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Abstract. An algorithm for solving the problem of elasticity theory for 
composite thin-walled shell composite structures with junction lines is 
proposed. The SMCM software was created based on the finite element 
method and the developed algorithm. A test problem was solved for a 
composite shell structural element of the box-plate type docked with 4 other 
plates.  A comparative analysis of the obtained results was carried out with 
the reference solution of the three-dimensional elasticity problem in the 
ANSYS software, as well as with the two-dimensional shell solution of the 
ANSYS software. SMCM PC allows obtaining results that are closer to a 
three-dimensional solution. Key words: modeling of stresses, composite 
materials, shell, finite element method. 

1 Introduction 
Methods of two-dimensional theories of plates and shells are often used to calculate 
engineering thin-walled structures [1-14], which allow to reduce the dimension of the 
problems from 3D to 2D problems, which, require significantly lower characteristics for the 
computer technology used. However, when solving problems in the theory of thin-walled 
plates and shells, additional difficulties arise, in particular, the problem of the accuracy of 
approximating the solution of the problem in terms of the thickness of the shell [5], the 
influence of the finite element type on the solution, as well as the problem of correct 
conjugation of the solution in the junction zone of various shell structural elements In this 
paper, a numerical algorithm for solving the problem of elasticity theory for shell composite 
structures, including complex structures, is proposed.  The paper compares the results of 
calculations obtained on the basis of the shell theory in the ANSYS software package and in 
the SMCM software package developed at the Bauman Moscow State Technical University 
Scientific Educational center for Supercomputer modeling and software engineering. 
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2 Mathematical formulation of a 3-dimensional problem of the 
theory of elasticity for a composite structure
Consider the problem of linear elasticity in a limited area with Lipschitz boundary

u [15,16]:                                                                                        
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σ – stress tensor; ε – small strain tensor; u – displacement vector; 4C x – variable 
symmetric positive-definite tensor field of elastic moduli (fourth rank); – nabla operator
[17]; n – area normal vector; p – set pressure on various surfaces construction, ue –
displacement vector.

For the finite element solution of the problem (1) consider a weak solution to this 

problem. Let 
31Y H and : 0T TV Y Y Trw w e Yω which 

vector, what T e eTr ω u 2 0p L . Weak problem solution (1) such a vector is 

called Yu , what if Yω – such a vector that TV Yu ω anf TV Yw
the variational equation for the problem is satisfied (2):

    def nd dw σ u w t ,                                        (2)

where 4 defσ u C u , nt σ n and .

3 Derivation of the variational formulation of the problem for a 
thin-walled shell
Consider the problem (2) for thin-walled complex shell:

N

j
j

j ,                                                             (3)

where for which shell j we introduce orthogonal (curvilinear) coordinates iX , in which 

this body is some neighborhood of a two-dimensional surface 0 :
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where 1 2( , )ρ X X – radius vector of points on the midsurface, 1 2( , )n X X – normal vector 
to midsurface, x – radius vector of an arbitrary point of the area.

We introduce for the local basis vectors:

3
3

1 2 3 1 2

I I I I I

i I I Ii         .

X X , ,

, , , i, j,k ,l ,... ,       , , I ,J ,K ,L,... ,
X

      

3
3r x ρ n ρ n r x n

ρ ρ n n
  (5)

We will assume that the following assumptions are satisfied, which are usually accepted 
in shell theories of the Timoshenko type [1,10]:

1) Terms of relations having order kO h 1k negligible.

2) Instead of space 
31Y H considered Y space of vector functions:

  

3

31 3
0

0

2 2

i I IX X X X , ,

h h, H ,X , .

u U γ γ n

U γ
                       (6)

3) Normal deformations are negligible:

33 3 3 0r ε r n ε n .                                              (7)

Expressions for the covariant components of the strain tensor following from the relations
(6) and (7)              ( i

ir ):

3 2 3 2

3 3 3

2 2

2 2 ,

2 2 ,

IJ I J I J J I I J J I

I J J I I J J I IJ IJ

I I I I I I

X O h e X O h

u r ε r u r u r U ρ U ρ

γ ρ γ ρ U n U n u u

u r ε r u n u r γ ρ n U

(8)

where

2 ,

2 .
IJ I J J I

IJ I J J I I J J I

e u U ρ U ρ
u γ ρ γ ρ U n U n

                        (9)                 

Then the left side of the variational equation (2) can be represented as:.   
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/2 /2

3 3

/2 /2

def
h h

ij ij
ij ij

h h

d dX d dX dw σ u w u w u .      (10)             

The integrand, taking into account (8) and (9), can be written as:

                       
3 3

32ij IJ IJ I
ij IJ IJ Ie Xw u w u w u w u .       (11)

Then (10) takes the form:

3def 2IJ IJ I
IJ IJ Id e T M Q dw σ u w u w u w u , (12)

where  the notation for forces, moments and shearing forces is introduced:

/2
3

/2

h
IJ IJ

h

T dXu u ,
/2

3 3

/2

h
IJ IJ

h

M X dXu u ,
/2

3 3

/2

h
I I

h

Q dXu u .      (13)

Functions IJT u , IJM u , IQ u taking into account the introduced 
assumptions, can be represented as:

/2 /2
3 3 3 3

3
/2 /2

3
3

2

2 ,

h h
IJ IJkl IJKL IJK

kl KL KL K
h h

IJKL IJKL IJK
KL KL K

T C dX C e X C dX

C e B C

u u u u

u u u

3
32IJ IJKL IJKL IJK

KL KL KM B e D Bu u u u ,

3 3 3
3

I I KL I K
KL KQ C e Bu u u ,                                      (14)

where

/2
3

/2

h
IJkl IJkl

h

C C dX , 
/2

3 3

/2

h
IJkl IJkl

h

B C X dX , 
/2

23 3

/2

h
IJKL IJKL

h

D C X dX .          (15)

The right side in (2) takes the following form ( w such part of Y represent in the form 
3Xw W θ , 0θ n , 

31
0, HW θ ):

/ 2 / 2

,

nd h p d h p d

pd pd

w t W θ n W θ n

W n w n
           (16)
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where p p p . 
Thus, the variational equation can be written as:

  32IJ IJ I
IJ IJ Ie T M Q d pdw u w u w u W n .  (17)

Introducing the notation for the column of generalized deformations:

11 22 12 11 22 12 13 232 2 2 2
T

e e eu u u u u u u u u ,

variational equation (17), taking into account relations (14), is rewritten in the form:

       T C d pdw u w n ,                             (18)

where the matrix has a block form:

ts

ts
T T
ts ts s

C B C
C B D B

C B B
, 

1111 1122 1112

1122 2222 2212

1112 2212 1212

C C C
C C C C

C C C
, 

1111 1122 1112

1122 2222 2212

1112 2212 1212

B B B
B B B B

B B B

, 

1111 1122 1112

1122 2222 2212

1112 2212 1212

D D D
D D D D

D D D
, 

1113 1123

2213 2223

1213 1223
ts

C C
C C C

C C
, 

1113 1123

2213 2223

1213 1223
ts

B B
B B B

B B
, 

1313 1323

1323 2323s
B B

B
B B

.

4 Algorithm for the numerical solution of the problem for a thin-
walled shell

We introduce a rectangular Cartesian coordinate system iOx , with basis vectors ie . Then 

each element 3X Yu U γ can be uniquely assigned to a column
61

0u H :

1 2 3 1 2 3 T
u U U U , i

iUU e , i
iγ e , 0i

in .

The column of generalized deformations can be represented as:

u Luu ,
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The operator L looks like:

1 2 3
11 11 11
1 2 3
22 22 22

1 1 2 2 3 3
12 21 12 21 12 21

1 2 3 1 2 3
11 11 11 11 11 11
1 2 3 1 2 3
22 22 22 22 22 22

1 1 2 2 3 3 1 1 2 2 3 3
12 21 12 21 12 21 12 21 12 21 12 21

1 2 3 1 2 3
1 1 1 1 1 1
1 2 3 1 2 3
2 2 2 2 2 2

0 0 0
0 0 0
0 0 0

L
,

where

k k
IJ I JX

, k k
IJ I Jn

X
, k k

I In
X

, k
I I kρ e , k

I I knn e .

Thus, we arrive at the formulation of the problem of determining a weak solution for the 

theory of Timoshenko shells
61 1

0Y H , 1Y – such a vector function that 

1 2 3 1 2 3 T

e e e e e e eTr u U U U , (where 3
e e eX Yu U γ ), and 

1 1 3: 0, 0i
iV Y w Y Tr w w n .

Then a weak solution to the problem of finding the stress-strain state of the Timoshenko 
shell will be called such an element

61 2 3 1 2 3 1
0

T
u U U U H , 0i

in that

1u w V Y and 1w V Y condition is met:

T TLw CLud w n pd ,                                     (19)

where

1 2 3 0 0 0 Tn n n n .

In this formulation of the problem, there is a somewhat inconvenient condition for the 

practical solution of such a problem on the elements 1V Y : 0i
in . Instead of this 

condition, we introduce its weakened form:
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1111 3 3 1 10, : 0i i
i iC u n w n d w V Y w Y Tr w .

Here, the coefficient 1111C is introduced for scaling in numerical calculations.
Then a weak solution to the problem of finding the stress-strain state of the Timoshenko 

shell will be called such an element 1 2 3 1 2 3 1T
u U U U Y , that

1u w V Y and 1w V Y condition is met:

                  
T TLw CLud w n pd
T

w
T

CLudCLud .                                        (20)

Where LL , CC – modified differential operator and elastic modulus matrix:

1 2 3
11 11 11
1 2 3
22 22 22

1 1 2 2 3 3
12 21 12 21 12 21

1 2 3 1 2 3
11 11 11 11 11 11
1 2 3 1 2 3
22 22 22 22 22 22

1 1 2 2 3 3 1 1 2 2 3 3
12 21 12 21 12 21 12 21 12 21 12 21

1 2 3 1 2 3
1 1 1 1 1 1
1 2 3 1 2
2 2 2 2 2 2

0 0 0
0 0 0
0 0 0

L 1L 1
2

3

1 2 30 0 0 n n n

,     (21)

1111

0
0
0

0 0 0

ts

ts
T T
ts ts s

C B C
B D B

C
C B B

C

C
B

.

To solve this problem based on the finite element method, it is more convenient to write 
using the variational equation of the Hellinger-Reisner variational principle, which has the 
following formA weak solution to the problem of finding the stress-strain state of the 

Timoshenko shell is a pair 
91 1

0u Y H1 that 1u w V Y and:

1 1

91 2 1
0

, , ,

, , , ,

HR

HR HR

B w f w w V Y

B u B H
                                  (22)
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where:

1 2, , , , .
T T T

HR HRB w Lw C d B C d f w w n pdTTwTT
d f w,CLw C ,C d , d f w,C, T2 T d f,TC22

HRB, H

T
C dC d

A software module was developed that implements the proposed numerical algorithm for 
solving the variational problem for a thin-walled shell based on the finite element method, 
using typical procedures of this method. [18]. The software module was developed as an 
integral part of the software package SMCM, created at Bauman Moscow State Technical 
University Scientific Educational center for Supercomputer modeling and software 
engineering. 

5 Results of numerical simulation
To analyze the effectiveness of the developed numerical algorithm, 3 types of calculations of 
the elasticity problem were carried out:

1) three-dimensional calculation in the ANSYS software package;
2) shell calculation in the ANSYS software package,
3) shell calculation in the SMCM software package.
In the SolidWorks were built:
- shell geometry with dimensions 0.5 m * 0.3 m * 0.15 m (Fig. 1),
- three-dimensional geometry obtained by growing the thickness h=1 mm from the 

shell, while considering the shell as the midsurface.
Meshes were generated:
a) by ANSYS software package: tetrahedral mesh with linear approximation, mesh size 

was: 18 million finite elements, 4.7 million nodes, for solving the problem according to case 
1;

b) by ANSYS software package: triangular mesh with quadratic approximation, the mesh 
size was: 57 thousand finite elements, 114 thousand nodes, for solving the problem according 
to case 2;

с)  by SMCM software package: triangular mesh with quadratic approximation, the mesh 
size was: 57 thousand finite elements, 114 thousand nodes, for solving the problem according 
to case 3.

For all calculations, a material was chosen, the elastic properties of which are presented 
in table 1.

Тable 1. Elastic properties of the material.

Elastic constants Value
Modulus of elasticity E , 
GPa 70

Poisson's ratio 0.33

The following boundary conditions were set:
pressure is equal to 1 atm is set on the inner faces of the geometries. (Fig. 1, a)
at the open upper edges (cases 2, 3) and faces (case 1), fixed displacements are set equal 

to zero along the axes OX, OY, OZ (Fig. 1, b).
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    a                                                                          b 

Fig. 1. Boundary condition: a) pressure; b) displacement. 

Comparative results of calculations of displacement fields – the midsurface in the global 
coordinate system, where OX – is directed along the normal to the surface of the bottom of 
the box (box) for all 3 options are presented in Figures 2, 3 and 4, as well as in Table 2. 
Analyzing the results of calculations for the maximum and minimum values of the 
displacement fields (tables 2, 3), we can conclude that the closest solution to the calculation 
case 1 – the solution of the three-dimensional elasticity problem in the Ansys software 
package – is the solution obtained in the SMCM software package. Shell case 2 of solving 
the problem by ANSYS software provides a lower accuracy of displacement simulation. 

Тable 2. Comparison of minimum displacement values for different calculation cases. 

Dimensionless 
displacement fields 

(minimum in absolute 
value) 

Case 1 (three-
dimensional solution 

by ANSYS) 

Case 2 (shell solution 
by ANSYS) 

Case 3 (shell 
solution by 

SMCM) 

x|U |  51 1553. e  85 5941. e  0 

y|U |  0.00106 0.00334 0.00256 

z|U |  0.00097 0.00214 0.00164 

Тable 3. Comparison of the maximum displacement values for different calculation cases. 

Dimensionless 
displacement fields 

(maximum in absolute 
value) 

Case 1 (three-
dimensional solution 

by ANSYS) 
Case 2 (shell 

solution by ANSYS) 
Case 3 (shell 
solution by 

SMCM) 

x|U |  0.00494 0.00594 0.00499 

y|U |  0.00105 0.00334 0.00292 

z|U |  0.00097 0.00214 0.00163 
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Fig. 2. Displacement fields xU (m), a) case 1 (ANSYS), b) case 2 (ANSYS), c) case 3 (SMCM). 
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Fig. 3. Displacement fields yU (m), a) case 1 (ANSYS), b) case 2 (ANSYS), c) case 3 (SMCM). 
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Fig. 4. Displacement fields zU (m), a) case 1 (ANSYS), b) case 2 (ANSYS), c) case 3 (SMCM). 

E3S Web of Conferences 376, 01038 (2023) https://doi.org/10.1051/e3sconf/202337601038
ERSME-2023

12



6 Conclusions 
A numerical algorithm for solving the problem of elasticity theory for complex thin-walled 
shell composite structures was proposed, and SMCM software was created based on the finite 
element method and the developed numerical algorithm. 

A test problem was solved for a complex shell structural element of the box type for 3 
calculation options: solving the three-dimensional elasticity problem in the ANSYS software 
package, using the shell solution in the ANSYS software package and using the SMCM 
software package. 

It has been established that the SMCM software allows obtaining results closer to a three-
dimensional solution than the ANSYS shell solver. 
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