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Abstract. This paper introduces a velocity control strategy for Surface-

Mounted Permanent Magnet Synchronous Motors SM-PMSM using exact 

linearization and input-output decoupling techniques, which are rooted in 

the principles of differential geometry. The primary aim of this control 

approach is to establish a static state feedback mechanism and to convert the 

nonlinear PMSM model into a linear, decoupled, and controllable system. 

Initially, the state model that represents the PMSM dynamics within the d-q 

reference frame is defined. Subsequently, the process of designing the 

control through linearization and input-output decoupling is outlined. Lastly, 

the synthesis of the compensator is grounded in the pole placement method, 

aiming to drive the direct current towards zero and ensure optimal torque 

operation. Simulation outcomes conducted on Matlab/Simulink demonstrate 

the efficacy of the speed control strategy, which is facilitated by a 

straightforward algorithm for practical implementation. However, it is 

inadequate against variations in machine parameters and load torque 

disturbances. 

Keywords. speed control, SM PMSM, linearization, input-output decoupling, 

differential geometry, pole placement method. 

1 Introduction  

The Permanent Magnet Synchronous Motor (PMSM) has made significant progress in the 

field of electrical engineering, through various applications industries and systems where 

precise control and high efficiency are required. Here are some areas of use and a possible 

application for PMSM with linearization feedback control: in robotic arms for precise 

positioning, in aerospace and aviation such as actuating flaps, ailerons, and rudders, in 

electric vehicles for propulsion, in renewable energy, PMSM are used in wind turbines for 

converting wind energy into electricity, also in medical devices where Precision and stability 

are crucial in medical imaging equipment like magnetic resonance imaging machines [1–3]. 

This type of motor offers exceptional superior performances due to its energy efficiency, 
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excellent dynamic performance, allowing it to maintain an almost constant torque over a wide 

range of speeds, as well as great durability thanks to its improved efficiency resulting from 

reduced internal losses [4,5]. They are therefore better suited to applications requiring 

variable speed, unlike induction or DC motors. However, despite the design of powerful 

processing boards, several challenges persist in the control of PMSM [6]. Namely, the 

mathematical model is highly non-linear and the complex dynamics of PMSM require 

sophisticated control algorithms to achieve optimum performance, sensitivity to load torque 

variations and disturbances, and synchronizing stator current and rotor position requires 

constant attention, particularly at high speeds [4,6–8]. 

 In the paper [9], differential geometry was used to achieve accurate feedback loop 

linearization for the PMSM, and decoupling between the speed loop and the current loop, 

with active disturbance rejection, was achieved. Furthermore, the controller has been 

developed to adjust gains finely as a function of error. Simulation results show that speed 

tracking is fast and stable, without any effect on the direct axis current. The same study, based 

on the differential geometry approach, has been presented in several research 

publications[4,10]. The focus has always been on controlling the PMSM using exact input-

output linearization via state feedback. As this method relies on the full elimination of non-

linearities in the model, it results in a wide speed control range, fast response and low steady-

state error. However, the weaknesses of this method are its strong dependence on system 

parameters, making it sensitive to parameter variations[11,12]. 

 In contrast, the backstepping method provides a choice for synthesizing a controller which 

considers both parametric uncertainties and unknown disturbances [3,13,14]. Several recent 

researches have seen the light of day in the design of advanced controllers, such as adaptive 

backstepping control [8,15,16], sliding mode control SMC [17,18], direct torque control DTC 

[19,20] and active disturbance rejection control ADRC [21,22]. In the wake of the 

development of artificial intelligence and fuzzy logic algorithms, sophisticated and robust 

controllers for PMSM have been designed [23,24]. 

 The purpose of this paper is to develop an algorithm to control the speed and current of the 

PMSM using the technique of exact linearization and input-output decoupling. As 

in[11,25,26], this means transforming the non-linear PMSM model into a decoupled, 

controllable and linear model using static state feedback. In this new coordinate system, the 

convergence of speed to the desired value 𝜔𝑟𝑒𝑓  and direct current to the desired value 

𝑖𝑑_𝑟𝑒𝑓 = 0, is guaranteed by pole placement. The following work is structured as follows. 

Section 2 shows the dynamic model of the PMSM in the d-q frame. The input-output 

linearization method and the stabilization of the controller by pole placement are developed 

in Section 3. The fourth section presents the block diagram of the whole system and the 

simulation results obtained using MATLAB/Simulink software. Finally, conclusion and 

prospects are provided in Section 5. 

2 PMSM dynamic model 

The representation of the state model for the surface-mounted permanent magnet 

synchronous motor SM-PMSM in the d-q frame is outlined as follows: 

    
𝑑𝜔𝑟

𝑑𝑡
=

3𝑝2𝜑𝑟

2𝐽
 𝑖𝑞 −

𝐵

𝐽
 𝜔𝑟 −

𝑝𝑇𝐿

𝐽
           (1)  

    
𝑑𝑖𝑑

𝑑𝑡
= −

𝑅𝑠

𝐿𝑠
𝑖𝑑 + 𝜔𝑟𝑖𝑞 +

𝑢𝑑

𝐿𝑠
                                                                (2) 

    
𝑑𝑖𝑞

𝑑𝑡
= −

𝑅𝑠

𝐿𝑠
𝑖𝑞 − 𝜔𝑟𝑖𝑑 −

𝜑𝑟

𝐿𝑠
𝜔𝑟 +

𝑢𝑞

𝐿𝑠
                                                  (3) 

 Here, 𝑅𝑠 represents the stator resistance, 𝐿𝑠 stands for the d-q axis inductances, 

𝑖𝑑 , 𝑖𝑞 , 𝑢𝑑 and 𝑢𝑞 correspond to the stator currents and voltages in the d-q axis. Additionally, 
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𝑝 denotes pole pairs number, while 𝜔𝑟 and 𝜑𝑟 refer to the rotor's electrical angular speed and 

flux, 𝑇𝐿  represents the load torque, which will be treated as a disturbance. Furthermore, 𝐽 

represents the rotor inertia, and 𝐵 signifies the viscous friction coefficient [14]. In order to 

design control laws based on input-output linearization feedback, the following assumptions 

are retained: 

- A1: All motor parameters are assumed to remain constant and known. 

- A2: All state variables 𝜔𝑟, 𝑖𝑑 and 𝑖𝑞  are available for feedback. 

- A3: The signal 𝜔𝑟_𝑑  𝜖 ℜ represents the trajectory of the desired reference speed, 

which can be differentiated numerically and bound by the following derivatives 

𝜔𝑟_𝑑 , �̇�𝑟_𝑑, �̈�𝑟_𝑑  𝜖 𝐿∞. 

 The third-order model of PMSM is strongly nonlinear and can be represented in affine form 

by the command as follows: {
�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

𝑦 = ℎ(𝑥)
 

Where : 𝑥 = [𝜔𝑟 𝑖𝑑 𝑖𝑞]𝑇 = [𝑥1 𝑥2 𝑥3]𝑇 is the state vector, 𝑢 = (
𝑢𝑞

𝑢𝑑
) = (

𝑢1

𝑢2
) is the 

control input, 𝑦 is the output to be controlled, the functions 𝑓(𝑥), 𝑔(𝑥) and ℎ(𝑥) are analytic: 

𝑓(𝑥) = [

𝑓1(𝑥)
𝑓2(𝑥)

𝑓3(𝑥)
] = [

𝑎1𝑥3 − 𝑎2𝑥1 − 𝑎3𝑇𝐿

−𝑏1𝑥2 + 𝑥1𝑥3

−𝑐1𝑥3 − 𝑥1𝑥2 − 𝑐2𝑥1

]        ,        𝑔(𝑥) = [𝑔1(𝑥) 𝑔2(𝑥)] = [

0 0

0
1

𝐿𝑠

1

𝐿𝑠
0

] 

𝑦 = (
ℎ1(𝑥)
ℎ2(𝑥)

) = (
𝑦1

𝑦2
) = (

𝑥1

𝑥2
) = (

𝜔𝑟

𝑖𝑑
) 

With : 𝑎1 =
3𝑝2𝜑𝑟

2𝐽
; 𝑎2 =

𝐵

𝐽
 ;  𝑎3 =

𝑝

𝐽
 ; 𝑏1 =

𝑅𝑠

𝐿𝑠
 ; 𝑐1 = 𝑏1 ;  𝑐2 =

𝜑𝑟

𝐿𝑠
                              (4) 

The electromagnetic torque is given by the following relationship: 𝑇𝑒 =
3

2
𝑝𝜑𝑟𝑖𝑞               (5) 

3 Controller design 

3.1 Linearization exact and Input-Output decoupling 

 The objective is to try to synthesize a static state feedback to compensate the non-linearities 

of the PMSM model, such as: 𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣 , with  𝑣 = (
𝑣1

𝑣2
) is the new external control 

input that stabilizes the system. This will establish a linear relationship between 𝑣 and the 

output 𝑦. Afterwards a change of coordinates 𝑧 = ∅(𝑥) is necessary to transform the PMSM 

model into a linear and controllable system in condensed canonical form: {
�̇� = 𝐴𝑧 + 𝐵𝑣

𝑦 = 𝐶𝑧
 . 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Architecture of the control by linearization and input-output decoupling 
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 All these steps are illustrated in the Figure 1. 

The principle is simple, we derive the output until a component of the control vector appears: 

- For the speed, from (1) and (4):  𝑦1 = 𝑥1 = 𝜔𝑟  ⇒  �̇�1 = 𝑎1𝑥3 − 𝑎2𝑥1 − 𝑎3𝑇𝐿   

The second derivative is obtained by replacing (3) and (4) in the last equation: 

   �̈�1 = 𝑎1(−𝑐1𝑥3 − 𝑥1𝑥2 − 𝑐2𝑥1) − 𝑎2(𝑎1𝑥3 − 𝑎2𝑥1 − 𝑎3𝑇𝐿) + 𝑎1
𝑢1

𝐿𝑠
                     (6) 

The relative degree [number of times the output must be derived to explicitly show at least 

one component of the control vector] of the output 𝑦1 is: 𝑟1 = 2 

- For the direct current, from (2) and (4): 

                                        𝑦2 = 𝑥2 = 𝑖𝑑   ⇒   �̇�2 = −𝑏1𝑥2 + 𝑥1𝑥3 +
𝑢2

𝐿𝑠
                               (7) 

Hence the relative degree for the output 𝑦2 is therefore: 𝑟2 = 1 

 Then, the decoupled system is presented as a set of two single-input single-output SISO 

subsystems; in this way, the control input 𝑣1 only affects the speed of the PMSM and 𝑣2 

controls the direct current 𝑖𝑑, as shown in Fig 1. 

 For both outputs 𝑦1 and 𝑦2, (6) and (7) can be written as a matrix: 

                                        (
�̈�1

�̇�2
) = ∆0(𝑥) + ∆(𝑥) × (

𝑢1

𝑢2
) = (

𝑣1

𝑣2
)                                         (8) 

∆0(𝑥) = [
𝑎1(−𝑐1𝑥3 − 𝑥1𝑥2 − 𝑐2𝑥1) − 𝑎2(𝑎1𝑥3 − 𝑎2𝑥1 − 𝑎3𝑇𝐿)

−𝑏1𝑥2 + 𝑥1𝑥3
] and ∆(𝑥) = (

𝑎1

𝐿𝑠
0

0
1

𝐿𝑠

) 

The determinant of the uncoupling matrix ∆(𝑥) is calculated: 

det(∆(𝑥)) =
𝑎1

𝐿𝑠²
≠ 0 ⇒ 𝑎1 ≠ 0 ⇒ 𝜑𝑟 ≠ 0 

∆(𝑥) is not singular, then the dynamic state model of the permanent-magnet synchronous 

motor is decoupled by static state feedback: 

𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣 = ∆−1(𝑥) × (−∆0(𝑥) + 𝑣) 

Where:           𝛼(𝑥) = −∆−1(𝑥) × ∆0(𝑥) and 𝛽(𝑥) = ∆−1(𝑥) 

The dimension of the PMSM after looping is: 𝑟 = 𝑟1 + 𝑟2 = 𝑛 = 3, so the system is 

completely linearizable. The input-output behavior of the looped system is linear and 

described by a chain of integrators (see Fig 1):  
𝑌1(𝑠)

𝑉1(𝑠)
=

1

𝑠2  and  
𝑌2(𝑠)

𝑉2(𝑠)
=

1

𝑠
 

3.2 Poles placement control 

 The second loop involves building the control 𝑣 which stabilizes the speed and current of 

the PMSM and enables the reference settings to be followed: 

𝑦1𝑑 = 𝜔𝑟_𝑑 and 𝑦2𝑑 = 𝑖𝑑_𝑑 = 0 

We define the tracking error for the speed 𝜔𝑟 as follows:  

𝜀1 = 𝑦1 − 𝑦1𝑑 = 𝜔𝑟 − 𝜔𝑟_𝑑  ;   𝜀1̇ = 𝜀12 

we obtain: {
𝜀1̇ = 𝜀12

𝜀1̇2 = 𝑣1 − �̈�1𝑑 = �̅�1 
⟹  {𝜀1̇ = 𝐴1𝜀1 + 𝐵1�̅�1 

The command 𝑣1 is chosen such that: 

           �̅�1 = −𝑘1𝜀1  ⟹    𝑣1 = −𝑘1 (
𝑦1 − 𝑦1𝑑

�̇�1 − �̇�1𝑑
) + �̈�1𝑑                                      (9) 

Similarly, the tracking error for the direct current 𝑖𝑑 is given by: 

𝜀2 = 𝑦2 − 𝑦2𝑑 = 𝑖𝑑 − 𝑖𝑑𝑑 

The command 𝑣2 is chosen such that:  

𝑣2 = −𝑘2(𝑦2 − 𝑦2𝑑) + �̇�2𝑑                                         (10) 
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The vector 𝒌𝒋 is chosen such that the real part of the eigenvalues of the matrix (𝐴𝑗 − 𝐵𝑗𝑘𝑗) 

is strictly negative: 𝑅𝑒[𝑒𝑖𝑔𝑣(𝐴𝑗 − 𝐵𝑗𝑘𝑗)] < 0 ; 𝑗 = 1,2 

𝐴1 = (
0 1
0 0

) ; 𝐴2 = 0 ; 𝐵1 = (
0
1

) ;  𝐵2 = 1  

Inserting (9) and (10) into (8), we get the control voltages 𝑢𝑞 and 𝑢𝑑: 

(
𝑢𝑞

𝑢𝑑
) = ∆−1(𝑥) × [−∆0(𝑥) + (

−𝑘11(𝑦1 − 𝑦1𝑑)−𝑘12(�̇�1 − �̇�1𝑑) + �̈�1𝑑

−𝑘2(𝑦2 − 𝑦2𝑑) + �̇�2𝑑
)] 

4 Block diagram on MATLAB/Simulink and simulation results 

In this section, we present the simulation results of the proposed control. Before this, Figure 

2 shows the structure of the PMSM control by linearization and input-output decoupling via 

static state feedback. We have used the PMSM model integrated in MATLAB/Simulink 

associated with a PWM-controlled voltage inverter.  

 

The parameters and nominal values of the PMSM used are identical to those described in 

the paper [3]. They are shown in Table 1. 

 
     Table 1. The PMSM parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figures 3(a)-(h) show the simulated responses obtained by closed-loop regulation of the 

chosen control. This is done in order to examine and give concrete reality to the performance 

of this control technique. These simulations include scenarios where a sudden change in 

speed and a sudden increase in load torque are applied to the permanent magnet synchronous 

motor. The motor starts with a load torque of 3 Nm and an initial speed step of 94.247 rad/s 

(900 rpm), with the reference speed abruptly increased to 125.66 rad/s (1200 rpm) at 0.05 

Parameters  Values  

DC Link voltage [V] 220  

Rated power [KW] 1.1 

Rated speed [rpm] 3000 

Permanent magnet flux [Wb] 0.175 

Pole pairs number 4 

Viscous friction coefficient [Nms] 0.0008 

Motor inertia [Kgm²] 0.001 

Stator phase resistance [] 2.875 

Stator phase inductances [mH] 8.5 

Fig 2. Global control scheme for the PMSM by Input-Output Feedback Linearization 
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seconds. At 0.1 seconds, an instantaneous application of a 7 Nm load torque to the motor is 

observed in Figure 3(g). 

Figures 3(a)-(d) show that the rotor speed of the PMSM converges to the desired value with 

a response time of approximately 6 milliseconds and without transient overshoot. However, 

it is worth noting that the static error in steady-state remains relatively low, not exceeding 

0.23 rad/s. Figure 3(h) shows the currents of phases A, B and C, displaying rapid variations 

in amplitude as a result of changes in load torque or speed. 

Figure 3(f) shows that during start-up, a significant overshoot of the q-axis current occurs, 

with the current peaking at 23 A before stabilizing at its nominal value. On the other hand, 

the d-axis current rapidly converges to zero and remains close to 0A, so that the 

electromagnetic torque produced by the motor is proportional to the q-axis current (see 

equation (5)). Obviously, decoupling is guaranteed. The impact of the sudden load torque 

disturbance on rotor speed is evident in figure 3(d), as the speed suffers a transient drop of 

between 2 and 3 rad/s when the load is applied (see figure 3(g)). 

These figures collectively demonstrate the ability of the linearization and input-output 

feedback control technique to compensate the load torque disturbance. 

The actual motor parameters are not perfectly known due to practical conditions and 

identification errors, for example: variation in stator resistance caused by temperature 

changes; uncertainty in inductance is very common due to the non-linear characteristics of 

the magnetic circuit; operation at low rotational speeds; variation in inertia caused by 

increasing load [3]. Several studies have shown that parameter uncertainties degrade control 

performance and can reduce drive robustness [8,15]. A ±50% variation in the nominal value 

of resistance, stator inductance and moment of inertia, as well as a 20% variation in magnet 

flux, was carried out under conditions of load torque disturbance increasing from the value 3 

Nm to 7 Nm at 50 milliseconds, thereby proving the robustness of the IOFL control. For each 

scenario, reference speed is ramps to a steady 110 rad/s (1050 rpm), and speed error is shown 

in Figures 4(a)-(b) to 7(a)-(b). From the graphs, we can see that the steady-state static error 

remains limited to ±1 rad/s. These results highlight one of the limitations of linearized 

feedback control against parametric PMSM perturbations. 
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Fig 3. Simulated training data was used to examine the response of sudden acceleration at 0.05s 

and increasing load torque at 0.1s. Elements analyzed included: (a) Velocity tracking response 

for a step reference profile; (b) Zoom to the region near 0s; (c) Zoom around 0.05s; (d) Zoom 

around 0.1s; (e) Direct current; (f) Quadrature current; (g) Electromagnetic torque and load 

torque; and (h) Stator currents of the three phases A, B and C. 

e 

g h 

f 

a b 

c d 
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Fig 4. Changes in stator resistance Rs. (a) +50 % Rs; (b) -50 % Rs 
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Fig 5. Changes in stator inductance Ls. (a) +50 % Ls; (b) -50 % Ls 
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Fig 6. Changes in rotor inertia J. (a) +50 % J; (b) -50 % J 
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Fig 7. Changes in rotor flux φr. (a) +20 % φr; (b) -20 % φr 
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5 Conclusion and prospects  

The linearization and input-output decoupling method requires a well-defined model and, 

in many cases, allows compensation for a certain non-linearity, which can be useful. 

However, the validity of the proposed control is confirmed by the simulation results obtained, 

with rotor speed and direct current converging to their desired values with acceptable static 

and dynamic behaviour. However, it suffers against PMSM parameter variations, as well as 

some limitations at low rotational speeds due to significant non-linearities such as magnetic 

saturation of permanent magnets and iron losses, which make accurate modelization difficult 

and consequently affect the performance of exact linearization control. To address this, it is 

obvious to consider an adaptive control technique based on real-time observation of PMSM 

parameters or advanced algorithms based on artificial intelligence such as neural network 

methods should clearly be considered. 

Abbreviations  

SM PMSM 

SMC 

DTC  

ADRC  

PWM 

Surface Mounted Permanent Magnet Synchronous Motors 

Sliding Mode Control 

Direct Torque Control 

Active Disturbance Rejection Control 

Pulse Width Modulation  
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