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Abstract. The paper discusses the basic principles of the control point 

method, which reduces the solution of a linear system of partial differential 

equations to the solution of a linear programming (LP) problem. An 

analysis of various methods for solving LP problems is given and it is 

shown that the most suitable for the problems under consideration is the 

interior point method with unconditional sequential minimizations of the 

logarithmic penalty function. Moreover, with a large dimension of the LP 

problem, the main costs of computer time are associated with solving 

systems of linear algebraic equations (SLAE) that determine the direction 

of descent in Newton’s method, used for unconditional minimization. A 

structural approach is proposed to the formation of optimized parameters 

of the LP problem and the organization of the solution of SLAE, in which 

the solution of SLAE of large dimension is reduced to the inversion of 

square matrices and the solution of SLAE of much smaller dimensions, 

which radically reduces the cost of computer time both for solving the 

SLAE and the LP problem.  

1 Introduction 

Calculations of stationary and non-stationary operating regimes of a number of elements of 

heat power plants (heat exchangers of various types, furnaces, pipelines, turbine stages, 

etc.) are reduced to solving systems of partial differential equations (SPDE). The main 

methods for solving such systems are the finite difference method (FDM) [1,2], the control 

volume method (CVM) [3,4] and the final element method (FEM) [5,6]. These methods are 

based on the formation and solution systems of linear algebraic equations (SLAE) of large 

dimension. When using them, difficulties arise with the solution if the initial state of the 

system under study is not known. Poor convergence observed for stiff SPDE. In these 

methods, the condition for a small deviation of the approximate solution of SPDE from its 

exact solution is the smallness of the characteristic geometric dimensions (mesh steps, 

maximum dimensions of control volumes and final elements). The most justified numerical 
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criterion for the sufficiency of such a deviation (the quality of the approximate solution) is 

the value of the maximum absolute residual at all considered (control) points of the 

computational domain. However, none of the mentioned methods uses this criterion. 

Taking into account the indicated shortcomings of FDM, CVM and FEM, a more effective, 

from our point of view, method for solving SPDE is proposed.  

2 Control point method 

The method developed at ESI SB RAS for solving systems of linear partial differential 

equations (control point method - CPM) [7-9] reduces the solution of this problem to a 

linear programming (LP) problem. As a result of solving the LP problem, coefficients of 

polynomials are selected that describe the dependences of variables on time and spatial 

coordinates sought from the system of differential equations. In this case, the entire region 

of change in time and spatial coordinates is divided into blocks and for each block 

polynomials with their own coefficients are found. Control points are located with 

sufficient density both in the internal parts of blocks and on their boundaries. At these 

points, residuals of the following types are determined. 

1. Residuals characterizing the correspondence of polynomials to differential 

equations (differential equations are considered in implicit form). When 

substituting into differential equations the values of variables and their derivatives 

determined from polynomials at the coordinates of a specific control point, 

residuals are determined that characterize the proximity of the polynomials to the 

desired functions at the corresponding control point. These residuals are 

determined for all control points.  

2. Residuals characterizing the correspondence of polynomials to the initial and 

boundary conditions. These are discrepancies between the known values of 

variables and/or their derivatives at some control points and the same values 

determined from polynomials. Such residuals are determined for those control 

points that lie on the boundaries of the region of change in time and spatial 

coordinates, for which the values of the sought variables and/or their derivatives 

are specified. 

3. Residuals equal to the differences between the values of the variables and their 

derivatives included in the differential equations, determined at control points 

lying on the border of adjacent blocks using the corresponding polynomials of 

these blocks. Residuals are determined for all points lying on the boundaries of 

adjacent blocks. 

If the coordinates of the control point and the coefficients of all polynomials are known, 

then it is easy to determine the numerical values of the desired variables and their 

derivatives at a given point. Substituting these values into differential equations specified in 

implicit form will allow us to determine residuals of the first type. Subtraction from known 

values of variables and/or their derivative values obtained from polynomials (for the 

corresponding control point) allows us to obtain residuals of the second type. Subtraction of 

the desired variables and their derivatives obtained using the polynomial of one adjacent 

block from the corresponding values obtained using the polynomial of another adjacent 

block (at control points lying on the border between adjacent blocks) will allow us to obtain 

residuals of the third type.  

Since the absolute residuals have different dimensions, comparing them with each other 

is incorrect. Therefore, in CPM, relative residuals are used, obtained by dividing the 

absolute residuals by their maximum permissible values. The task is to minimize the 

maximum relative residual.  
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It should be noted that each residual in CPM is replaced by two constraints-inequalities 

of the form: 

                                           , 0rel

jk jk kg z d x    ,  

                                           , 0rel

jk jk kg z d x    , 

                                          1,..., kj M , 

                                          1,...,k K , 

where 0z   – is an auxiliary parameter, common for the constraints-inequality of all 

residuals of the problem, 
rel

jk – relative residual relating to the k-th control point and having number j in the list of 

residuals of the k-th control point, 

x – vector of optimized parameters, including in the general case the coefficients of all 

polynomials of the problem, 

kd – control point coordinates, 

kM – number of residuals related to the k-th control point, 

K – number of control points. 

The relative residua 
rel

jk  is determined from the expression 
max

abs

jkrel

jk

jk





 ,  

where max

jk – maximum permissible value of absolute residual module 
abs

jk . 

Constraint 
jkg 

 prevents 
rel

jk  from becoming greater in absolute value than z if the 

residual is positive, and constraint 
jkg 

 prevents 
rel

jk  from becoming greater in absolute 

value than z if the residual is negative.  

The value 
kM  depends on: the type of control point (internal; lies on the boundaries of 

changes in time and/or spatial coordinates; lies on the boundary between blocks); number 

of differential equations; the number of conditions taken into account at the boundary of 

changes in time and spatial coordinates; number of derivatives included in differential 

equations. In general, the linear programming problem of selecting coefficients of 

polynomials that provide a minimum of the maximum modulus of the relative residual will 

take the form: 

                                                              
,

min
z x

Z  

under conditions 

                                            , 0rel

jk jk kg z d x    , 

                                            , 0rel

jk jk kg z d x    , 

                                          1,..., kj M , 

                                          1,...,k K , 

                                          0x x  , 

where x – N-dimensional vector, 

x  – a vector whose components are equal to the minimum values of the corresponding 

components of the vector x. 

Moreover, the total number of constraints – inequalities 
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1

2
K

k
k

M M


   .  

Note that in real problems N and M are very large values. In this case, M is significantly 

larger than N. 

In general, the LP problem being solved can be represented as follows: 

                                                                

1

min
N

i i
i

c x


 ,                                                          (1) 

under conditions 

                                                     

1

0
N

ji i j
i

a x b


  ,                                                (2) 

                                                      1,...,j M , 

                                                      
i ix x ,                                                               (3) 

where 
ix  – i- th optimized parameter, 

ic – coefficient for the i-th optimized parameter in the objective function, 

jia – coefficient in the j-th constraint-inequality, with the i-th parameter being optimized, 

jb – free term in the j-th constraint-inequality, 

ix  – minimum value of the optimized parameter ix  (can be negative). 

3 Methods for solving the LP problem 

To solve problem (1)-(3), the simplex method, as well as interior point methods, can be 

used. When using the simplex method, problem (1)-(3) is transformed into a canonical form 

with constraints-equality. In this case, M additional variables are introduced. The total 

number of optimized parameters will be M N . In the simplex method, movement to the 

optimum is carried out along the vertices of the simplex. It is known that the number of 

operations required to solve a problem increases with the size of the problem, i.e. as 

M N  grows exponentially [10]. In this regard, as the dimension of the problem increases, 

the efficiency of the simplex method drops sharply. 

In interior point methods, the movement towards the optimum is carried out within the 

feasible region. Two groups of such methods can be distinguished: 

1) methods based on fitting into the permissible ellipsoidal region (I. I. Dikin [11], N. 

Karmarkar [10]); 

2)  unconstrained sequential minimization method with logarithmic penalty function 

(A. Fiacco, G. Mc Cormick [12]). 

To use the first group of methods, problem (1)-(3) needs to be transformed into 

canonical form with an increase in the number of optimized parameters to M N . The 

second group of methods does not require such a transformation and its number of 

optimized parameters remains equal to N. It is known that for interior point methods the 

number of operations increases polynomially with the number of optimized parameters 

[10]. It should be noted that in the methods of the first group, at each iteration, a system of 

linear algebraic equations of dimension M N  is solved. In the methods of the second 

group, when using the most efficient Newton method for unconditional minimization, a 

system of linear algebraic equations of dimension N is solved for each iteration. Since in 

the linear programming problems under consideration M is significantly larger than N, and 

the costs of solving SLAE constitute (if their dimension is large) the majority of the labor 
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costs for solving a linear programming problem, it is preferable to use methods of 

unconditional sequential minimization with a logarithmic penalty function. 

In the method of unconditional sequential minimization with a logarithmic penalty 

function, the following are specified: 
1 1

, ...,1

beg beg

Nx x  – initial values of the optimized 

parameters at the 1st iteration in which all restrictions are satisfied as strict inequalities; 

1 0R  , initial parameter value, 

opt  – permissible deviation of the objective function from the optimal point. 

For 1,.2,...k   the problem is solved: 

                                  

1,...,
1 1 1 1

min ln( ) ln( )
N

N M N N
k

i i k ji i j k i i
x x

i j i i

L c x R a x b R x x
   

 
     

 
    ,                    (4) 

where k – is the iteration number (unconditional minimization). 

Let us denote by 
* *

1 ,...,k k

Nx x  the optimal values of the parameters at the k-th iteration. 

The initial values of the optimized parameters at k+1 iteration is determined from the 

conditions 
beg 1 * beg 1 *

1 1 ,...,k k k k

N Nx x x x   . 

The value of the parameters at k+1 iteration is determined from the expression: 

                                                   
1

k
k

R
R

K
  , where 1k  . 

The process of unconditional sequential minimization stops at the k-th iteration if the 

condition is met: 

                              opt

kR M  . 

Experience has shown that the most effective method for solving problem (4) is 

Newton’s method. 

Let us consider the operation of Newton's method at the k-th iteration (unconditional 

minimization). Let us denote by t the step number of Newton's method. For t=1 the initial 

values of the optimized parameters are set from the conditions 

                         
beg beg 

1 1 ,...,t k t k

N Nx x x x    

1. For the current t at point 1 ,...,t t

Nx x , the gradient vector ( )tL x  and the matrix of 

second derivatives ( )tH x  of the logarithmic penalty function are determined.  

In this case, the i-th component of the gradient vector is determined from the expression 

1

1

( )

( )
( )

M
t li

i i k N
l k

lp p l
p i i

a
L x c R

R
a x b

x x





  
 

  
 




,                       

 

and the element lying at the intersection of the i-th row and the j-th column of the matrix 

( )tH x  is determined from the expressions:   
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2

2 2
1

1

( )

( )
( )

t M
li lj k

ij k
Nli j i i

lp p l
p

a aL x R
H R

x x x x
a x b






  

   
 

 





, if i j ,                          (5) 

 

2

2
1

1

( )

( )

t M
li lj

ij k
Nli j

lp p l
p

a aL x
H R

x x
a x b






 

   
 

 





, if i j . 

2. SLAE is being solved 

 

                                                        ( )( ) ( ) ( )t t t t tH x x x H x S L x   ,                           (6) 

 

where 
t tS x x   – is the direction of descent. 

3. A one-dimensional minimization of the logarithmic penalty function along the 

descent direction is carried out 

                                           arg  min ( )t t tL x S


    

and the point for t+1 step of Newton’s method is determined 
1t t t tx x S   . 

If                                      1( )   ( )tL x L x B   ,  

where 1B  , then the process of unconditional minimization at the t-th iteration stops 

and assumes 
* *

1 1 ,...,k t k t

N Nx x x x  . 

Since with increasing dimension of the SLAE the number of operations required to 

solve it increases approximately in proportion to the cube of its dimension, then for large 

LP problems almost all the time of solving them by the method of unconditional sequential 

minimizations with a logarithmic penalty function is spent on solving the SLAE (6). 

Therefore, it is important to find an approach to significantly reduce this time. 

Analysis of expression (5) shows that at the intersection of the j-th row and the i-th 

column of the matrix H (at i j ) there will be a non-zero element if there is at least one 

inequality constraint for which both coefficients at the i-th and j-th variable are not equal to 

zero. If there is no such restriction, then at the intersection of the j-th row and the i-th 

column there will be a zero. 

As stated earlier, at the boundaries between adjacent blocks, residuals of the third type 

are determined, which simultaneously depend on the coefficients of the polynomials 

(optimized parameters) of these blocks, which leads to the appearance of a large number of 

non-zero elements in the matrix H. As a result, it is almost impossible to identify groups of 

blocks for each of which would not have non-zero second derivatives with respect to the 

parameters of this group and the parameters of several other groups, which complicates the 

solution of the SLAE.  

4 Structural approach to solving SLAE 

To solve this problem, a special approach to organizing the space of parameters (time and 

coordinates) is proposed, which it is advisable to call structural. Its essence is as follows. 

The “simple” blocks discussed earlier are combined into large blocks or superblocks. 
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Boundaries are determined between superblocks (sets of points with a dimension one less 

than the dimension of the blocks). Polynomials are formed for the boundaries, which reflect 

the dependence of the sought functions on the parameters of the boundaries. In this case, it 

is possible to form “boundary” blocks for each of which have their own polynomials. 

Communications at the boundaries of superblocks are organized as follows. For a control 

point lying on the specified boundaries, two residuals are determined for each “joined” 

variable. One represents the difference between the calculated values at this point of a given 

variable determined by the polynomial for the boundary and the calculated values 

determined by the polynomial related to the first adjacent superblock, and the second 

represents the difference between the calculated values at this point of the same variable 

determined by the polynomial for the boundary and the calculated values determined by the 

polynomial related to the second adjacent superblock. We call the optimized coefficients of 

the boundary polynomials the parameters of the connection between superblocks. As a 

result, non-zero values of the second derivatives will be: 1) for the optimized parameters of 

the same superblock; 2) superblock parameter and communication parameter between 

superblocks; 3) two communication parameters. This leads to the structure of the matrix H 

as follows: 

 

 

                                

 

     H=                     

 

 

 

 

 

 

 

where in

lD  – square matrix (
in inN N ) with elements 

2 ( )t

i j

L x

x x



 

, where i and j belong to 

the set of numbers of internal optimized parameters of the l-th superblock. 

com

kD  – matrix ( in comN N ) with elements 
2 ( )t

i j

L x

x x



 

, where i – belongs to the set of 

numbers of the  k-th block, j – belongs to the set of numbers of communication parameters.  

comD  – square matrix (
com comN N ) with elements 

2

i j

L

x x



 

, where i and j belong to the 

set of communication parameter numbers. 

 

1

inD  0 
 

 
 0 

1

comD  

0 
2

inD  
 

 
 0 

2

comD  

 

 
  

 
  

 
  

 
  

 
 

0 0 
 

 
 

bl

in

nD  
bl

com

nD  

1( )com TD  2( )com TD  
 

 
 ( )

bl

com T

nD  
comD  
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1

2

.

.

.

bln

com

S

S

S

S

S

 
 
 
 
 

  
 
 
 
 
 
 

,          

1

2

( )

( )

.

( ) .

.

( )

( )

bln

com

L x

L x

L x

L x

L x

 
 
 
 
 

   
 
 
 
 
  

. 

 

The SLAE solved in Newton’s method will include 
bln  matrix-vector expressions of the 

form 

                                     ( )in l com com l

l lD S D S L x  , 1,..., bll n ,         (7) 

and one matrix-vector expression 

                                     

1

( ) ( )
bln

in T l com com com

l l
l

D S D S L x


  ,                (8) 

where 
lS  – direction of descent according to the internal optimized parameters of the l-th 

superblock, comS  – direction of descent according to communication parameters, ( )lL x  

– components of the gradient vector of the logarithmic function according to the internal 

optimized parameters of the l-th superblock, ( )comL x  – also related to communication 

parameters. 

The first 
bln  expressions (7) can be resolved relative to 

lS  

                    
1 1( ) ( ) ( )l in l in com com

l l lS D L x D D S    , 1,..., bll n           (9) 

Substituting (9) into (8) we have  

1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )
bl bln n

com com T in in in in com T in l

l l l l l
l l

D D D D S L x D D L x 

 

   
       

   
  .    (10) 

 

Expression (10) is a SLAE with dimension comN . Thus, to solve the original SLAE of 

dimension 
com com

blN n N , it is necessary to invert bln  square matrices of dimension 

inN , solve one SLAE of dimension 
comN  and perform a certain number of operations of 

multiplication and addition of matrices whose dimension is much lower than the dimension 

of the original matrix H. In this case, matrix multiplication can be performed in parallel. 

An example is a SLAE with a dimension of about 7000. Solving it using the best 

available solver required about 1 second of computer time on a computer with a 16-core 

processor. 

Solving the same SLAE using the stated structural approach and the same computer 

took 0.04 seconds when selecting 12 superblocks and a set of communication parameters 

with a dimension of about 538. 
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5 Conclusion 

It is shown that the most effective method for solving LP problems to which the problems 

of solving systems of linear differential equations are reduced within the framework of 

CPM is the interior point method with a logarithmic penalty function. With a large 

dimension of the LP problem, the main computer time is spent on solving the SLAE within 

the framework of Newton’s method, used for unconditional minimization of the logarithmic 

penalty function. To radically reduce this expense, a structural approach is proposed, in 

which all optimized parameters of the LP problem (polynomial coefficients) are divided 

into internal optimized parameters of superblocks and optimized parameters of 

communication between superblocks that specify the coefficients of polynomials that 

describe the behavior of the desired functions at the boundaries between superblocks. As a 

result, the matrix of the second derivatives of the logarithmic penalty function acquires a 

structure that allows one to reduce the solution of the SLAE to matrix inversion and the 

solution of the SLAE of a much smaller dimension, which radically reduces the time for 

solving the original SLAE. 
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