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Abstract. The problem of modeling the effective integral viscoelastic 
properties of unidirectional composite materials is considered. To calculate 
the integral properties of viscoelasticity, the Fourier transform and the 
inverse Fourier transform are used, as well as the method of asymptotic 
averaging for composites with steady polyharmonic vibrations, and a finite 
element algorithm for solving local problems of the viscoelasticity theory 
on the periodicity cell of the composite. To obtain the material constants, a 
method of approximation of the Fourier images of the relaxation and creep 
kernels is proposed, which makes it possible to avoid the numerical error 
of the inverse Fourier transform. Key words: unidirectional composite 
materials, viscoelastic properties, numerical modeling. 

1 Introduction 
At present, polymer composite materials (PCM) are widely used in various industries, 
which exhibit significant viscoelastic properties [1–8], especially during long-term 
operation. PCM are used in the development of damping structures for the aviation, 
shipbuilding and automotive industries. In the products of these industries, PCM, as a rule, 
are operated for a long time - several years and even decades, so the problem of predicting 
creep deformations of PCM structures for these industries is relevant. 

Various methods for calculating the viscoelastic properties of composites, mainly for 
cyclic vibrations, were proposed in [1, 2, 9–13]. For such structures, the calculation of 
creep deformations of composites, which manifests itself over a long period of time, is of 
great importance. Also important is the dependence of this process on the content of their 
structural components - reinforcing fibers, dispersed particles, etc., including in situations 
where the fibers of one composite material can themselves be considered as a composite 
material. To solve this problem, it is necessary to calculate the effective relaxation and 
creep kernels of a composite that may contain anisotropic components. 

Methods for solving the problem of calculating creep deformations were considered in 
[9, 10, 12, 14, 15]. These methods are mainly based on approximate algorithms for 
calculating effective viscoelasticity operators and applying the Laplace transform to invert 
these operators. In [16], to calculate the viscoelasticity operators of composites, it was 
proposed to use the method of asymptotic averaging, and to invert these operators, a 
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generalization of the approximation method by A.A. Ilyushin [17]. Various versions of the 
method for applying the averaging method for calculating the stress-strain state of thin 
viscoelastic structures were proposed in [18–22]. 

The purpose of this article is to develop an algorithm for calculating the effective 
relaxation and creep kernels of unidirectional composites and their subsequent 
approximation in the form of exponential kernels. It is shown that this method provides 
high accuracy of calculations of the relaxation and creep kernels of unidirectional 
composites. 

2 Statement of the linear viscoelasticity problem under 
harmonic loading 
Consider the problem of mechanics of a linear viscoelastic continuum in the integral 
formulation [23]: 
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Here are denoted:  – stress tensor,  – Cauchy small strain tensor, u  – displacement 

vector, 4C  – fourth-order stiffness tensor (elastic moduli tensor), 4 ( )tK  – relaxation 

kernel tensor, ( )e tS  – vector of external forces on part  of the boundary, ( )e tu  – 

vector of specified displacements on a part u  of the boundary, n  – outward normal 
vector. 

The first equation in the system (1) is the equilibrium equation, the second is the 
Cauchy relations, the third is the constitutive relations of the linear theory of viscoelasticity 
in the Volterra form [17, 23], the fourth and fifth are the boundary conditions. 

Consider the case of steady oscillations, when the change in the vectors of external 
forces ( )e tS  and displacements ( )e tu  on the boundary obey the monoharmonic law 

( ) Re ,       ( ) Re ,e e i t e e i tt e t eS S u u                         (2) 

where eS , eu  are the complex oscillation amplitudes,  is the specified oscillation 
frequency. Then the displacements u , which are the solution to problem (1), are considered 
to have the monoharmonic form 
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( , ) Re ( ) .i tt eu x u x  (3) 

Substituting (3) into system (1), and also taking into account (2), it can be shown that in 
this case, strains and stresses also change according to the monoharmonic law 

Re ,   Re ,i t i te e  (4) 

and the constitutive relations take the form [17, 23] 

4 ( )  .C  (5) 

where 4 ( )C  is the tensor of complex elastic moduli 

4 4 4( ) ( ).C C K  (6) 

Here 4 ( )K  is the tensor of complex relaxation kernels and it is defined as follows: 

4 4

0

( ) ( ) .ie dK K  (7) 

Consider, in addition to the direct defining relation in system (1), also the inverse 
relation to it 

4 4

0

 ( )  ( ) ,
t

t d  (8) 

where 4  is the elastic compliance tensor and 4 ( )t  is the creep kernel tensor. Then, for 
harmonic vibrations, we obtain the constitutive relations in the following form: 

4 ( )  ,  (9) 

where 4 ( )  is the complex elastic compliance tensor 

4 4 4( ) ( ).  (10) 

Here 4 ( )  is the tensor of complex creep kernels that is defined as follows: 
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4 4

0

( ) ( ) .ie d  (11) 

Adding to these relations for the amplitudes the equations of quasi-static oscillations, as 
well as the boundary conditions, we obtain the following statement of the problem of the 
viscoelasticity theory for steady oscillations: 
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The system (12) will be used to find the effective integral viscoelastic characteristics of 
the 1D composite. 

3 General form for creep and relaxation spectral functions and 
kernels  
Let us represent the relaxation and creep functions using spectral expansions of rank 4 
tensors for different symmetry classes of materials [23] 

( ) ( )4 4
( )

( ) ( ), 1 1

( ) ( )4 4
( )

( ) ( ), 1 1

( ) ( ) ( ) ,

( ) ( ) ( ) .

m n

m

m n

m

t R t R t
a a

t t t
a a

a a
R

a a
                (13) 

Here m , n , ( )a  ( 1,..., m ), 4
( )  ( 1,...,m n ) depend on the material 

symmetry class, 1/2
( ) ( ) ( )(  )a a a  ( 1,..., m ). Functions ( )R t  and 

( )t  are called spectral relaxation and creep functions respectively. The spectral 

kernels of relaxation ( )K t  and creep ( )t  are obtained from the relations: 
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4 Spectral relaxation and creep functions and kernels for an 
isotropic material 
Consider the spectral representation (13) for an isotropic symmetry class. In this case 

1m , 2n , (1)a E , (1) 3a , 4
(2)

1
3

E E . Here  is the unit tensor 

of the 4th rank, E  is the metric tensor [24]. Thus, for an isotropic symmetry class, the 
spectral representation of the relaxation and creep function tensors has the form 

4
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Here are denoted: 11
1( ) ( )
3KR t R t  – volumetric relaxation function; 

11
1( ) ( )
3K t t  – volumetric creep function; 22( ) 2 ( )GR t R t  – shear relaxation 

function; 22( ) 2 ( )G t t  – shear creep function. From formulas (14) and (15) we 
obtain 

4
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For most isotropic materials, the assumption of the absence of bulk relaxation and creep 
is true [16, 17, 23], i.e., ( ) 0KR t , ( ) 0K t , ( ) 0KK t , ( ) 0K t , then the 
relaxation and creep kernels (16) are simplified: 
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Consider the complex moduli of elasticity and elastic compliance for an isotropic 
material. According to formulas (6) and (11), the tensors of complex relaxation and creep 
kernels take the form 
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where ( )GK  and ( )G  are complex functions of shear relaxation and creep, 
respectively, determined by the formulas 
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From (6) and (18) an expression for the complex modulus of elasticity is obtained: 

4 1( ) 2 ( ) ,
3

K GC E E E E                         (20) 

where ( ) ( )GG G K  is the complex shear modulus. 

For an isotropic material, components of the tensor 4 ( )C  are obtained as follows: 

1111 2222 3333

1122 1133 2233

2323 1313 1212

4( ) ( ) ( ) ,
3
2( ) ( ) ( ) ,
3
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                      (20) 
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5 Spectral relaxation and creep functions and kernels for a 
transversely isotropic material 
Consider the spectral representation (13) for the transversally isotropic symmetry class. In 
this case 2m , 4n , (1) 1 1a e e , (1) 1a , 2

(2) 1a E e , (2) 2a ,

4
(3) 1 1 1 1 1 1 1 1 2 2 3 3

1 1
2 2

E e e E e e e e e e O O O O , 

4
(4) 2 2 3 3

1
2

O O O O , 2 3 1 1 3O e e e e , 3 1 2 2 1O e e e e  [21]. 

It should be noted that in this work it is assumed that the axis of transversal isotropy is 
codirectional with the basis vector 1e . 

Thus, for a transversally isotropic symmetry class, the spectral expansion of the tensor 
of relaxation functions has the form 

2 2 2 2 2 2
4 2 2 1 1 1 1 1 1

11 1 1 12 22

2 2 2 2
33 1 1 1 1 2 2 3 3

44 2 2 3 3
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For tensors 4 ( )t , 4 ( )tK  and 4 ( )t  spectral representations will be similar to 
representation (21). 

6 Exponential relaxation and creep functions and kernels 
In practical problems, it is convenient to approximate the spectral functions of relaxation 
and creep as a sum of exponentials: 
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Here ( )A  and ( )  are constants called spectra of relaxation values and relaxation 

times, while ( )B  and ( )  are called spectra of creep values and creep times 

respectively. The quantities C  and  are constants in a similar spectral expansion 

for the tensors 4C  and 4 . 
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It is important to note that such a representation as a sum of exponentials is written 
specifically for the spectral functions and creep and relaxation kernels (or functions that 
differ from them by a coefficient), and not for the components ( )ijklR t , ( )ijkl t

( )ijklK t and ( )ijkl t .
If relations (6) and (10) are represented as the sum of the imaginary and real parts

4 4 4

4 4 4

( ) ,

( ) ,

i

i

C C C
(22)

then, by performing a direct Fourier transform from (22), taking into account (14), we 
obtain formulas for calculating the complex tensors of the elastic moduli and elastic 
compliances.
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7 Problem statement in periodicity cell (PC) of the composite in 
Fourier transforms
In order to calculate the effective viscoelastic characteristics of fibers represented as a 1D 
composite under harmonic loading, we use the asymptotic averaging method [16, 25]. 
Using a variant of this method proposed in [13], to achieve this goal, it is necessary to 
consider a series of local problems pqL on the 1/8th periodicity cell (PC) 

| 0i i iV aVVV | 0| 0| 0i | 0 in dimensionless local coordinates i under harmonic loading:

( )
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u u
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u n

VVV
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0

            (24)

where ia are the lengths of the edges of the 1/8 PC along the coordinate directions, 

0s s – coordinate planes, s s sa – end planes of PC, N –
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component interface planes in PC, s se – nabla operator relative to local 

coordinates i , se – vectors of a Cartesian (orthonormal) basis oriented along the PC 

edges. In (18), ( )pq , ( )pq , ( )pqu are the tensors of complex amplitudes of stresses, 

strains, and displacement vectors in the PC in the problem pqL .

Problems (25) are supplemented with boundary conditions on surfaces s and :

( ) ( ) ( )

( ) ( ) ( )

1if  : ,   0,   0,
2

                     ,

1if  : ,  0,   0,
4

                     ,

pp s s pp sp s pp h s pp r

pq h s pq sp s pq s pq r

p q

s h r s

p q

s h r s

u e e e e e

u e e e u e
(25)

here 0s on s and 1s on s , and pq – specified components of the complex 

amplitudes tensor of average strains of the composite in the basis se . There is no 
summation over dumb indices p and q here and below.

For the numerical solution of local problems (25) with BC (26), the finite element 
method is used. The software implementation of the solution of these problems was carried 
out in the SMCM software package, developed at the Department of Computational 
Mathematics and Mathematical Physics and the REC "Supercomputer Engineering 
Modeling and Development of Software Systems" of Moscow State Technical University. 
N.E. Bauman [26].

8 Calculation of effective complex kernels for the 1D composite 
material
After solving local problems (25) with BC (26), the components of the effective complex 
elastic moduli tensor 4 1D ( )C of the 1D composite can be obtained by formula

( )1D( ) ,
ij pq

ijpq
pq

C (26)

here are the average stresses over PC VVV are denoted

( ) ( )8 .ij pq ij pq
V

dV
VVV

. (27)
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The effective complex compliance tensor 4 1D ( )  of the composite is calculated as 

a tensor inverse to 4 1D ( )C , i.e. satisfying 

4 1D 4 1D( ) ( ) .C  (28) 

Then the effective tensors of the relaxation kernels and creep kernels of the composite 
material are found using the formulas 

4 1D 4 1D 4 1D

4 1D 4 1D 4 1D

( ) ( ),

( ) ( ) .

K C C
 (29) 

In our case, the PC of a 1D composite is transversely isotropic with the main axis 1Oe , 

therefore, the tensors 4 1D ( )K  and 4 1D ( )  are indifferent with respect to this 
symmetry group and can be represented in the form (21). Then, using the components 
obtained during the calculation in the basis sOe , we obtain the spectral complex constants 

1D( )K  и 1D( ) . If these components are presented in the form 

1D 1D 1D

1D 1D 1D

( ) ( ) ( ),

( ) ( ) ( ),

K K iK

i
                 (30) 

then the functions in the time domain can be formally obtained by applying the inverse 
cosine and sine Fourier transforms 

1D 1D 1D

0 0

1D 1D 1D

0 0

1 1( ) ( ) cos ( )sin ,

1 1( ) ( ) cos ( )sin .

K t K t d K t d

t t d t d

     (31) 

9 Approximation of complex kernels for 1D composite material 
The main goal of this section is to obtain spectral kernels in the form of a sum of exponents 

 

E3S Web of Conferences 376, 01032 (2023) https://doi.org/10.1051/e3sconf/202337601032
ERSME-2023

10



1D( )

1D( ) 1D( )
1

1D( )

1D( ) 1D( )
1
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( ) exp .

N
Approx

N
Approx

A tK t

B tt

                  (32) 

The calculation of integrals in (32) leads to a significant accumulation of a numerical 
error, which is expressed in the oscillation of the obtained functions. Therefore, direct 
approximation of kernels 1D ( )K t  and 1D ( )t  by functions (33) will be extremely 
difficult. A more rational idea in this case would be the approximation of complex spectral 
kernels 1D( )K  and 1D( )  by functions of the form 

1D( ) 1D( ) 1D( )

2 21D( ) 1D( )1 1

1D( ) 1D( ) 1D( )

2 21D( ) 1D( )1 1

( ) ,
1 1

( ) .
1 1

N n
Approx

n n
Approx

A A
K i

B B
i

                 (33) 

The approximation of kernels (31) by functions (34) is equivalent to the approximation 
of kernels (32) by functions (33), but at the same time it allows avoiding the numerical 
error in calculating the integrals in (32). 

For a qualitative approximation in the form (34), the effective complex kernels 
1D( )K  and 1D( )  are calculated for a certain frequency spectrum k , 1...k N

, and the better the chosen frequency spectrum reflects all the features of the functions 
1D( )K  and 1D( ) , the better the approximation can be obtained. 

To obtain the material constants 1D( )A , 1D( ) , 1D( )B  and 1D( ) , the problem 
of minimizing the functionals 

2 2
1D( ) 1D( ) 1D( )

1D( ) 1D( ) 1D 1D
2 21D( ) 1D( )1 1 1 1

1D( )
1D( ) 1D( ) 1D

21D( )

( , ) ( ) ( ) ,
1 1

( , ) ( )
1

N NN N
k

K k k
k kk k

k

k

A A
A K K

B
B

2 2
1D( ) 1D( )

1D
21D( )1 1 1 1

( ) .
1

n nN N
k

k
k k k

B

(35) 

The spectra of values 1D( )A  and 1D( )B  are calculated from the spectra of times 
using the least squares method. As a result, we obtain 5 independent spectral exponential 
kernels for a 1D composite. 
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10 Numerical simulation results for 1D glass/epoxy composite 

Consider a 1D composite consisting of an epoxy matrix and glass fibers. 
In numerical calculations, the following values of the elastic characteristics of the 

matrix (modulus of elasticity mE  and Poisson ratio m ), as well as fibers (modulus of 

elasticity fE  and Poisson ratio f ) were used: 

3.3mE  GPa, 0.35m , 200fE  GPa, 0.25f . 

The shear creep kernel the matrix is also specified: 

( )

( ) ( )
1

( ) exp ,
N

G
G

G G

A tK t  

where 3N , (1) 0.354GA  GPa, (2) 0.483GA  GPa, (3) 0.2175GA  GPa, 
(1) 34.218 10G  s, (2) 65.793 10G  s, (3) 77.792 10G  s. The fibers are assumed 

to be elastic. 
For a 1D composite, the following spectra of values and times of relaxation were 

obtained: 

1D(1)
11 0.197A  GPa, 1D(2)

11 0.27A  GPa, 1D(3)
11 0.122A  GPa, 

1D(1) 3
11 4.224 10  s, 1D(2) 6

11 5.81 10  s, 1D(3) 7
11 7.8 10  s, 

1D(1)
12 0.0793A  GPa, 1D(2)

12 0.113A  GPa, 1D(3)
12 0.0532A  GPa, 

1D(1) 3
12 4.292 10  s, 1D(2) 6

12 5.94 10  s, 1D(3) 7
12 7.9 10  s, 

1D(1)
22 1.37A  GPa, 1D(2)

22 1.89A  GPa, 1D(3)
22 0.87A  GPa, 

1D(1) 3
22 4.245 10  s, 1D(2) 6

22 5.84 10  s, 1D(3) 7
22 7.83 10  s, 

1D(1)
33 1.698A  GPa, 1D(2)

33 0.3A  GPa, 1D(3)
33 2.38A  GPa, 

1D(4)
33 0.68A  GPa, 1D(5)

33 1.195A  GPa, 1D(6)
33 0.534A  GPa, 

1D(1) 3
33 4.253 10  s, 1D(2) 3

33 5.186 10  s, 1D(3) 6
33 5.865 10  s, 
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1D(4) 6
33 8.428 10  s, 1D(5) 7

33 7.911 10  s, 1D(6) 8
33 1.021 10  s, 

1D(1)
44 2.451A  GPa, 1D(2)

44 3.459A  GPa, 1D(3)
44 1.614A  GPa, 

1D(1) 3
44 4.282 10  s, 1D(2) 6

44 5.915 10  s, 1D(3) 7
44 8.21 10  s, 

Figures 1-5 show the effective spectral relaxation functions 1D
11 ( )R t , 1D

12 ( )R t , 
1D
22 ( )R t , 1D

33 ( )R t  and 1D
44 ( )R t  on a semi-logarithmic time scale obtained using the 

developed method. 

  

Fig. 1. Effective relaxation function 1D
11 ( )R t  

for 1D glass/epoxy composite. 
Fig. 2. Effective relaxation function 1D

12 ( )R t  
for 1D glass/epoxy composite. 

 

  

Fig. 3. Effective relaxation function 1D
22 ( )R t  for 

1D glass/epoxy composite. 
Fig. 4. Effective relaxation function 1D

33 ( )R t  
for 1D glass/epoxy composite. 
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Fig. 5. Effective relaxation function 1D
44 ( )R t  for 1D glass/epoxy composite. 

11 Conclusions 
A method for calculating the effective integral viscoelastic characteristics of unidirectional 
composites has been developed. A method is proposed for approximating the Fourier 
transforms of effective kernels, which makes it possible to avoid the numerical error of 
integration in the process of the inverse Fourier transform. Numerical modeling of 1D 
fiberglass is carried out, showing the consistency of the proposed method for calculating 
effective kernels and the approximation method. 
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