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Abstract. The article is devoted to the development of a method for 
constructing theoretical strain diagrams. The method is based on the use of 
a model of effective constitutive relations for approximating the deformation 
diagrams of layered composites obtained using the asymptotic averaging 
method. To find the elastic constants of the model of a transversally isotropic 
composite, the method of minimizing the deviation of the approximation 
deformation diagrams from the diagrams obtained by the asymptotic 
homogenization (AH) method is used for a series of standard problems of 
deformation at small deformations. Minimization problems were solved 
using the Hooke-Jeeves method. The results of numerical simulation by the 
proposed method for layered composites are presented, which showed good 
approximation accuracy, which is achieved due to the proposed method for 
separating the coupled problems of micro- and macroscopic deformation. 
Key words: layered composites, transversally isotropic, asymptotic 
homogenization, numerical simulation, elastic constants. 

1 Introduction 
Currently, there are many works devoted to modeling the effective mechanical characteristics 
of composite materials. For practical purposes, the problem of determining the effective 
elastic characteristics of composites based on information about the microstructure and 
properties of the constituent phases is of great importance. There are quite a few methods for 
this problem, but most of them are inapplicable for composites with small deformations [1, 
2].  

To calculate the effective characteristics of composites, the most promising method is the 
homogenization method (AH), proposed by N.S. Bakhvalov, G.P. Panasenko, E. Sanchez-
Palencia. The method of asymptotic averaging is well developed at present and has been 
successfully implemented numerically for various problems in mechanics, but mainly for 
linear problems [3−12].  

To solve the problems of macroscopic deformation of structural elements made of 
composites with small deformations, it is necessary to apply constitutive relations for 
composites, taking into account anisotropy. The direct use of the asymptotic averaging 
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method for constructing constitutive relations is possible and was done in [13], the method 
is based on solving special problems of microscopic deformation on periodicity cells (PC). 
Calculations of macroscopic deformation, for example, by the finite element method, when 
at each node of the grid it is necessary to solve the problem on a periodicity cell, lead to very 
large amounts of calculations.  

The purpose of this work is to develop a method that will allow us to separate the 
problems of macro- and microscopic deformation of linear elastic composites without using 
the asymptotic averaging method.  

2 Model of transversely isotropic elastic –plastic media with 
small deformations 
Since the solution of local problems on the PC requires large amounts of calculations, we 
will move from the exact solution of these problems in each specific case of loading the PC 
with a system of averaged stresses to the construction of analytically effective constitutive 
relations for the composite as a whole. The constants included in these constitutive relations 
will be found by approximating the deformation diagrams of composites for particular 
deformation problems, while the deformation diagrams themselves are calculated with a 
limited number of options for solving problems on the PC of the composite [14, 15].  

The proposed method is in fact a numerical experiment, in which, instead of finding 
deformation diagrams experimentally, a numerical solution of problems on the PC is used. 
In the future, both in a numerical and in a real physical experiment, the most successful 
analytical version of the constitutive relations is selected, which best describe the maximum 
number of deformation diagrams in a standard verification set of experiments.  

Let us consider an elastic-plastic layered composite material, which we will assume to be 
a transversally isotropic medium. We accept the basic model about the additivity of elastic 
and plastic deformations 

                                        .e P                                                            (1) 

The elastic strain tensor will be proposed with a tensor density  
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e TJ                                                         (2) 

where  is the scalar function of the joint invariants ( ) ( , )s
pJ  of the stress tensor  

and the plastic strain tensor p  

( )
( ) ( )

( ) , , 1,..., .
s

s s
s

J
J J z

J
                    (3) 

Here ( )sJ  – elastic potential (Gibbs free energy),  – density, ( )sJ  – derivative 

tensor. The functional basis of joint invariants ( ) ( , )s
pJ  for a transversely isotropic 

medium consists of 11 invariants, which can be chosen as the following [16–19]: 
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Here E – metric tensor, 2
3 3 3ˆ ˆ ˆc c c , and 3ĉ – unit vector directed along the transversal 

isotropy axis, ˆ , 1,2,3c – basis of the transversal isotropy axes.

The derivative tensors ( )s
TJ in this case have the following form:
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where 2 ( )I – principal invariants of the tensor [19], 1 2 3 3 2ˆ ˆ ˆ ˆO c c c c , 

2 1 3 3 1ˆ ˆ ˆ ˆO c c c c , and the expression for the tensor 4
3O is given in [19].

Substituting these expressions into the formula of the constitutive relations presented in 
the tensor basis and grouping them by tensor powers, we obtain the representation of the 
constitutive relations of a transversally isotropic medium in the tensor basis:
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Let us further consider a model in which the elastic potential does not depend on the 
implementation of the invariants (3)

10J and (3)
11J , and also does not depend on the cubic 

invariant (3)
5 ( )I , then 5 10 11 0, and then relation (6) takes the form:
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where – unit tensor of rank 4, 4П – elastic compliance tensor, 1E , 3E , 12 , 13 , 12G and 

13G – elastic constants.
For the plastic strain tensor, we accept the associated plastic flow model [19], according 

to which

1
/ ,

k

p h fpp hh                                               (9)       

where

( )( ( , )) 0, 1,..., ,s
pf f J k                              (10)

plastic potentials depending for composites on joint invariants ( ) ( , )s
pJ , –

loading parameters, h – indicator function that determines active plastic loading 1h and 

unloading 0h . Equations (10) determine the position of the plasticity surface.
Then, substituting the derivative tensors (5) into (9), we obtain the following expression 

for the plastic strain rate tensor :p :p

2 410
1 2 1 3 1 1 2 2 3 3 4 11

1ˆ 2 ;
2 2p p pE c O O O O O1p E1E   (11)

(3)

1
/ .

k

h f J                                                (12)

For a transversely isotropic medium, we will assume that there are only 2 plastic 
potentials 2k 1f and 2f

1 1 1 4 2 2 2 3, , , .H H H Hf f Y Y f f Y Y                          (13)

where

0
(3) 0 (3), 1,...,4; ,

n

H p pY I H H H I          (14)

– joint invariants, where 0 0,H n – constants. This model generalizes the well-known 
Huber-Mises model for isotropic media.

Calculating the derivatives of f and substituting them into (12), we obtain

1 1 11 2 2 22 3 2 23 4 1 14

10 2 23 3 11 1 14 4

, , , ,

2 , 2 .

f h f h f h f h

f H h f H h

,f h f h f h f h1 141 f h f h f hf h f h11 2 2 22 3 2 23 411 2 2 22 3 2 232 22 3 2 23 4

, 2 .11 1f h f h14 4142 23 323 323 3 22
               (15)
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where (3)/f f Y .Then the constitutive relation (11) for plastic deformation takes the 
form

1 1 2 2p H HhP hP2HhP2 21 1p 1 11h1hP1 ,                                                  (16)

where

2 4
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2 23
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From (16) we obtain expressions for the loading parameters 11 and 22 .
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Functions f are chosen in a quadratic form similar to the Mises model:
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The functions 1s are called the yield strengths in longitudinal tension and compression, 
respectively, and 4 s are the shear yield strengths in the plane of transversal isotropy. The 
functions 2s are called the yield strength in transverse tension and compression, and 3s –
the yield strength in interlayer shear. These functions are usually determined experimentally. 
For anisotropic media, the difference between the tensile and compressive yield strengths is 
usually quite significant, so the s and s functions can differ significantly [19].

Explicit formulas for invariants (14) have the form

0 0
1 10 0

1 11 1 1 11 22 1 1 22 ,
n np p
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3 Method for identification of the model parameters for 
transversally isotropic composites
Using the method of asymptotic averaging for a linearly elastic layered composite material, 
it is possible to construct constitutive relations based on those for individual layers. However, 
these relations do not have an explicit analytical expression; they are calculated in the form 
of a numerical algorithm for solving a local problem in PC. This method is very accurate 
from a mathematical point of view, but leads to high costs for calculating.

Let us consider another method for constructing deformation diagrams, when the 
constitutive relations are given in the form of explicit analytical relations (9), and the 
constants 3E 12 13 12G 13G , 0 0 0

2 3 4, , ,H H H and 0 0 0
2 3 4, , , , 2,...,4sn n n entering 

into these relations are found from the condition of the best approximation of the deformation 
curves ij ij mnF obtained by direct numerical solution of the problem in PC for some 
standard problems of macroscopic deformation, in which a homogeneous stress-strain state 
with ij and ij independent of coordinates is realized. A numerical method for solving a 
local problem in PL for a linearly elastic layered composite was implemented in [13].

As standard problems of macroscopic deformation, we consider the class of problems of 
uniaxial tension-compression of a plate in the form of a parallelepiped, the faces of which 
are parallel to the coordinate axes Oe . The formulation of these problems can be 
represented as a system with different boundary conditions

,

1 1 , 2 2 ,

, ,

0,

,

,

,
2 ,

ij j

e
ij ijkl kl

e p
kl kl kl
p

kl H kl H kl

ij i j j i

V

C V

V

hP hP
u u

2 ,H klhP2 2kl1 1
p

kl 1 11h1hP1

                                       (25)

where ijklC – components of the elastic modulus tensor, inverse to the elastic compliance 

tensor 4П .

4 Uniaxial transverse tension-compression of the composite

Consider the case of tension-compression of the plate along the axis 3Oe . Under such loading 

11 22 330, 0, 0 . Then we look for the solution of this problem in the following 
form:

0
33 33 ,const                                                 (26)
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where x Vx Vx – uniaxial stress-strain state,

11 22 33 12 13 230, 0, other 0.                              (27) 

Let us express 33
e in terms of 33 using the system (25)

33
33

3

e

E
.                                                           (28)

Let us now find the dependence of the plastic strain tensor 33
p on the stress tensor 33

according to the Huber-Mises model (18), in which the cases of plastic tension and plastic 
compression should be considered separately.

0
2

0
2

2 33 2
1

1
33 2

33 33 20
2

1
1

33 2
33 20

2

0, if ,

, if ,

, if .

s s

n
p s

s

n
s

s

H

H

                             (29)

From (28) and (29) we find the relationship between 33 and 33 by the formula

33 33 33.
e p                                                                       

There are five unknown constants in this dependence: 3 ,E 0
2 ,H 0

2 ,n 2s , 2s . Their 
search is carried out by comparison with the experimental deformation diagram ( ) ( )

33 33( )э э , 
obtained as a result of solving local problems by the method of asymptotic homogenization, 
arising during transverse uniaxial tension-compression of a layered composite material.

5 Composite interlayer shear

Let us consider the case of interlaminar shift of the plate between the axes 1Oe and 3Oe . 

Under such loading 13 0, the rest 0ij . Then we look for the solution of this problem 
in the following form:

0
13 13 ,const                                                      (30)

where x Vx Vx – uniaxial stress-strain state,

13 0, other 0.ij                                                  (31) 

Dependence of the elastic strain tensor 13
e on the stress tensor 13 :
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13
13

13

.
2

e

G
                                                                (32)

From the plasticity function 2 2 3,H Hf Y Y , we express the plastic strain tensor 13
p in 

terms of the stress tensor 13

0
3

1
2 1

13 3
13 0

3

.
n

p s

H
                                                   (33)

There are only four unknown constants in this dependence: 13 ,G 0
3 ,n 0

3 ,H 3s . Their 
search is carried out by comparison with the experimental deformation diagram ( ) ( )

13 13( )э э , 
obtained as a result of solving local problems with the help of AH method, arising from the 
interlayer shear of the composite.

6 Shear in the plane of the composite layer

Let us consider the case of a shift in the plane of the plate between the axes 1Oe and 2Oe . 
Under such loading 12 0, the rest 0ij . Then we look for the solution of this problem 
in the following form:

0
12 12 ,const                                                       (34)

where x Vx Vx – uniaxial stress-strain state,

12 0, other 0.ij                                                   (35) 

The elastic strain tensor 12
e can be expressed in terms of the stress tensor 12 by the 

formula

12
12

12

.
2

e

G
                                                           (36)

Expressing the plastic strain tensor 12
p in terms of the stress tensor 12 according to the 

Huber-Mises model, we obtain

0
4

0
4

1
2 1

12 4
12 0

4

/ 2 .
4

n
p s

nH
                                          (37)

There are only four unknown constants in this dependence: 12 ,G 0
4 ,n 0

4 ,H 4 s . Their 
search is carried out by comparison with the experimental deformation diagram ( ) ( )

12 12( )э э , 
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obtained as a result of solving local problems with the help of AH method, arising from shear 
in the plane of the composite layer. 

7 Formulation of the problem of searching for model parameters 
Let us now combine the obtained solutions of four problems: (29), (33) and (37). From the 
solution of the corresponding local problems with the help of AH method, we have several 
curves. For each specific set of constants 3 12 13, , ,E G G  0 0 0

2 3 4, ,H H H  and 
0 0 0
2 3 4, , , , 2,...,4sn n n  it is possible to construct curves for a transversally isotropic 

material, which will be called theoretical. 
The unknown parameters 3 12 13, , ,E G G 0 0 0

2 3 4, ,H H H , 0 0 0
2 3 4, , , , 2,...,4sn n n , 

can be calculated by fitting experimental tensile and compressive strain curves. To do this, 
the problem of minimizing the functional of the standard deviation of the experimental and 
theoretical curves at N  points is solved: 

1
2

( )
1 ,

1 1 min.
N

э
iN

                                        (38) 

To solve minimization problems (38), the Hooke-Jeeves method was used. 

8 Results of numerical simulation of strain diagram of laminated 
composite 

With the help of the developed algorithm, averaged strain diagrams ij ij mnF  of a 
layered composite were calculated and built under uniaxial loading in different directions for 
tension and compression. Also, using the problem of minimizing the functional (38), the 
constants 3 12 13, , ,E G G  0 0 0

2 3 4, ,H H H  and 0 0 0
2 3 4, , , , 2,...,4sn n n  were found. PC 

consisted of two layers – steel and aluminum, with a ratio of their relative thicknesses 
0,5Sh  and 1A Sh h . The composite layers were considered isotropic. 

The strain diagrams are calculated for uniaxial loading in the transverse direction 3Ox , 
with interlaminar shear in the plane 1 3Ox x , and with shear in the plane of the layer 1 2Ox x . 

Experimental and calculated strain diagrams σ ε  for the composite under tension 
and compression are shown in Figs. 1, and the values of the optimal constants 3 ,E  0

2 ,H  
0
2 ,n  2s , 2s  are in Table 1. The calculation was carried out according to formula (29), and 

the unknown constants were preliminarily determined from the strain curve. 
On Fig. 2 shows diagrams of deformation during interlaminar shear σ ε , the 

values for their constants 13 ,G  0
3 ,n  0

3 ,H  3s  are given in Table 2; and in Fig. 3 – at a shift 
in the plane of the layer σ ε , and their unknown constants 12 ,G  0

4 ,n  0
4 ,H  4 s  – in 

Table 3. 
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a 
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Fig. 1. Diagrams of deformation σ ε  of the composite under uniaxial loading in the transverse 
direction: 1 – experimental; 2 – calculated, a –tension; b – compression.  

Table 1. Values of the constants of composite models in uniaxial tension and compression in the 
transverse direction. 

Type of loading  Tension Compression 

3 ,E  GPa 0.58 0.58 
0
2 ,H  GPa 0.27 0.25 

0
2n  0.71 0.63 

2 ,s  MPa 16.1 − 

2 ,s  MPa − 11.3 

 
Fig. 2. Diagrams of deformation σ ε  of the composite during interlayer shear: 1 – experimental; 
2 – calculated. 
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Table 2. Values of constants of the composite model at interlayer shear. 

Type of loading Interlayer shear 

13 ,G  GPa 0.165 
0
3 ,H  GPa 0.19 

0
3n  0.39 

3 ,s  MPa 40 

 
Fig. 3. Diagrams of deformation σ ε  of the composite during shear in the plane of the layer: 1 – 
experimental; 2 – calculated. 

Table 3. Values of the constants of the composite model during shear in the plane of the layer. 

Type of loading Shear in the plane of the layer 

12 ,G  GPa 0.48 
0
4 ,H  GPa 0.62 

0
4n  0.45 

4 ,s  MPa 5.86 

The maximum relative error among the obtained diagrams is 14% , which indicates a 
quite satisfactory quality of the model of an effective transversally isotropic medium. 

9 Conclusions 
A model of an effective transversally isotropic linear elastic medium with small 
deformations, which belongs to the class of universal models, is proposed. The model is 
applied to deformation diagrams of layered composite materials with small deformations and 
a periodic structure using a universal representation of constitutive relations for composite 
layers. 

A method for finding the effective constants of the composite model by solving the 
problem of minimizing the functional of the standard deviation of the experimental 
deformation diagrams obtained by numerically solving problems on the PC and theoretical 
deformation diagrams obtained by approximation is proposed. 

Numerical modeling of deformation diagrams of layered composite materials with small 
deformations was performed using the AH method, which showed fairly good results. 
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