)[20], 
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and its equation is given as: I = aPbAcTde, where I 

represents the environmental pressure, a signifies the 

model coefficient, P denotes the electricity factor, A 

means the economic factor, T represents the technological 

factor, and e signifies the error term. The STIRPAT model 

is an expandable stochastic assessment model that extends 

the factors included in the traditional STIRPAT model to 

evaluate and analyze multiple factors influencing the 

environment. Taking the logarithm of the basic expression, 

we obtain the following equation: 

 ln ln ln ln ln lnI a b P c A d T e= + + + +  (15) 

Combining the results obtained from the LMDI 

decomposition technique and existing research, this study 

adds the energy mix factor and industrial structure factor 

to the existing electricity scale, economic factor, and 

technological factor. It should be noted that energy 

intensity reflects the energy consumption per unit of 

output and can reflect the production efficiency and 

production technology. Therefore, this study uses energy 

intensity (EE) to measure the technological factor and uses 

the proportion of coal consumption in energy consumption 

(ES) and the proportion of value added by the secondary 

industry in regional gross domestic product (IS) to 

measure the energy mix and industrial structure, 

respectively. The expanded STIRPAT model is as follows: 

 
ln ln ln ln ln ln

ln ln

I a b N c G d EE f ESI

g IS e

= + + + +

+ +
 (16) 

where a is the constant term, b, c, d, f, g are the 

coefficients of each index term, and e is the error term. 

The estimation results of the expanded model using 

OLS show an adjusted R2  of 0.98 and an F-value of 

154.612. However, multiple independent variables have 

VIF values greater than 10, indicating that the 

multicollinearity test is not passed. To address the issue of 

multicollinearity, ridge regression estimation is employed, 

and the ridge trace plots for each variable under different 

parameter values K are obtained, as shown in Figure 2. 

According to the results displayed in the ridge trace 

plots, when the standardized regression coefficients of all 

explanatory variables approach a stable state, the value of 

K is 0.01. Therefore, taking K=0.01, a second ridge 

regression is conducted, resulting in an adjusted R2 of 

0.98, significant F-test and T-test results for all variables, 

and obtaining the model regression equation: 

ln 26.386 4.016ln 0.559ln

0.392ln 0.311ln 2.166ln

I N G

EE ES IS

= − + +

+ + +  

 

Figure 2. Ridge trace plot 

3.2 Scenario Analysis 

Based on the development trends and changes in different 

influencing factors in Jinhua in recent years, three 

forecasting scenarios, namely the baseline, low-carbon, 

and high-speed scenarios are determined. For each 

scenario, the boundary settings for the variables related to 

population factors, economic factors, and technological 

factors influencing carbon emissions are defined to 

forecast the development trend of carbon emissions in 

Jinhua and predict the peaking time of carbon emissions 

and the time to achieve carbon neutrality. 

3.2.1 Baseline Scenario 

In the baseline scenario, the current development patterns 

of energy, electricity, economy and technology are 

maintained, and emission reduction policies are actively 

implemented to achieve economic development and 

increase household income as the main driving factors 

(Yin et al., 2021)[21]. The economic factor is set based on 

the established national economic development goals. The 

technological factor takes into account policy and 

planning targets related to energy mix and intensity, and 

appropriate trend changes are set. 

Electricity factor: As electricity demand is closely 

related to social development, when the social 

development level and other relevant conditions are 

similar or fixed, electricity demand is proportional to the 

population size. In this study, the growth trend of 

electricity scale in Jinhua is deduced based on population. 

From 2003 to 2020, the average population growth rate in 

Jinhua was 1.02%. The population growth rates for 

different periods in the investigation period were as 

follows: 0.91% from 2005 to 2010, 0.79% from 2010 to 

2015, and 1.68% from 2015 to 2020, showing a trend of 

initial decline followed by an increase. Considering the 

current situation of slow population growth in the social 

environment, the predicted range for the electricity 

demand growth rate will be between 0.1% and 0.9%, 

showing a slow declining and then rising trend. 

Energy intensity: The total energy consumption in 

Jinhua increased by 48.5% from 2012 to 2020, with an 

average annual growth rate of 4.5%. During the “12th 

Five-Year Plan” and “13th Five-Year Plan” periods, the 

energy consumption intensity in the city decreased by 16.3% 

and 15.2%, respectively, exceeding the planned targets by 

0.3 and 0.2 percentage points. From 2003 to 2020, the 

energy intensity in Jinhua showed a decreasing trend with 

an average annual growth rate of -4.66%. A lower energy 

consumption per unit of GDP is favorable for decoupling 

economic development from energy consumption. It is 

predicted that the energy intensity will gradually decrease 

by 0.01% each year. 

Energy mix: By 2025, the target for clean energy 

consumption in Jinhua is striving to reach 23.1%, and coal 

consumption is controlled at around 26%. The share of 

coal consumption in energy consumption is expected to 

decrease from 31.9% in 2020 to 26%, while the share of 

clean energy will increase from 10.8% to 23.1%. To 

achieve the goals of the “14th Five-Year Plan”, the 

proportion of coal energy consumption is assumed to 
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increase at a rate of -0.08%. Considering China’s dual 

carbon development goals, the proportion of coal in 

energy consumption may become negligible or zero after 

achieving carbon neutrality. Therefore, it is expected that 

the growth rate of coal energy consumption will decrease 

annually by 0.3% starting from 2035. 

Industrial structure: From the perspective of industrial 

structure, Jinhua has transitioned from being dominated 

by the secondary industry to being dominated by the 

tertiary industry. In 2016, the ratio of the three major 

industries in Jinhua was 7.24: 49.59: 43.16, and by 2020, 

it changed to 6.22: 46.3: 47.47, indicating a balance 

between the secondary and tertiary industries. Therefore, 

the predicted growth rate of the proportion of the 

secondary industry from 2020 to 2025 is 1.6%. The 

proportion of value added by the secondary industry in 

Jinhua gradually increased from 2003 to 2012 but began 

to decline after 2014. Based on the data, the proportion of 

the secondary industry in Jinhua initially increased and 

then decreased. It is predicted that the proportion of the 

secondary industry in Jinhua will decrease from 50% to 

33% from 2025 to 2060. 

Per capita GDP: According to the target of “annual 

average growth of 5.4% in per capita GDP by 2025”, it 

can be inferred that Jinhua’s per capita GDP will reach 

92,000 yuan per person in 2025. The annual growth rates 

for per capita GDP from 2021 to 2025 are set at 9%, 7%, 

5%, and 4%. Based on the results of the decomposition 

model mentioned earlier, the level of economic 

development has a significant impact on carbon emissions 

in Jinhua. Implementing carbon emission reduction 

measures may affect the economic growth rate. However, 

Jinhua has a solid industrial foundation and an active 

private economy, indicating potential economic strength. 

Therefore, the parameter is set at 9%, and the growth rate 

of per capita GDP will decrease annually after 2035. 

3.2.2 Low-carbon Scenario 

In the low-carbon scenario, the growth rates of electricity 

scale, per capita GDP, energy intensity, industrial 

structure, and energy mix are increased by 0.01%, 0.05%, 

0.06%, 0.1%, and 0.06%, respectively, compared to the 

baseline scenario. In the low-carbon scenario, it is 

predicted that the proportion of the secondary industry in 

Jinhua will be adjusted from 50% to 30% from 2025 to 

2060. 

3.2.3 High-speed Scenario 

In the high-speed scenario, the growth rates of electricity 

scale, per capita GDP, energy intensity, and energy mix 

are increased by 0.01%, 0.05%, 0.06%, and 0.08%, 

respectively, compared to the low-carbon scenario. In the 

high-speed scenario, it is predicted that the proportion of 

the secondary industry in Jinhua will be adjusted from 50% 

to 26% from 2025 to 2060. 

According to the growth rates set for different 

scenarios, the STIRPAT model is used to predict the 

carbon dioxide emissions in Jinhua from 2021 to 2060. 

The predicted results are shown in Figure 3. 

 

Figure 3. Carbon emissions trends under different scenarios in 

Jinhua 

From Figure 3, it can be observed that the high-speed 

scenario reaches carbon peaking earliest. In the high-speed 

scenario, Jinhua’s carbon emissions from energy 

consumption will reach their peak in 2027. In the low-

carbon scenario, it is in 2028. And in the baseline scenario, 

it is in 2029. The carbon peaking values decrease in the 

order of scenarios, with the lowest peak value being 61.7 

million tons. 

In the post-industrial development stage, economic 

growth does not exacerbate the increase in carbon 

emissions, as seen in the downward part of the inverted U-

shaped Environmental Kuznets Curve. Therefore, the 

high-speed scenario reaches the carbon emissions peak 

first. The low-speed development scenario represents a 

low-growth economy with high carbon emissions. Slow 

economic growth, lagging technological upgrades, low 

growth in electricity demand and energy consumption, 

and high energy intensity and imbalanced energy mix pose 

challenges to achieving low-carbon development (Li and 

Liu, 2022)[22]. Thus, Jinhua’s carbon peaking is achieved 

latest in the low-speed development scenario. The baseline 

development scenario falls between the aforementioned 

scenarios. Therefore, the conclusion drawn is that the 

high-speed development scenario is the most favorable 

path for Jinhua to achieve carbon peaking. It enables high 

economic growth while promoting low-carbon economic 

development through technological progress, leading to a 

reduction in energy consumption and energy intensity. 

This path facilitates the achievement of carbon peaking 

and carbon neutrality goals. 

4. Conclusions and Recommendations 

Under the “dual carbon” goals, the optimization of the 

energy mix will present many opportunities for high-

quality, low-carbon, and sustainable economic 

development. This study employs the LMDI 

decomposition technique and hidden Markov chain to 

analyze the factors influencing carbon emissions in Jinhua. 

Furthermore, the dynamic relationships between these 

factors are explored using a panel vector autoregression 

(VAR) model. Additionally, an improved STIRPAT 

model is used to predict the peaking time 

of carbon emissions in Jinhua, and the future trends of 

carbon emissions are forecasted based on three scenarios: 

baseline scenario, low-carbon scenario, and high-speed 
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scenario. Based on the conclusions drawn from this study, 

the following policy recommendations are proposed: 

Provide more guidance on the policy options. As 

carbon emissions have negative externalities which cannot 

be solved by market mechanisms alone, proactive 

government intervention is necessary to establish 

corresponding emission reduction policies, such as 

implementing a carbon tax market, which can encourage 

enterprises to reduce emissions by influencing the costs. 

Due to the technological constraints, renewable energy 

has relatively higher overall costs compared to coal. In this 

regard, the government in Jinhua can incentivize the use 

of clean electricity through policies such as policy 

incentives, carbon taxes, pollutants emissions trading and 

subsidies. 

(2) Phase down coal consumption. Due to resource 

endowment and energy prices, coal remains the largest 

source of power generation in Jinhua. But the coal-based 

energy mix has caused environmental pollution. For a 

smooth-running economy, a drastic reduction in coal 

consumption is not feasible in the short term. However, 

considering the severe pollution caused by coal, Jinhua 

should strive for moderate development of the coal 

industry. The government should establish a reasonable 

coal development scale, accelerate the optimization and 

integration of the coal industry, and promote industrial 

upgrading while ensuring orderly supply. In addition, on 

the end-use side, efforts can be made to cut direct coal 

consumption and increase the proportion of clean energy 

sources in the energy system. 

(3) Adopt multiple measures to achieve carbon 

neutrality. The key to achieving carbon neutrality lies in 

the clean transformation of the energy sector, which is 

reflected in the clean transformation of the energy mix. 

Given the coal-dependent energy system in China, a clean 

energy mix requires a long-term commitment to dual 

control on energy, market-oriented carbon emissions and 

the development of carbon capture and storage 

technologies. This entails a combination of administrative, 

market-based, and technological approaches. 
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