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Abstract. A method for multiscale supercomputer calculations of the 
composite structures strength has been developed. A feature of the proposed 
methodology is of division of the solution algorithm into 2 parts: solving 
problems at the micro level (in turn, these problems can consist of several 
sub-levels of calculation) and solving the problem at the macro level. Such 
a division, in which the solution of some problems is the input to problems 
at a higher level, helps to significantly reduce the consumption of computing 
resources. When solving problems, curvilinear anisotropy is taken into 
account at the macro level (structures), as well as at the micro level 
(composite material). The 3D finite element method was used for the 
numerical solution. To take into account curvilinear anisotropy, a special 
assembly algorithm is used, which requires the construction of anisotropy 
blocks (cells). A method is proposed for taking into account integral 
boundary conditions when solving problems of the linear theory of elasticity. 
A finite element modeling of the stress-strain state and damageability of a 
cylindrical structure with power ring elements has been carried out. As an 
example, textile composite materials (CM) with carbon and glass fibers are 
considered. Key words: supercomputer, composite structures, finite 
element. 

1 Introduction 
At present, there is more interest for multiscale problems, the solution of which requires 
significant computing power. The hierarchical multilevel structure is clearly seen in modern 
composite materials. Each previous structural level is included in the next higher level. Such 
a structure is especially clearly realized in composites based on reinforcing fibers of various 
weaves: fabric, winding, spatially reinforced, in which the fibers themselves are bundles of a 
large number of monofilaments [1]. Methods based on approximate analytical approaches 
[2–6] do not provide acceptable strength characteristics in the transverse directions of the 
composite and in shear. A detailed calculation of structures, taking into account all the real 
microstructure of such structures, is currently impossible to carry out in the foreseeable time 
even on the most powerful modern computing tools, including supercomputer technologies. 
In this regard, a multilevel model was developed for calculating the effective elastic and 
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strength characteristics of composites, within which calculations are carried out only for 
representative elements of each structural level (periodicity cells), and then for a 
homogenized structure with effective properties.

2 Simulation of the stress-strain state in composite structures
The proposed calculation method is divided into three stages:

modeling of effective elastic and strength properties of construction materials on the 
periodicity cells;

finite element modeling of macroscopic stress-strain state (SSS) of a composite 
structure for homogenized material;

simulation of material damage as part of a structure.
To calculate the effective elastic and strength characteristics, the method of asymptotic 

averaging (MAA) is used [7-12]. After obtaining the necessary material constant, the 
macroproblem of the linear theory of elasticity for an anisotropic deformable solid is 
considered [13,14] in Cartesian basis ie with Cartesian coordinates ix , which are also called 
global:
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where iu – components of the displacement vector (unknown functions of the problem), 

,ij ij – components of stress and strain tensors respectively, operators of differentiation 

with respect to global coordinates: /i ix , ( )( , )n
ijkl mC z x – components of the 

elastic moduli tensor of the composite, which are functions of the damage parameters ( )nz
and coordinates mx due to curvilinear anisotropy, in – surface normal vector components, 

ekS – components of the force vector on a part of the boundary S , eiu – displacement 

vector components on a part of the boundary u , elu – displacement vector components on 

a part of the boundary S , iS – components of the force vector on a part of the boundary 

.
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3 Accounting for curvilinear anisotropy in the model for 
calculating the components of the elastic modulus tensor

The structure has a curvilinear anisotropy, i.e. there are curvilinear coordinates iq , that are 

related to global coordinates ( )i mq x . The coordinate line 1q is chosen orthogonal to the 
middle surface of the structure at the point of intersection with it. We introduce local 
Cartesian coordinates i , which are tangent to the coordinate lines iq at the point of 

intersection with the structure. The coordinates i will form the principal axes of curvilinear 

anisotropy [15], in which the elastic modulus tensor (0) ( )( )n
ijklC z is orthotropic and is 

related to the components ( )( , )n
ijkl mC z x in global coordinates mx by the relations:

' ' ' ' ' ' ' '
( ) (0)( , ) ,n

ijkl m i j k l ii jj kk ll
C z x C Q Q Q Q                                   (2)

where '

'

i
ii
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– Jacobian matrix [15], with the help of which local anisotropy bases are 

introduced 'j iij
r Q e . Let us denote the orthonormal basis as ˆ̂

jr .

4 Setting integral boundary conditions in moments
In engineering practice, it is necessary to model the boundary conditions (BC) in (1) not only 
in terms of displacement vectors, forces, but also in moments. This boundary condition makes 
sense only for structures such as cylindrical bodies [], on their flat surfaces . The moment 
vector is represented in the basis attached to these planes :

'.i
e e iM M eiM M ie '                                                            (3)

Let '
3e 'e be orthogonal to plane to which the moment is applied, then 1 2,e eM M are 

bending moments, and 3
eM – torque.

The moment is defined as follows [13]:

,nM x t dM ,nx t dnx t dt ddd                                                        (4)

where 'x O Mx O M'O M'' the radius vector of point M , ntt – the force vector on 

                                    1 1 2 2 3' ' ' ,' ' 'n n n nnt e e e                                           (5)

where 1n 2n - shear stresses on , and nn – normal stress.
Let us consider possible cases of specifying the moments:
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1 2, 0e eM M , 3 0eM ,                                                    (6) 

then the BSc are given in terms of the stress tensor as follows [13]: 

1 2
0 1 2 1 2, 0,nn n nA A x A x                                        (7) 

where 0 1 2, ,A A A  are calculated by the formulas obtained as a result of solving the problem 
of bending a cylindrical body by moments [13]: 
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then the BCs are given in terms of the displacement vector as follows, obtained when 
solving the problem of beam torsion: 

1 2 3 2 1 3 33
3

22 23 11 13

, , 0,
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u x x u x x
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                                   (6) 

where 23 13,G G  - shear moduli. 
It should be noted that in the case of bending moments, the final result will be independent 

of the choice of 'O , in the case of torsion, such a statement will be incorrect. 
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5 Composite structure damage calculation
For isotropic materials, the Mises criterion is most often used to calculate strength and 

damage [13]. For orthotropic composites, this criterion is not applicable; instead, the Tsai-
Wu and Tsai-Hill strength criteria are most often used [3,5,13]. These criteria are mainly used 
for fabric and layered composites. In the principal axes of anisotropy, the criterion of the 
Tsai-Hill type, written with the help of sign-constant stress tensor invariants [4], has the form:

2 2 22
(1) 11 11 22 22 12

1 1 1 2 2 12

2 2 2 2
(2) 33 33 13 23

3 3 13 23

,

,

T C T C T C S

T C S S

z

z

    (7)

where (1)z – the damage parameter responsible for the rupture or crushing of the fibers in 
the plane 1 2 ,Oe e

(2)z – damage parameter responsible for delamination during interaxial shear, or 
transverse separation or collapse.

1
2

1, 2,3

sign-constant invariants of the stress tensor, and T , C - limits of tensile strength, 

compression in various directions, 12S , 13S , 23S   - shear strength limits in various 
planes.

The algorithm for calculating the damage of an orthotropic composite with a layered 
structure is implemented as follows:

1) The SSS of the structure is calculated without taking into account damage, which 
corresponds to the solution of the of the linear theory of elasticity problem (1);

2) The strength criterion is selected depending on the type of material and the field of 
parameters ( )iz is calculated;

3) The safety factor is calculated: 

( )1/ max{ ( )}max{ )}i

x
z x ,                                                         (9)

where – construction area together with boundary surfaces 
4) after condition (2) 1z is reached in any finite element (or node), a partial change in 

the elastic modulus of the composite occurs in the plane of laying the composite layers;
5) after reaching condition (1) 1z in the FE (or node), all components of the elastic 

modulus tensor turn to zero in this FE.
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6 Results of numerical simulation of the strength of a cylindrical 
composite structure 
For the finite element solution of problem (1) using the proposed algorithm, the SMCM 
software package developed at the Scientific and Educational Center "Supercomputer 
Engineering Modeling and Development of Software Complexes" of Bauman Moscow State 
Technical University [16,17] (SIMPLEX) was used. The software package allows modeling 
on supercomputer technology: 

- using distributed nodes with CPU and using MPI, 
- using GPU; 
- using hybrid computing tools based on GPU+CPU. 
Calculations were carried out on the SIMPLEX supercomputer complex. 
The input data for modeling the properties of fabric composites in microlevel problems 

are the effective elastic and strength characteristics of matrices and monofilaments located in 
the matrix (a bundle of monofilaments is impregnated with a polymer binder). Table 1 shows 
the values of the matrix and monofilament constants used in the calculations. in turn, to obtain 
the second one, it is required to make a calculation at a lower level, for which it is necessary 
to know the characteristics of only monofilaments and matrices shown in Table 1. 

Тable 1. Elastic and strength properties of materials [4] used in calculations. 

Nomination Elastic constants Values 

Carbon fiber 

E . GPa 260 
 0.2 
 2.2 

0H  3 

s  0.07 
 0.33 

r  0.25 

Fiberglass 

E . GPa 60 
 0.25 
 2 

0H  2.2 

s  0.13 
 0.38 

r  0.35 

Epoxyphenol matrix 

E . GPa 3 
 0.35 

C  0.07 

S  0.042 

T  0.062 

where E  – Young's modulus,  – Poisson's ratio,  – average tensile strength of fibers, 

0, , ,H s r  - temperature-independent constants that characterize the statistical spread in the 

strength of monofilaments in a fiber [4], C  – ultimate compressive strength, S  – ultimate 

shear strength, T  – ultimate tensile strength. The constants 0H s r are used in the 
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model for calculating the strength of threads of 1D composites consisting of monofilaments 
[4]. 

To calculate the properties of tissue CM, the method of asymptotic averaging was used, 
the description of which is given in [10-12], as well as the software [16,17], which is an 
integral part of the SMCM complex. 

After solving the microlevel problems, we obtain data on materials that are necessary for 
calculating the stress-strain state of a structure made of composite materials.  

A cylindrical structure with reinforcing ring elements and a local fastening zone was 
considered. The following boundary conditions were considered: forces are applied 
tangentially along the end surfaces of the front and rear power elements, respectively, 
moments are also set on these surfaces.  

Figures 1-3 show some calculation results: Figure 1 shows the fields of dimensionless 
stress values yy  and  xy  in the global coordinate system, and Figure 2 shows the stress 

fields loc
xx  and loc

yz  in their own coordinate system. Figure 3 shows the maximum fields of 
the damage parameters z1 and z2 and the type of destruction (partial or complete, 
respectively). 

  
a) b) 

Fig. 1. Stress fields yy (a) and xy (b). 

  
a) b) 

Fig. 2. Stress fields loc
xx  and loc

yz . 

  
a) b) 

Fig. 3. The maximum of the damage parameters z1 and z2 (a) and the type of destruction (b). 

E3S Web of Conferences 376, 01034 (2023) https://doi.org/10.1051/e3sconf/202337601034
ERSME-2023

7



7 Conclusions 
A technique for solving multiscale strength problems for composite materials structures has 
been developed. A method of taking into account integral boundary conditions for problems 
of elasticity theory is considered. An example of the application of the developed technique 
for modeling stress fields in a cylindrical composite structure is given. It is shown that the 
developed technique makes it possible to successfully calculate stress fields both in the global 
coordinate system and in the local system associated with the local basis of anisotropy. The 
technique allows us to calculate the fields of damage parameters that determine various types 
of structural failure made of layered composite materials.  
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