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Abstracts. In this paper we have analysed the relations that allows one to 

determine the components of strains and stresses in the orthotropic axes of 

layered fiber reinforced composite materials in tensile and compression 

experiments for test specimens with the [±45°]2s lay-up. In particular, such 

relations were compiled on the assumption that in a cross-ply fiber 

composite two adjacent layers with the [±φ] lay-ups can be considered as 

one symmetrically reinforced layer with orthotropic properties. To establish 

the degree of accuracy of these relationships and assumptions, numerical 

experiments were carried out to determine the parameters of the stress-strain 

state of specimens consisting of two and four monolayers of a unidirectional 

fibrous composite material with the [±45°]2s lay-up. The analysis has been 

performed in the ANSYS finite element analysis program system in a linear 

formulation of two- and three-dimensional problems. It is shown that in the 

central zone of the specimen, the theoretical-experimental methodology 

based on the above mentioned relations has a sufficient degree of accuracy. 

Based on the analysis of results of three-dimensional problems, the 

formation of a linear torque in the specimen, which causes the twisting of 

some zones of the specimen along its length, has been revealed. 

1 Introduction 

In mechanics of deformable solids there is a direction of research related to formulation and 

solution of problems about internal and surface (peripheral) forms of stability loss of layered 

fibrous composites reinforced by straight or curvilinear fibers under certain loading 

conditions. Such problems are important because in the construction of the strength theories 

of composite materials the loss of stability of the composite structure is taken as a possible 

failure mechanism. A great cycle of research in this direction was carried out in the second 

half of the last century, the results of which were given in many scientific articles and 

monographs [1-3, etc.]. The works [4-10] devoted to experimental and theoretical study of 

failure mechanisms of fiber composites during tests of specimens in accordance with the 

developed standards should be referred to the same direction of research. For a more detailed 

study of the possibility of various internal buckling forms realization for elements made of a 
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unidirectional fiber composite in the case of tension of test specimens with the [± 45°]2s lay-

up, in addition to studies [11, 12], at the first stage it is advisable to carry out a numerical 

study of the stresses and strains formed in such structures. 

2 Relationships for determining the components of stresses and 
strains for layered fiber reinforced composites in the orthotropy 
axes 

In accordance with the ASTM D3518 test standard [13], tensile and compression tests of 

specimens with the [± 45°]2s lay-up and an even number of laminas 2s  (considerable to 

exclude the specimens bending in the direction of the axis y  (Fig. 1)) are performed to 

determine the shear modulus 12G  in the orthotropic axes of a single lamina 1 2,x x . 

 

Fig. 1. Scheme of reinforcement in the first two laminas of a test specimen made of fiber reinforced 

composite with the  
2s

  lay-up under tension stress x p = . 

The result of such specimens’ tests, represented in the form of a flat elongated rod, under 

single tension is always a physically non-linear stress-strain curve up to failure. This curve 

gives the ( )x x x  =  dependence between the normal stress 
x p =  averaged over the 

x const=  cross-sectional area and the corresponding axial strain 
x  measured in the x  

axial direction in the vicinity of the central point 0 (Fig. 1), Poisson's ratio xy y x  = − , 

and the failure stress 
*

x
+

. Based on such a stress-strain curve of the specimen, the 

relationship between the secant modulus of elasticity ˆ
xE  and the axial deformation 

x  in 

the axes of the specimen can be established. Using the relations derived in [11, 14], of the 

following form 

( )
( )

( )12 12

2 1
, 1

2 2 1

xyx
x xy x

x xy

+
= =  +

+ −


    

 
,    (1) 

we construct a shear strain curve ( )12 12 12  = . This curve gives the dependence 

between the shear stress 
12 and the corresponding shear strain 

12  in the orthotropic axis 
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1 2,x x . Using the ( )12 12 12  =  curve, we can also construct the dependence 

( )12 12 12
ˆ ˆG G =  between the secant shear modulus and the shear strain 

12 . 

It should be noted that in tensile tests of specimens with [0°]s and [90°]s lay-ups ( s  is the 

number of lamina in the specimen) with fibers located along and across to the direction of 

the acting load the mechanical characteristics of a single monolayer of fiber reinforced 

composite in its orthotropy axis 1 2,x x  have been determined earlier. The corresponding 

stress-strain curve for a unidirectional CFRP can be considered linear up to the failure of the 

specimens [15, 16]. This fact makes it possible to determine elastic moduli 
1E  (in the 

direction of the fibers), 
2E  (in the direction across the fibers) and Poisson's ratio 

21  for a 

lamina of composite from test results. Then it is possible to calculate another Poisson's ratio 

12  from the dependence 
1 12 2 21E E = . 

For a single k -th lamina of composite laid at an   angle to the specimen axis (Fig. 1) 

the physical relations in the specimen axes are represented as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 12 13 12 22 13

13 23 33

, ,

,

k k k k k k k k

x x y xy y x y xy

k k k k

xy x y xy

A A A A A A

A A A

= +  = + 

=   +

       

   
   (2) 

here sign "-" refers to the lamina with the 1k +  number, laid at an angle − . The 

coefficients in (2) are determined by the following formulas 

1 2 1 12
11 22 12 12 12

1 2 1 2 1 12
13 23 33

ˆ ˆ, , ,
4 2

, .
4 4 2

E E E
A A C G A C G C

E E E E E
A A A





  

    

+
= = + = − = +

− +
= = = −

  (3) 

In composite mechanics [17], two adjacent lamina laid at   angles are considered as 

one symmetrically reinforced layer with orthotropic properties. 

Physical relations for such a layer with the introduction of averaged stresses 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 2 1 2

1 2

2, 2,

2

x x x x y y y y

xy xy xy xy

       

   

= = + = = +

= = +
  (4) 

and strains 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 2 1 2

1 2

2, 2,

2

x x x x y y y y

xy xy xy xy

       

   

= = + = = +

= = +
  (5) 

follow from (2),(4),(5) and have the following form 
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( ) ( )11 22 33, , ,x x yx y y xy x y xy xyA A A         = + = + =   (6) 

here 12 11 12 22,yx xyA A A A = = . Note that these expressions are based on the assumption 

11 22A A , xy yx  , but 11 22yx xyA A = . 

Along with the stresses (4) and strains (5) averaged over the thickness of two adjacent 

layers, we introduce into consideration stresses and strains 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 21 2

1 2 1 21 2

, , ,
2 2 2

, , ,
2 2 2

y y xy xyx x
x y xy

y y xy xyx x
x y xy

    
  

    
  

− − −

− − −

− −−
= = =

− −−
= = =

  (7) 

which, under the assumptions 11 22 , xy yxA A    , lead to the relations 

11 12 13 12 22 23

13 23 33

, ,

,

x x y xy y x y xy

xy x y xy

A A A A A A

A A A

       

   

− −

− −

= + + = + +

= + +
  (8) 

11 12 13 12 22 23

13 23 33

, ,

.

x x y xy y x y xy

xy x y xy

A A A A A A

A A A

       

   

− − − − − −

− −

= + + = + +

= + +
  (9) 

Formulated relations (8) can be reduced to relations (6) only under the introduction of 

assumptions 0x y xy  − − −= = = , due to which relations (9) take the form 

13 23 13 23, , .x xy y xy xy x yA A A A      − − −= = = +        (10) 

Note that when the specimen with the [± 45°]2s lay-up is tensioned by stress p , the 

following equalities take place 

( )
, 0, 0, .

k

x y xy y y xy xp      = = = = = −        (11) 

Due to the symmetry about the 0x  axis of the strain components of the layers, the 

following relations are valid 

( ) ( ) ( ) ( )1 2 1 2

11 11 22 22 11.    = = = =        (12) 

To establish the degree of accuracy of relations (6), (11), (12) and assumptions 

0x y xy  − − −= = = , special studies are required. A detailed numerical analysis of the stress-

strain state formed in test specimens with the [± 45°]2s lay-up under tension (compression) 

can be carried out, in particular, on the basis of well-known numerical methods using 

commercial software packages. 
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3 Results of numerical research 

It should be noted that in the manufacture of structural elements from fibrous composite 

materials a heterogeneity over the thickness always formed in the structure of their layers. 

This heterogeneity consists in the alternation of rigid monolayers (including composite 

fibers) with less rigid layers of pure binder. For example, as shown by the analysis of the 

structure of composite material made of ELUR-P carbon fiber and the XT-118 epoxy binder 

carried out using a Carl Zeiss Stemi 2000 optical microscope, the thickness of the specified 

binder layer (hereinafter called to as adhesive) is about 0.07 mm, while the thickness of a 

rigid monolayer is about 0.12 mm. While the rigid monolayer has an elastic modulus in the 

fiber direction of about 100 GPa, the adhesion layer of composite material, which can be 

considered isotropic and linearly elastic up to failure [15] has an elastic modulus of about 3 

GPa at a Poisson's ratio of 0.34. In this regard, the adhesive layers of composite material can 

be classified as transversely soft (in accordance with the terminology of [2]) in comparison 

with rigid monolayers.  

In connection with the above mentioned, a numerical study of the stress-strain state 

formed in tension of test specimens having a length of 110a = mm and a width of 25b =

mm (Fig. 1) and made of the above described composite material with [± 45°]2 (two-layer 

specimen) and [± 45°]4 (four-layer specimen) lay-ups has been performed in the finite-

element ANSYS software package. It is important to note that, in contrast to [12], in 

calculations it has been assumed that between the rigid layers with a thickness of 0.12mm 

there are adhesion layers of binder with a thickness of 0.07mm. The calculations were carried 

out for specimens with effective elastic characteristics of rigid layers’ materials equal to 

1 105E = GPa (in the fiber direction), 3 2 5.7E E= = GPa (in the cross fiber direction), 

12 13 23 0.34  = = =  and 12 13 23 3.2G G G= = = GPa. The material of adhesion layers was 

taken isotropic with elastic characteristics equal to 2.5E = GPa, 0.3 = . The tensile 

modeling of test specimens under kinematic loading conditions was carried out by specifying 

the displacement of the edge 2x a=  in the direction of the x  axis by a value of 0.01u a=  

with a fixed edge 2x a= − . The analysis was performed by modeling each layer of the 

specimen with three-dimensional SOLID186 elements with one element through the 

thickness of each of the layers. The results obtained were compared to the results of a planar 

problem statement using a two-dimensional PLANE183 element (assuming that the plate is 

in a plane stressed state) with the values of stiffness coefficients averaged over the thickness 

of the layer package. Their values in the specimen axes 0x y  were calculated by formulas 

(3). 

For illustration purposes, Figs. 2 and 3 show graphs of normal stresses x  and tangential 

stresses xy  changing along the coordinate y  in different sections of the test specimens. 

Here, solid and dashed lines indicate curves corresponding to parameters of stress-strain state 

on the front surfaces of the first and the last layers of the test specimen, respectively, obtained 

on the basis of a three-dimensional formulation of the problem, and the dash-dot line indicate 

curves corresponding to the results obtained on the basis of the plane statement of the 

problem. Letters a and c denote the graphs of the corresponding parameters’ distribution in 

the specimens with the [± 45°]2 lay-up in sections 0x =  and 4x a= − , respectively, and 

letters b and d denote the graphs in the specimens with the [± 45°]4 lay-up in the same 

sections. 

Analyzing the obtained results, the presence of pronounced boundary effects near the 

corner points was revealed. Furthermore one can see a small variability of the stress 

components in the central zone of the specimen. Far from the center of the samples (in the 
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sections 4x a= − ), a slight asymmetry of the stress values in the layer relative to the x  

axis can be also revealed. It should be noted that in Figs. 2 and 3 the curve for the N -th layer 

may completely coincide with the curve for the first layer, and therefore be absent from the 

graph. Also note that the corresponding dependences of the normal stresses y  turned out 

to be orders of magnitude smaller than the normal stresses x . 

As it follows from Fig. 3, tangential stresses xy  in rigid layers with opposite lay-up 

angles have different signs. Because there is a certain distance between the layers, at such a 

stress-strain state in the cross section x const=  of the specimen a torsional moment is 

formed. This torsional moment twists some zones of the specimen. In order to illustrate this 

phenomenon, Fig. 4 shows graphs of the change in the deflection w  of the specimen mid-

surface in three different cross-sections. Fig. 4a illustrate graphs for a specimen consisting of 

two layers, and Fig. 4b illustrate graphs for a specimen consisting of four layers. In these 

figures, the solid lines correspond to the deflections of the middle surface in the section 

4x a= − , the dashed lines in the section 4x a= , and the dash-dotted lines in the section 

0x = . 

 
a 

 
b 

 
c 

 
d 

 

Fig. 2. Diagrams of normal stresses x  changing along the coordinate y  in sections    0x = and 

4x a= − . 
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a 

 
b 

 
c 

 
d 

 

Fig. 3. Diagrams of tangential stresses xy  changing along the coordinate y  in sections 0x = and 

4x a= − . 

These figures show a very significant deflection of the middle surface of the two-layer 

specimen in the areas one-quarter of the length away from the center. In the four-layer 

specimen, the deflection of the median plane was also detected in similar areas, but their 

values were an order of magnitude smaller. This phenomenon can be explained by the fact 

that the inner and outer pairs of layers form torsional moments of opposite signs, which 

partially compensate each other. Furthermore the torsional stiffness of the four-layer 

specimen is much greater in comparison with the two-layer specimen. It is important to note 

that the results described above cannot be obtained on the basis of the equations using 

relations (6), as well as in a two-dimensional formulation of the problem with averaging over 

the thickness of the stiffness properties of the layer’s material. This implies a fundamentally 

important conclusion that the most accurate and meaningful description of deformation 

mechanics of composite plates with cross-reinforced monolayers is possible only on the basis 

of refined equations. This is especially important for structures with only two layers. 

 
                                         a                                                                 b 

Fig. 4. Diagrams of the change in the deflection w  of the specimen mid-surface along the coordinate 

y  in sections 4x a= − , 4x a=  and 0x = . 
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4 Conclusion 

In conclusion, it should be added that the obtained results allow us to evaluate the accuracy 

degree of the experimental method stated in the theoretical part. In particular, the analysis of 

linear strains x , Poisson's ratio xy  and shear strains 12  allow us to estimate the reliability 

of the second formula in (1).  Calculations have shown that this dependence is fulfilled with 

an error of less than 0.01% along the entire length of the specimen. The only exceptions are 

in the corner points, and only in the case of a flat formulation of the problem. The error in 

this case can reach the order of 10%.  Hence, a conclusion can be formulated that the 

theoretical-experimental method for constructing the ( )12 12 12
ˆ ˆG G =  dependence stated in 

[18, 19] and based on formulas (1), (3), relations (6) and (11) has a sufficient degree of 

accuracy in the central zone of the specimen with [± 45°]2 lay-up at 2s  . 
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