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Abstract. A coupled micro- and macroscopic modeling of an 
incompressible layered composite material under finite deformations is 
performed based on the asymptotic homogenization method and universal 
semi-linear models. The deformation diagrams of the periodicity cell are 
calculated. A method for searching for effective transversally isotropic 
properties of LCM based on the obtained diagrams is considered. Cylindrical 
bending of an LCM plate is simulated using the model of a transversally 
isotropic medium. The microstresses in the periodicity cell are calculated 
based on the homogenized stresses. Key words: layered composite 
materials, macroscopic modeling, finite deformations. 

1 Introduction 
In various industries, composite materials are actively used, consisting of rubber-like or 
elastomeric matrices reinforced with fibers, dispersed particles, or fabric fillers. Such 
materials are of considerable interest, since they have successful combinations of properties, 
in particular, relatively high strength and a sufficiently large ultimate fracture strain due to 
the ability of rubbers to deform without fracture in the region of large deformations (up to 
800–900%).  

Due to the fact that the experimental determination of all the properties of composites 
with different reinforcement schemes requires rather complex experiments, along with 
experimental studies, it is important to build computational methods for finding the average 
(effective) nonlinear properties of composite materials, as well as models and methods that 
would allow one to determine not only general characteristics of such materials, but also 
locally describe the deformation processes occurring in them. 

There are relatively simple algorithms and modeling methods that allow one to obtain 
simple analytical relationships for elastic effective characteristics. However, they do not 
allow them to be calculated most accurately in a mathematical sense. 

Highly promising in this area is the method of asymptotic homogenization (AH) [1-6], 
which was proposed by N.S. Bakhvalov and G.P. Panasenko [1]. The asymptotic averaging 
method is a rigorous and widely used effective mathematical approach for describing the 
problems of deformation of structures made of composite materials, it gives an 
asymptotically correct representation of their solution. AH is also used to predict the effective 
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properties of composites under finite strains [7–11]. Due to the nonlinearity of the problem 
of mechanics at finite deformations [12-15], the AH method encounters certain difficulties 
in implementation. The complexity of this method is justified by the possibility of obtaining 
a more accurate approximation of the desired solution compared to the theory using only 
effective properties.

However, the application of MAH to continuum media mechanics problems leads to the 
need to solve so-called local problems. Solving local problems is a complex and time-
consuming process. If this method is used directly in solving macroscopic problems, for 
example, by the finite element method, then at each point (each node) it is necessary to solve 
a local problem on a periodicity cell, which leads to very large amounts of calculations. In 
other words, the problem of the connection between local problems in PC and a macroscopic 
problem is a serious problem that creates significant difficulties in numerical solution. In this 
regard, it is very important to develop an approximate method that would allow solving these 
problems separately.

2 Universal model of nonlinearly elastic isotropic composite 
components
Let us consider an inhomogeneous elastic solid medium (composite) V with finite 

deformations, which in the reference configuration K has a periodic structure and it is 

possible to select a repeating element for it - a periodicity cell (PC) V , which consists of 

N components V , 1,..., N . The Euler coordinates of each material point in the 

reference and actual configurations are denoted as kx and kx k , they correspond to the 
Cartesian basis, and the Lagrangian coordinates are denoted as iX . The latter are assumed 

to coincide with the Cartesian ones in the reference configuration, i.e. i iX x i . Each 
component of the composite will be assumed to be incompressible, obeying the universal 
class model nB , according to the classification proposed in [16], the following constitutive 
relations hold for it

21
1

1 1 1
nn n np n III I

n III n III
T G G E G     (1)

where 
n

T is the energy stress tensor [17], 
n

G is the energy measure of strain [17], which is 
expressed in terms of the strain gradient F

21 ( ) , , , ,
n IIIn

T n I II IV V
n III

G F F ,        (2)

1
n

G is inverse tensor, 1( )
n

I G is the first principal invariant (trace) of the tensor 
n

G , E
is metric tensor, p is hydrostatic pressure, и are the elastic constants of the component, 
n is the number of the energy pair, which takes the following values: , , ,n I II IV V .
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The Piola-Kirchhoff stress tensor P using relations (1) is calculated as follows

             4 0
n n

P E T (3)

where 4 0
n

E is energy equivalence tensor [17], dependent only on the strain gradient F .

3 Universal model of a nonlinearly elastic transversally isotropic 
composite
According to the AH method, for the composite as a whole, averaged constitutive relations 

are formulated that connect the averaged energy stress tensors
n

T and the averaged energy 

strain measures
n

G .
Since the properties of a layered composite material do not change upon rotation in a 

plane parallel to the LCM layers, it can be considered a transversely isotropic medium. In 
addition, since, as has been proven, the LCM, which consists of incompressible phases, is 
itself an incompressible medium, the material under consideration can be described using 
universal models of incompressible transversely isotropic media.

The most general form of such models is the representation in tensor bases.

(n)(n) 4
1

1

p
n III GT G I (4)

We choose the representation of the Helmholtz free energy, which, in addition to the 
model number, depends on nine parameters, in the following form:
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Here we denote the invariants
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n

G is the averaged energy measure of deformation expressed in terms of the averaged 
strain gradient of the composite according to a formula similar to (2)

21 ( ) , , , ,
n n III

T n I II IV V
n III

G F F .             (10)

The factors in (7) are derivatives of the elastic potential / I and have a 
form

1 1 2

2 1 2
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               (12)

11l , 12l , 22l , 44l , 1n , 2n , 4n are the constants of the model of a transversally isotropic 
medium (composite).

For an inhomogeneous medium, we consider the problem of nonlinear elasticity theory 
in the Lagrangian description in the general formulation using universal models - models of 
the class nB , proposed in [17] for compressible media with finite strains.

, iX VP f 0 i                                                (13)

0 ( , ),
(n)

i iX X VP FF    (14)

, iX VF E u i    (15)

[ ] , [ ] , iXn P 0 u 0 i      (16)

1 2, , ,i i
e eX Xn P t u ui i                 (17)

Here (13) is the equilibrium equation, (14) are the constitutive relations of the nonlinear 
elastic medium, (15) is the kinematic relation, (16) are the conditions for ideal contact on the 

interfaces th and th composite components, (17) are the boundary conditions on 

parts 1 and 2 of the outer surface of the composite 1 2 V .
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In expression (16) [ ]ijP is the function jump at the interface between the composite 
components.. All components of vectors and tensors are assigned to a fixed orthonormal basis 

ke – - the reference configuration K .
Note that there is a connection between the Cauchy and Piola–Kirchhoff stress tensors

            1g
g

P F T
g

F , (18)

and therefore, having calculated one of them, we can consider the second one to be known, 
given the knowledge of the strain gradient.

4 Asymptotic solution of the problem of the nonlinear theory of 
elasticity
The idea of the asymptotic averaging method is based on combining the solution of local 
problems defined at the level of structural inhomogeneity of the material with the solution of 
a global problem (macro level) for an equivalent homogeneous medium.

Let us consider the case of a layered composite, which in the reference configuration is a 
system of parallel layers orthogonal to the direction 3OХ , and periodically repeating in such 
a way that it is possible to introduce a periodicity cell (PC) - a set of a finite number of layers 
N with a total thickness . 

The use of the asymptotic method involves the construction of asymptotic expansions of 
the functions included in the problem in terms of a small parameter equal to the ratio of the 
characteristic size of the periodicity cell to the characteristic size of the entire composite 
material.

We introduce a small parameter 1L 1L , as a ratio of characteristic size of the 

PC to the characteristic size L of the whole composite (in reference configuration), and also 

introduce local Lagrangian coordinates i in K , which are related to the iX as follows:

  ,
i i

i iX XX
L

(19)

It is assumed that the local coordinates in the PC vary in the range 1 1
2 2

i . Due 

to the periodicity of the composite structure, all functions ( , )i iX , describing the motion 
of the composite components, including constituting relations (14), are periodic functions of 

i and are depending on the global Lagrangian coordinates iX . Asymptotic expansions of 

the functions ( , )i iX with respect to a small parameter are constructed

(0) (1)( , ) ( , ) ( , )i i i iX X X o ,                         (20)

where o are terms having a higher order of smallness compared to (1) ( , )iX . 
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In addition, the averaging of such functions over the PC is introduced: 

            
о

о

V

dV . (21) 

The AH method also formulates a local problem of nonlinear elasticity in PC, as a result 
of solving which we find tensor relationships between the strain gradient in each component 
of the composite and the averaged strain gradient. 

From the solution of local AH problems, we have four series of curves corresponding to 
uniaxial and biaxial tension 

11 11 1
эT T k                                                      (22) 

33 33 3
эT T k                                                      (23) 

11 11 1 2

22 22 1 2

,

,

э

э

T T k k

T T k k
                                                 (24) 

11 11 1 3

33 33 1 3

,

,

э

э

T T k k

T T k k
                                                 (25) 

For an each specific set 11 12 22 44 1 2 4, , , , , ,l l l l n n nC  the corresponding curves for a 
transversally isotropic material can be constructed, which we will call theoretical. 

The problem of finding parameters 11 12 22 44 1 2 4, , , , , ,l l l l n n nC  is formulated as a 
problem of minimizing some estimate of the deviation characterizing the discrepancy 
between the theoretical diagram for a specific set of parameters and the corresponding 
experimental one. 

            min , эR T T
C

 (26) 

As an example of such an estimate, we present 

2

2
1 ,

,
N

э эR T T T T  (27) 

Hera  are numers of points at the points on the strain diagram. 
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5 Calculation of the parameters of the model of an effective 
layered composite material as a transversally isotropic medium 
Calculations were carried out according to the developed method for a layered composite, 
the PC of which is consisted of two materials: rubber and polyurethane. The strain diagrams 
obtained using a numerical "experiment" (based on the direct solution of local problems in 
PC) for models and using approximation based on the effective transversal isotropic properies 
(ETIP) model are presented in Fig. 1a-1f 

The approximation error of the considered "experimental" data was 10-12%. 
Also, the effective elastic characteristics of the SCM from three layers were calculated 

(as a transversely isotropic medium). 

a 
 

b 

 
c d 

 
e 

 
f 

Fig. 1. Approximation of a numerical "experiment" - deformation diagrams for uniaxial deformation 
of a plate using the ETIP model for a two-layer rubber-polyurethane LCM. 

According to the found parameters of the model, deformation diagrams were constructed. 
Comparative diagrams are shown in figures Fig. 2. 
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Fig. 2. Comparative diagram of shear deformation obtained by AH and from the model of a 
transversally isotropic medium.

The maximum relative errors in the resulting diagrams are 11% and 13%, respectively.
As a demonstration of the developed algorithm for solving problems of calculating 

stresses in layered composites at finite deformations, the problem of cylindrical bending of a 
layered composite plate is considered. A similar problem, but for homogeneous isotropic 
media with large deformations, was previously considered in the works of K.F. Chernykh 
[18].

Consider a laminated composite plate in the reference configuration K (Fig 3). Volume 

V , corresponding to the plate in K is described in in Cartesian coordinates ix , 1,2,3i , 
as follows:

3 3 33 3 2 2 1 1
0 0 0 2 1: , ,

2 2 2 2 2 2
i h h h h h hV x x x x x x33i h h3 33 33 3 h h h hh h h hh hh hK (28)

where ih are the lengthes of the plate edges in K .

Fig. 3. Cylindrical bending of laminated plate.

Let us consider the law of motion (29) corresponding to the cylindrical bending of a plate 
into a cylindrical panel [19].

1 2 3, , 2z x B x r Ax (29)

E3S Web of Conferences 376, 01030 (2023) https://doi.org/10.1051/e3sconf/202337601030
ERSME-2023

8



where ,A B are constants.
The bending moment is defined as follows

2 22

r

r

M rT dr                                                      (30)

Plate geometry: 1L м , 3 0,01h м . When solving local problems by the AH method, 
the following elastic constants of the material were found

Table 1. Elastic constants of the material.

Model l11 l12 l22 l44 n1 n2 n4

BI, BV 22.0562 3.38152*10-13 26.1652 4.73707 1 1 1
BII, BIV 13.8202 7.33581*10-14 24.7085 4.97845 1 1 1

The dependences of the bending moment on the curvature calculated by formula (30) are 

shown in figures Fig. 4a and Fig 4b for two different panel thicknesses 3 0,01h м

and 3 0,05h м . With a 5 times increase in panel thickness, the torque value increases by 
125 times for all models nB . Thus, the dependence of the bending moment on the initial 
plate thickness is cubic, as for isotropic materials.

a b

Fig. 4. The dependence of the bending moment M2 from the bending curvature 0k , calculated by the 

formula (30), the panel thickness: a — 3 0,01h m , b — 3 0,05h m .

In figure Fig. 5 the averaged stresses in a transversally isotropic plate during bending. 
The distributions of the components of the Cauchy stress tensor 22 ( )T r и 33 ( )T r along the 
radial coordinate in are shown. Calculations were carried out for two plate thicknesses: 

3 0,01h m and 3 0,05h m . For a relatively thin plate, the distribution of the component 

22 ( )T r close to linear for all models nB , which corresponds to the linear theory. For a thick 
plate, the distribution of the stress component 22 ( )T r os nonlinear. For thick plates, the stress 
difference 33 ( )T r for different models nB is quite significant.

E3S Web of Conferences 376, 01030 (2023) https://doi.org/10.1051/e3sconf/202337601030
ERSME-2023

9



a b

Fig. 5 – Distribution of the component 22T of the Cauchy tensor along the radius r of the panel 

during the cylindrical bending 0 0,1r m ( 1
0 10k m ): a — 3 0,01h m , b — 3 0,05h m .

6 Conclusions
An algorithm for the numerical solution of problems on a periodicity cell for layered 
composite materials with finite deformations and using a complex of various universal 
models for compressible and incompressible media has been developed. A technique for 
constructing effective constitutive relations for transversally isotropic incompressible 
composites with finite strains is proposed based on the analytical approximation of series of 
numerical solution of local problems.

The problem of cylindrical bending of a layered composite plate is solved, which 
demonstrates the feasibility of the proposed method for calculating the stress-strain state of 
structures made of layered composite materials by separating the averaged problem of the 
nonlinear theory of elasticity of anisotropic media and local problems on a periodicity cell.

A variant of solving the problem of connectedness of micro- and macro-simulation 
problems by searching for ETIP constants that best approximate the behavior of the LCM 
obtained by preliminary micro-simulation based on AHM is demonstrated. The approach 
made it possible to solve the problem of macromodeling without resorting to the procedure 
for calculating local problems, while retaining the possibility of calculating microstresses.
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