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Abstract. The primary driver of operating costs in natural gas processes is the
energy consumption of the compression system. Multistage compression con-
figurations are commonly employed and hence play a vital role in optimization
of natural gas processes. In this study, a generalized disjunctive programming
model for multistage compression is formulated. The model is useful for both
synthesis and optimization of multistage compression configurations. By us-
ing this approach, we further seek improvements in shaft work savings. The
model relies on thermodynamic equations and is designed to minimize the con-
sumption of shaft work. The model is handled by employing the logic-based
branch and bound algorithm, eliminating the need for explicit conversion into a
MINLP, which in turn leads to improved convergence and faster computational
performance. The model solution yields optimal pressure levels, and hence
stage shaft work consumptions. A case study of multistage compression for a
prior optimized single mixed refrigerant (SMR) process obtained from litera-
ture is used to test the proposed model. The model’s outcomes are validated
through simulation using the Aspen Hysys software. Savings in shaft work of
atmost 0.0088%, 0.4433%, and 1.2321% are obtained for the two, three, and
four stage compression systems respectively against the optimized base cases
from literature.

1 Introduction

Natural gas (NG) is recently considered as a potent and clean energy source due to production
of low carbon emissions in comparison to other fossil fuels [1]. Due to the demand for
environmentally benign energy sources, natural gas has received increasing attention in recent
years. Natural gas demand is expected to grow by 60% between 2010 and 2030, and is
anticipated to surpass coal as a dominant energy provider by approximately 2035 [2]. In
industrial applications where gas is transported through pipelines, one of the most crucial
processes is gas compression. It is commonly employed in internal combustion engines,
power generation cycles, domestic gas supply and refrigeration cycles [3–5].
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The majority of natural gas resources are located in distant and isolated areas. This neces-
sitates their transportation over extended distances. The transportation of natural gas in its
gaseous state poses difficulties due to its significant volume and the risk of flammability. The
most efficient method for long distance transport involves the liquefaction of natural gas in
industrial refrigeration facilities. This process involves cooling the natural gas to -160 ◦C to
produce liquefied natural gas (LNG) at atmospheric pressure. This reduces its volume to one
six hundredth of its original volume and mitigates the explosion risk [2]. Nonetheless, the
liquefaction process demands a substantial amount of energy. This constitutes approximately
40% to 60% of the overall cost of LNG production [6] and roughly 30% of the total energy
consumed within the natural gas value chain [2]. Consequently, it is of utmost significance
to optimize these processes in order to enhance energy efficiency and reduce associated ex-
penses to a minimum. However, the mechanistic and thermodynamic models required to
accurately describe liquefaction processes are complex, highly non-linear and non-convex.
This complicates the optimisation challenge [1] [7]. Nevertheless, many studies have fo-
cused on this considerable task using a variety of techniques that range from deterministic to
stochastic algorithms.

In the realm of deterministic optimization techniques, sequential quadratic programming
(SQP) was employed by several researchers. Khan et al. [8] used SQP to optimize the single
mixed refrigerant (SMR) process, Wahl et al. [9] applied it to the Poly Refrigerant Integral
Cycle Operation (PRICO) LNG process, and Hwang et al. [10] utilized SQP for the dual
mixed refrigerant (DMR) process. Mussati et al. [11] optimized a series flow double-effect
water-lithium bromide absorption refrigeration system using the generalized reduced gradi-
ent algorithm to minimize costs. On the other hand, when it comes to stochastic optimization
techniques, Shirazi and Mowla [12] utilized the genetic algorithm (GA) to minimize the to-
tal energy consumption in an SMR process of an LNG peak shaving plant. Khan and Lee
[13] utilized the particle swarm optimization (PSO) technique to enhance energy efficiency
in an SMR process. Primabudi et al. [14] adopted the non-dominated sorting genetic al-
gorithm II (NSGA-II) to perform multi-objective exergoeconomic optimization for a C3MR
LNG plant. Alabdulkarem et al. [15] harnessed the genetic algorithm from the Matlab opti-
mization toolbox for optimizing a propane pre-cooled mixed refrigerant (C3MR) LNG plant.
Meanwhile, Aspelund et al. [16] devised a gradient-free optimization-simulation approach
based on Tabu Search (TS) and the Nelder-Mead Downhill Simplex (NMDS) to minimize
energy consumption in a PRICO process integrated into Aspen Hysys. Almeida-Trasvina
et al. [17] introduced structural modifications to a novel SMR process and minimized shaft
work consumption employing the genetic algorithm.

Due to the fact that the energy consumption of these processes is attributed to the compressor
configuration, we extend the analysis of optimization of such processes to the compressor
configurations. In addition, the total operational expenses of an LNG facility are dominated
by the energy requirement for refrigerant compression [17]. Various works have considered
single, two, three or four stage compressor configurations separately in the analysis and/or
optimization of LNG processes with the exception of a few works such as Tak et al. [18] who
consindered two, three and four, and Ebrahimi et al. [19] one and four stages. Forexample
Lee et al. [20], Aspelund et al. [16], Wahl et al. [9] considered one stage compression config-
urations. Shirazi and Mowla [12], He et al. [21], Aslambakhsh et al. [22], and Lee and Moon
[23], Li and Ju [24] considered two and three stages respectively. Others such as Khan and
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Lee [13], Qadeer et al. [25], Qyyum et al. [26] considered four stage compression cycles.
It is clear that consideration of the number of compression stages is an important factor for
the synthesis and optimization of natural gas liquefaction processes. Nevertheless, there is
less focus on research that investigates simultaneously different compressor configurations in
the synthesis and optimization analysis of LNG cycles to improve their energy efficiency. In
addition, there is need for a robust and quick approach that considers the number of com-
pression stages while optimizing liquefaction processes. This may be useful at all stages
of synthesis and optimization of liquefaction processes, at start-up design stages or retrofits.
Also, the problem formulations are highly nonlinear and non-convex, and hence their solu-
tion still pose significant challenges. Therefore, improvements and/or alternative view points
of approach are still welcome.

This work develops a novel generalized disjunctive programming (GDP) model for multi-
stage compression configurations. Raman and Grossmann [27] introduced the GDP paradigm
which presents models using algebraic equations, boolean and continuous variables, disjunc-
tions and logic propositions. This has been applied in a variety of applications that include
operations planning and scheduling, synthesis of flowsheet and reactor networks, process
control and others [28]. Modeling and optimization of the problem as a GDP further benefits
the approach by making the modelling easier to understand since it retains the underlying
logical relationships; obtaining improved robustness and convergence speed while applying
logic-based solution techniques to solve the problem [29]; and having access to a variety
of solution approaches [30] [31]. The model relies on thermodynamic equations and is de-
signed to minimize the consumption of shaft work. The model is useful for optimization of
processes with multistage compression configurations. In addition, it also considers synthe-
sis where different number of compressor configurations are considered. This work also aims
to explore alternative promising directions for further study of optimization applied to LNG
refrigeration cycles. In this case, the problem is redefined and approached using a different
perspective not explored before. This enhances the capacity to solve the mathematical models
efficiently and rigorously. A case study of multistage compression for a prior optimized SMR
process as obtained from literature, is employed to evaluate the proposed model. The results
obtained are confirmed through validation using Aspen Hysys software, offering a sense of
assurance in the achieved solutions.

2 Materials and Methods

2.1 Process description and configurations

2.1.1 Process description of mixed refrigerant (MR) cycles

The natural gas liquefaction cycles mainly comprise of compression and expansion of the
refrigerant. A fascinating MR cycle known as the “self-cooling” cycle is displayed in Figure
1. In this cycle, the natural gas is cooled down in a multistream heat exchanger (MHEX)
and expanded to a pressure of about 1 atm to form LNG. In the MR cycle, the refrigerant at
high pressure, as it exits the compressor, dissipates heat to an external heat reservoir. It then
rejects heat to the low pressure refrigerant obtained after expanding the high pressure refrig-
erant in the JT valve. The heat rejection process ensures that the hot refrigerant undergoes
additional cooling, potentially leading to subcooling, before undergoing expansion. It also
makes the obtained low pressure refrigerant attain a lower temperature and vapour fraction.
The drawback of this however is an increase in heat exchanger duty and hence heat transfer
area is also increased [32]. The natural gas and high pressure streams correspond to the hot
streams of the MHEX. The low pressure stream corresponds to the cold stream of the MHEX.
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For actual natural gas processes, the compression stage shown in Figure 1 is normally a mul-
tistage compression system coupled with intercooling as shown in Figure 2. These processes
encounter large pressure differences between the inlet and outlet pressures. Therefore, for
compression systems from a given pressure Pmin to much higher pressure Pmax, the compres-
sion is split into smaller stages. For each intermediate stage, the gas undergoes compression
at a specific intermediate pressure level. Afterward, it experiences cooling and is directed
towards the inlet of the subsequent stage’s compressor. This cycle continues repeatedly until
the desired process exit pressure Pmax is reached. Despite this procedure not being ideal,
employing a multi-stage compression approach can yield substantial savings. The extent of
these savings hinges on the number of stages involved in the entire compression process and
the distribution of the total pressure ratio PRtot = Pmax/Pmin across these individual stages.
An ideal isothermal process results in minimum work for compression. However, an infinite
number of intercoolers is required in this case. Under actual circumstances, the compression
ratio is divided into two or more stages with cooling the compressed gas in between stages.
This is done for design reasons and in attempts to consume minimum shaft work energy [4].
The number of stages is governed by economics whereas the total pressure ratio distribution
is a technical issue [33]. Generalized disjunctive programming is employed in this work to
address these two issues.

Figure 1: A self-cooling MR cycle.

Figure 2: Multistage compression with intercooling.

2.1.2 Single mixed refrigerant (SMR) compression configurations

For liquefaction processes, the refrigerant in gaseous form is compressed in compressors re-
sulting in exiting gas with higher specific volumes and increasingly higher temperatures [18].
In order to lower exit temperatures, decrease gas specific volumes and hence lower com-
pressor power consumption, intercooling is employed. Thus, multistage compression with
intercooling is commonly employed in natural gas liquefaction processes. SMR processes of
various compression configurations are shown in Figure 3. The sub-figures show two, three
and four compression stage systems respectively. Note that a one stage compression sys-
tem is shown in Figure 1. Each process consists of a multistream heat exchanger (MHEX),
compressor(s), cooler(s) and Joule Thomson (JT) valve(s).
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Natural gas enters the LNG MHEX at a high pressure and room temperature, where it ex-
changes its latent heat of vaporization/condensation with the cold MR stream. It exits the
MHEX as a subcooled liquid at elevated pressure. It then undergoes flashing in a JT valve
to a pressure slightly above atmospheric [6]. LNG is then obtained. In the MR loop, the
superheated MR leaving the MHEX undergoes a multi-stage compression process with in-
tercooling to attain high pressure (In Figure 3, two, three, and four compression stages are
shown). The generated high pressure MR stream also enters MHEX as another hot stream.
Upon exiting, its pressure is reduced as it passes through a JT valve, thereby creating the cold
MR stream. This is vaporized in the MHEX to form superheated MR, and hence completing
the cycle.

3 Modelling and optimization

3.1 Mathematical modelling

The discharge pressure for any stage i in multistage compression for a total number of com-
pressors K is given by;

Pi = PR
iPmin i ∈ {1, 2, ...,K} (1)

The stage pressure ratio PR is estimated using PR = (
Pmax

Pmin
)1/K where Pmin is the minimum

pressure and Pmax the maximum pressure.

The Peng-Robinson equation of state is utilized for the calculation of thermodynamic quan-
tities. This choice of equation of state is made due to its suitability for non-polar and moder-
ately polar mixtures. Moreover, it exhibits efficient computational performance, particularly
near critical conditions [14].

3.1.1 Compressor

The equations that govern the performance of the compressor are cited from Matovu et al.
[34] and can be summarized as follows:

The isentropic temperature Tis is obtained using Eqn (2), where R represents the universal
gas constant.

Tis = Tin
(Pout

Pin

) R
Cpav (2)

In the above Eqn (2), the average specific heat capacity, Cpav, is computed at the mean
temperature of the compressor. All specific heat capacities are calculated using the Aly-Lee
model [35].

Eqn (3) is used to determine the index of compression, nk:

nk =
ln(Pout/Pin)
ln(νin/νout)

≡
ln(Pout/Pin)

ln((Tin/Pin)/(Tis/Pout))
(3)

Here, νin is the specific inlet volume and νout the specific outlet volume of gas.

The temperature of the stream exiting the compressor, Tout, is calculated using Eqn (4).

Tout = Tin
(Pout

Pin

)( nk−1
nkηp

) (4)
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(a) Configuration 1: Two compression stages.

(b) Configuration 2: Three compression stages.

(c) Configuration 3: Four compression stages.

Figure 3: Different compressor configurations for the SMR process.

where ηp the polytropic efficiency.

The polytropic head factor fp is given by Eqn (5).

fp =
( his,out − hin

RTis − RTin

)
(
nk − 1

nk
) (5)

Here, hin and his,out are the specific inlet and specific isentropic discharge enthalpies, respec-
tively.
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The polytropic head,H , is defined as given by Eqn (6). The term
g.MW
1000

is a correction term

to convertH to meters (m).

H = fpRTin
nkηp

nk − 1
[(Pout

Pin

)( nk−1
nkηp

)
− 1
]
/(
g.MW
1000

) (6)

The shaft work of the compressors is then determined as given by Eqn (7).

w =
m(
g.MW
1000

)H

ηpηm
(7)

Here, m represents the molar flow rate into the compressor, and ηm is the mechanical effi-
ciency.

3.1.2 Cooler

The equation that governs performance of the cooler is as follows. The heat transfer rate or
duty Q is calculated using the equation:

Q = m
(
hin − hout

)
(8)

Here, m is the molar flow rate, and hin and hout denote the molar enthalpies of the incoming
and outgoing streams, respectively. These enthalpies depend on the composition, temper-
ature, and pressure of the respective streams. The actual enthalpy is a summation of the
enthalpy departure and the ideal enthalpy. The departure enthalpy is calculated based on
the Peng-Robinson equation of state. The necessary equations are obtained from Dahm and
Visco [36].

3.2 The generalized disjunctive programming model

The generalized disjunctive programming (GDP) model formulation is given by Eqn (9).

min z = f (x)
s.t. g(x) ≤ 0,

∨
d∈Dk

[
Ykd

Ekd(x) ≤ 0

]
, k ∈ K, (9)

⊻
d∈Dk

Ykd, k ∈ K

Ω(Y) = True,

xlo ≤ x ≤ xup

x ∈ Rq

Ykd ∈ {True,False}, k ∈ K, d ∈ Dk

Here, the continuous variables are denoted as x, with xlo representing the lower bounds and
xup the upper bounds associated with these variables. The objective function is denoted as
f (x), and the variables Ykd are of boolean nature. The expression g(x) ≤ 0 represents global
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constraints, which are always true, irrespective of the specific discrete choices made. In this
context, square brackets indicate disjunctions, where each disjunction k signifies significant
discrete decisions. The disjuncts d within each disjunction represents various selection alter-
natives. When the boolean variable Ykd is True, the constraints Ekd(x) ≤ 0 are considered
valid; otherwise, they are not valid. It’s important to note that for each disjunction, only one
of the disjuncts can be True. The constraints Ω(Y) = True define the logical connections
among the boolean variables.

3.3 The GDP model applied to multistage compression involving K compression
stages

The GDP model given by Eqn (10) comprises of various components. These include an
objective function that aims to minimize the overall shaft work requirement. Furthermore,
it includes global constraints that apply universally, irrespective of the particular disjuncts
selected from each disjunction. The model is further structured with K disjunctions spanning
from 0 to K − 1. The disjunction is the major discrete decision that represents selection of a
pressure level k. The disjuncts in each disjunction represent selection alternatives to a higher
pressure level d. Hence for the selection to be valid, d ≥ k.

min W =
∑
k∈K

∑
d∈Dk

wkd

s.t. g(x) ≤ 0, Y0,0
E0,0(x) ≤ 0
W0 = w0,0

 ∨
 Y0,1
E0,1(x) ≤ 0
W0 = w0,1

 ∨
 Y0,2
E0,2(x) ≤ 0
W0 = w0,2

 ∨ . . .
 Y0,K
E0,K (x) ≤ 0
W0 = w0,K

 Y1,1
E1,1(x) ≤ 0
W1 = w1,0

 ∨
 Y1,2
E1,2(x) ≤ 0
W1 = w1,2

 ∨ . . .
 Y1,K
E1,K (x) ≤ 0
W1 = w1,K


.
.
.

.

.

.
.
.
. YK−1,K−1

EK−1,K−1(x) ≤ 0
WK = wK−1,K−1

 ∨
 YK−1,K
EK−1,K (x) ≤ 0
WK = wK−1,K

 (10)

⊻
d∈Dk

Ykd , ∀k ∈ K

x ∈ X

k ∈ {0, 1, ...,K}

Yk,d ∈ {True,False}, ∀k ∈ K, d ∈ Dk; d ≥ k

3.3.1 Objective function

The objective is to reduce the overall shaft work requirement to a minimum through strategic
selection of stages. The model’s equation is presented as Eqn (11).

W =
∑
k∈K

∑
d∈Dk

wkd (11)

Here, W denotes the total shaft work, and wkd signifies the shaft work demand of the com-
pressor from pressure level k to d. Thus,
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wkd =

m(
g.MW
1000

)Hkd

ηpηm
(12)

whereHkd is the polytropic head of a compressor from level k to d.

3.3.2 Global constraints

The discharge pressure of compressor k to d should be similar to pressure level d.

Pkd,out = Pd (13)

The multiplication of pressure ratios across all stages results in the total pressure ratio, a
constant value since the minimum and maximum pressures are constant.

K∏
k=1

PRk−1,k = PRtot (14)

3.3.3 Equality constraints

The equality constraints are model equations presented in section 3.1.

3.3.4 Inequality constraints

The compressor outlet pressures are restricted between the minimum and maximum pres-
sures.

Pkd,out ≥ Pmin and Pkd,out ≤ Pmax (15)

The pressure ratios are bounded between 1.0 and total presuure ratio PRtot respectively.

PRkd ≥ 1.0 and PRkd ≤ PRtot (16)

The outlet temperatures of compressor level k to d can not exceed the maximum temperature
Tmax,out, thus

Tkd,out ≤ Tmax,out (17)

4 Results and discussion

4.1 Case studies: Multistage compression for a single mixed refrigerant process

These case studies consider optimization of the compressor configurations of SMR process.
The configurations composed of two, three and four compressors respectively are denoted
Config.1, 2, and 3. The data for the process is obtained from Tak et al. [18]. The natural gas
parameters for the configurations are shown in Table 1. The MR and other parameters are
in shown in Table 2. The objective is to find a set of pressure levels that, when combined,
minimize the shaft work required while still satisfying process constraints. The natural gas
parameters and refrigerant flow rates and compositions are maintained constant. The lowest
and highest pressures P0, PK are considered constant to meet process requirements.
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Table 1: Natural gas parameters for the SMR processes with different compressor configura-
tions.

Parameter Config.1 Config.2 Config.3
natural gas flow rate (kg/s) 1.0 1.0 1.0
natural gas temperature (K) 298.15 298.15 298.15
natural gas pressure (bar) 55.0 55.0 55.0
natural gas composition (mol %)
methane 91.3 82.0 82.0
ethane 5.4 11.2 11.2
propane 2.1 4.0 4.0
i-butane 0.5 1.2 1.2
n-butane 0.5 0.9 0.9
nitrogen 0.2 0.7 0.7

Table 2: Mixed refrigerant and other parameters for the SMR processes with different com-
pressor configurations.

Parameter Config. 1 Config. 2 Config. 3
mixed refrigerant flow rate (mol/s) 165.4 158.7 176.0
mixed refrigerant composition (mol %)
methane 23.8 25.1 25.5
ethane 35.7 32.6 32.2
propane 0.1 0.8 1.4
i-butane 4.5 3.8 2.7
n-butane 21.9 21.8 22.1
nitrogen 14.0 15.9 16.1
Inlet temperature of compressor 1 (K) 300.05 300.15 300.15
Inlet pressure of compressor 1 (bar) 3.35 4.26 4.72
Compression ratio
compressor #1 3.19 1.66 1.35
compressor #2 2.78 1.60 1.41
compressor #3 2.91 1.28
compressor #4 2.60

min W =
∑
k∈K

∑
d∈Dk

wkd

s.t. g(x) ≤ 0, Y0,0
E0,0(x) ≤ 0
W0 = w0,0

 ∨
 Y0,1
E0,1(x) ≤ 0
W0 = w0,1

 ∨
 Y0,2
E0,2(x) ≤ 0
W0 = w0,2

 ∨
 Y0,3
E0,3(x) ≤ 0
W0 = w0,3

 Y1,1
E1,1(x) ≤ 0
W1 = w1,0

 ∨
 Y1,2
E1,2(x) ≤ 0
W1 = w1,2

 ∨
 Y1,3
E1,3(x) ≤ 0
W1 = w1,3

 Y2,2
E2,2(x) ≤ 0
W2 = w2,2

 ∨
 Y2,3
E2,3(x) ≤ 0
W2 = w2,3


Y0,0 ⊻ Y0,1 ⊻ Y0,2 ⊻ Y0,3 (18)

Y1,1 ⊻ Y1,2 ⊻ Y1,3

Y2,2 ⊻ Y2,3

x ∈ {P0, P1, P2, P3}

Yk,d ∈ {True,False}, ∀k ∈ K, d ∈ Dk; d ≥ k

k, d ∈ {0, 1, 2, 3}
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The GDP model for a sample case of three (3) compression stages (K=3) is given by Eqn
(18). Note that the disjuncts with k = d imply that the same pressure level is selected. This is
not a desired operation. All GDP models for the different K values (K=2, K=3, and K=4) are
implemented in Python 3.8.16 using Pyomo [37] and their properties are shown in Table 3.

Table 3: The GDP model properties for different compressor configurations.

Property Config.1 (K2) Config.2 (K3) Config.3 (K4)
Disjunctions 2 3 4
Disjuncts 5 9 14
Constraints 27 46 70
Variables 27 47 72
continuous 22 38 58
binary 5 9 14
integer 0 0 0

The model’s discharge pressures are constrained to fall within the range of Pmin to Pmax, while
temperatures are limited between 298.15 K and 420.0 K. An extension to Pyomo algebraic
modelling language called Pyomo.GDP [38] is employed to formulate the GDP models. The
Logic-Based Branch and Bound (GDPopt-LBB) strategy [39] of the GDPopt solver within
Pyomo.GDP is utilized, with SCIP [40] serving as the MINLP subsolver to solve these mod-
els. The computations are conducted on a system with an Intel®core i7 CPU 2.80 GHz with
16GB of RAM, operating Ubuntu 22.04.2 LTS. Remarkably, the results are obtained in a few
seconds.

Furthermore, the GDP model results are validated through simulations conducted with As-
pen Hysys software. The compressor discharge pressures are used with parameters given in
Tables 1 and 2 for the simulations. The SMR process configurations depicted in Figures 3a,
3b, and 3c have been simulated using Aspen Hysys, and the property package utilized for the
simulation is the Peng-Robinson equation of state. The polytropic efficiencies are assumed
to be 0.8205, 0.8135, and 0.813 for K=2, K=3, and K=4 models respectively. All coolers are
assumed to have no pressure drop.

Table 4 shows all summarized results. The RR results are referenced from Tak et al. [18].
They result from implementation of optimization of SMR processes in gPROMS using the
successive reduced quadratic programming solver. These are resimulated using Aspen Hysys
to obtained the base case (BC) results in the Table 4. The GM results are obtained by solving
the GDP models presented in this work.

For the two stage case, the optimal interstage pressure obtained using GM increases from
10.69 to 11.00 bar in reference to the base case. This results in a larger shaft work w1 but
lower shaft work w2. The overall is a reduced total shaft work wtot of 1130.1 kW. For the three
stage case, the optimal interstage pressure GM results are 8.26 and 16.32 bar respectively.
They are greater than the BC results of 7.072 and 11.32 bar. The combined effect is a total
shaft work wtot of 988.2 kW a reduction from the base case value of 992.6 kW. For the four
stage case, the optimal interstage pressure GM results are 7.34, 12.00 and 19.00 bar. They
are greater than the BC results of 6.372, 8.985 and 11.52 bar. The combined effect is a total
shaft work wtot of 970.0 kW a reduction from the base case value of 982.1 kW.

The AH results are obtained from Aspen Hysys for validation purposes, after simulation of
GM results. This is to ensure that the results obtained from the GDP models are reliable
and comparable to those obtained from a universally acceptable commercial software. For
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the two stage case, the AH total shaft work is 1130.1 kW with a difference of 0.0% from
the GM result of 1130.1 kW. For the three stage case, the AH total shaft is 988.5 kW with a
difference of 0.03% from the GM result of 988.2 kW. For the four stage case, the AH total
shaft is 970.7 kW with a difference of 0.07% from the GM result of 970.0 kW. It is clear
that all the differences are within acceptable limits and hence the GM results are reliable.
In terms of shaft work savings, the two stage case results in savings of atmost 0.0088 %
against the base case. For the three stage case, savings of 0.4433 and 0.4131 % are obtained
against the base case for GM and AH results respectively. Savings of 1.2321 and 1.1608 %
are obtained for the four stage case for GM and AH results respectively. It’s evident that the
savings increase with increasing number of stages. These are significant savings since such
processes are energy intensive that even a small reduction results in huge cost savings. In
addition, the savings are obtained on already optimized base case scenarios referenced from
Tak et al. [18].

Table 4: The comparison of optimization results using different models and simulation.
RR-Reference, BC-Base case, GM -GDP model, AH-Aspen HYSYS.

Variable Config. 1 (two stage) Config. 2 (three stage) Config. 3 (four stage)
RR BC GM AH RR BC GM AH RR BC GM AH

Pressure P0 (bar) 3.35 3.35 3.35 3.35 4.26 4.26 4.26 4.26 4.72 4.72 4.72 4.72
Pressure P1 (bar) 10.69 10.69 11.00 11.00 7.072 8.26 8.26 6.372 7.34 7.34
Pressure P2 (bar) 29.71 29.71 29.71 11.32 11.32 16.32 16.32 8.985 12.00 12.00
Pressure P3 (bar) 32.94 32.94 32.94 11.52 11.52 19.00 19.00
Pressure P4 (bar) 29.95 29.95 29.95

Shaft work w1 (KW) 622.7 622.1 639.2 638.8 249.0 248.8 329.1 329.1 160.4 160.2 238.5 238.6
Shaft work w2 (KW) 507.5 508.1 490.9 491.3 228.4 226.9 330.3 330.3 184.3 183.6 263.3 263.4
Shaft work w3 (KW) 514.8 516.9 328.8 329.1 128.9 128.8 235.4 235.6
Shaft work w4 (KW) 508.9 509.5 232.8 233.1

Total shaft work wtot (KW) 1130.2 1130.2 1130.1 1130.1 992.2 992.6 988.2 988.5 982.5 982.1 970.0 970.7
Savings (%) - - 0.0088 0.0088 - - 0.4433 0.4131 - - 1.2321 1.1608

Furthermore, Aspen Hysys simulations are utilized to extract the results of multistream heat
exchangers. Subsequently, these results are employed to generate the composite curves show-
cased in Figures 4, 5, and 6. These curves exhibit characteristic shapes indicative of the SMR
process, featuring minimal temperature differences for low temperatures between 113.15 K
and 200 K, and more pronounced temperature variations at higher temperatures, exceeding
225 K. Upon close examination of Figures 4, 5, and 6, it becomes evident that there is no
overlap or intersection between the hot and cold composite curves. Hence, signifying the
feasibility of heat transfer. Within these figures, the “Hot MR" corresponds to the high pres-
sure mixed refrigerant streams within the heat exchangers. When combined with the natural
gas streams, they form the hot streams, thereby forming the hot composite curves. Con-
versely, the “Cold MR" corresponds to the low pressure mixed refrigerant streams and serves
as the cold streams within the heat exchangers. These cold MR streams align with the cold
composite curves in the same graphs, indicating their collinearity. The gap observed between
the hot and cold composite curves in all three Figures 4, 5, and 6 is associated with the shaft
work consumption. Specifically, the largest gap, as depicted in Figure 4, corresponds to the
highest shaft work consumption, while the smallest gap, as evident in Figure 6, signifies the
lowest shaft work consumption.

The proposed GDP model implemented on the optimized referenced literature cases results
in shaft work savings of atmost 0.0088%, 0.4433%, and 1.2321%; obtained for the two,
three, and four stage compression systems respectively. The optimized cases also result in
feasible SMR processes based on the composite curves as depicted in Figures 4, 5 and 6.
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Figure 4: The composite curves for two compressor configuration SMR process.

Figure 5: The composite curves for three compressor configuration SMR process.

Figure 6: The composite curves for four compressor configuration SMR process.

This points to effectiveness of the GDP approach for optimizing mixed integer (discrete-
continuous) optimization problems.
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5 Conclusion
A generalized disjunctive programming model for multistage compression is developed in
this work. The model is useful for both synthesis and optimization of multistage compres-
sion configurations. By using this approach, we further seek improvements in shaft work
savings. The GDP models are formulated in the Pyomo modeling language and solved us-
ing the GDPopt solver, which utilizes the Logic-Based Branch and Bound (GDPopt-LBB)
approach, with SCIP serving as a subsolver. This approach enhances convergence and so-
lution speed, hence solving the models in a few seconds. This enables us to effectively and
efficiently solve difficult mixed integer optimization problems. The methodology is applied
on a case study of multistage compression for a prior optimized SMR process obtained from
literature. Aspen Hysys software is used for simulation to validate the model results. The
optimization results yield shaft work savings of atmost 0.0088%, 0.4433%, and 1.2321% for
the two, three, and four stage compression systems respectively against the optimized base
cases from literature. The results demonstrate that the proposed model is not only useful
for synthesis and optimization but also improves on shaft work savings of already optimized
cases.
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