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Abstract. The paper is devoted to solving the problem of aeroelastic 
deformation of multilayer thin composite plates. A theory of aeroelastic 
deformations of composite plates based on the application of the asymptotic 
averaging method and piston theory for modeling pressure on the body 
surface is proposed. The averaged equations of aeroelastic vibrations of 
composite plates are derived. An example of a numerical solution of the 
problem of one-dimensional bending vibrations of a composite plate based 
on the developed theory is given. Key words: multilayer composite, 
aeroelastic deformations, asymptotic averaging method, numerical solution. 

1 Introduction 
Composite structures of modern aircraft, such as wings, rudders, are not completely rigid; 
when exposed to a high-speed flow, aeroelastic phenomena occur when structural 
deformations cause changes in aerodynamic forces. Additional aerodynamic forces cause an 
increase in structural deformations, which leads to an increase in aerodynamic forces. These 
interactions may decrease to a state of equilibrium or may diverge catastrophically. In this 
regard, preliminary aeroelastic modeling of the behavior of a structural element before the 
start of real tests is of particular importance in order to notice and eliminate design flaws at 
the design stage and choose the correct structure of the composite material. 

Currently, there are several basic methods for solving the aeroelasticity problem [1–6]. 
The most widely used method is based on the piston theory [1] (piston theory), which makes 
it possible to find an approximate solution to the aerodynamic problem, taking into account 
the deformation of the surface flowed around by the flow. After that, the solution of the 
problems of the theory of shells is corrected due to additional aeroelastic forces. More 
difficult to implement are the methods of conjugate solution of the problem of aerodynamics 
and the theory of elasticity [4]. As a rule, they are also solved with certain assumptions. The 
direct numerical solution of the adjoint problem of aeroelasticity is quite difficult to 
implement, since it requires the restructuring of computational grids for aerodynamic 
problems. 

The purpose of this work was to apply the asymptotic theory to derive the equations of 
the theory of composite plates subjected to aeroelastic forces. A feature of this approach is 
that the general and three-dimensional equations of the theory of elasticity are chosen as the 
initial ones in this method, and the aerodynamic forces are calculated on the basis of the 
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piston theory, but also in relation to the general three-dimensional theory of elasticity. The 
method of asymptotic expansions in terms of a small geometric parameter has shown itself 
well in other problems [7–13]. In the present work, this method is applied for the first time 
to problems of aeroelasticity.   

2 Statement of the 3-dimensional problem of aeroelastic 
deformation
Consider a multilayer plate of constant thickness, introduce a small parameter 

/ 1h L , as the ratio of the total thickness of the plate h to the characteristic size 

of the entire plate L (for example, to its maximum length). We also introduce global kx and 

local coordinates: 3/ , / , 1,2,3,/ ,k kx x L x k where kx are Cartesian 

coordinates oriented in such a way that the axis 33Ox is directed along the normal to the 

outer and inner planes of the plate, and the axes 11Ox 22Ox belong to the middle surface of 

the plate. We believe that there are 2 scales of change in displacements ku : one in directions 

of 11Ox 22Ox , and the second in 33Ox direction. The coordinates  3x and , as usual, are 

treated as independent variables in the asymptotic averaging method. The coordinate along 

the plate thickness varies in the range 30.5 0.5 .

Consider for a plate a 3-dimensional problem of the linear theory of aeroelasticity in the 
framework of small deformations and the linear piston theory [14] 
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(1)

consisting of the dynamic equations of the theory of linear elasticity, the Cauchy relations, 
the generalized Hooke's law, the boundary conditions on the outer surfaces of the shell plate 
- on the outer and inner surfaces 3 (their equation has the form 3 / 23 / 2x h ) and on 

the end surface T , as well as the boundary conditions on the contact surface S of the 

layers of the plate, [ ]iu - jump of functions. In system (1), the following are indicated: ij

- stress tensor components, ij - small strain tensor components, iu - displacement vector 
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components, ijklC - elastic modulus tensor components, i - covariant differentiation 

operator [15], - displacement vector components specified on T .

           The outer surfaces 3 of the plate interact with a high-speed aerodynamic gas 

flow flowing around it with given constant velocity vectors iV . Then the pressure on these 
surfaces in the framework of the linearized piston theory is given in the form

             0 3 3(1 ( )0 (1 ( 3 3A IIp p q u uV .                                      (2)

Here, 00p is the pressure of the undisturbed aerodynamic flow on both parts of the plate 

surface, 0/A Аq a is the aerodynamic coefficient of the plate, for which the expression 

is accepted, according to the linearized piston theory, where А is the Poisson's ratio of the 

perfect gas model, 0a is the speed of sound of the undisturbed gas flow.    

3 Asymptotic expansions of the aeroelasticity problem

Problem (1) contains the local coordinate , as well as a small parameter in the boundary 
conditions (this is the pressure coefficient), so we will seek its solution in the form of 
asymptotic expansions in the parameter in the form of functions depending on the global and 
local coordinates:

    (0) (1) 2 (2) 3 (3)( ) ( , ) ( , ) ( , ) ...k k I k I k I k Iu u x u x u x u x       (1)

Here and below, the indices denoted by capital letters , , ,I J K L take the values 1,2, 

and the indices , , ,i j k l - the values 1,2,3.
We substitute expansions (3) into the Cauchy relations in system (2), while using the rules 

of differentiation of local coordinate functions [10] 

3/ / (1/ ) //j j jx x , then we obtain asymptotic expansions for 

deformations

             (0) (1) 2 (2) ...ij ij ij ij                             (2)

here the derivatives with respect to the local coordinate 
(1) (1)
/3 /i iu u and with 

respect to the global coordinates (1) (1)
, / ji j iu u x are denoted.

Substituting expression (4) into Hooke's law in system (2), we obtain the asymptotic 
expansion for stresses

                     (0) (1) 2 (2) ...ij ij ij ij                             (3)
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For the pressure on the aerodynamic surfaces of the plate, we have the following 
decomposition

               

3 (3) 4 (4)

(3) (0) (0)
0 3 3,

(4) (1) (1)
0 3 3,

...,
(1 ( ),

( )  

3 (3) 4 (4)...,
(3) (0) (0)

0 (1 ( ),(0) (0)
3 3

(4) (1) (1)
0 ( )  (1) (1)

3 3

A I

A I

I

I

p p p
p p q u u

p p q u u

V

V

                       (6)

4 Formulation of local tasks
Substituting expansions (3)-(6) into the oscillation equations and the boundary conditions of 
system (1), we obtain 

(0) (0) (1) (0) (1) (2) (1) 2 (2) (3) (2)
3/3 , 3/3 , 3/3 , 3/3

1 ( ) ( ) ( ) ... 0i iJ J i i iJ J i i iJ J i iu u u(0) (1) (2) (1) 2 (2) (3) (2)) ( 2 ) ... 0iu3/3 3/3) ( ) (i iJ i iJu u(0) (1) (2) (1) (2) (3) (2)) ( 2 ) ......iu(0) (1) (2) (1) (2) (3)
3/3 3/3) ( ) (2

i iJ i iJu u
,

(0) (1) 2 (2) 3 (3)
3 3 3 3 3

3 (0) (0) 4 (1) (1)
0 3 3, 3 0 3 3, 3

: ...
(1 ( )) ( )) ...,(0) (0) 4 (1) (1)

3 0))(0) (0)
3 3 ( )) ...,(1) (1)

3 3 30
4

0I

i i i i

A I i A I iIp q Vu Vu p q u u
    (7)

(0) (1) 2 (2) 3 (3): ...T i i i i i eiu u u u u u

Equating the terms at 1 in the equilibrium equations to zero, and for the remaining 
powers of to some quantities (0) (1) (2), ,i i ih h h independent of l , we obtain a recurrent 
sequence of local problems. The problem for the zero approximation has the form

(0)
3/3

(0) (0) (0) (0) (0) (0)
3 3 3 3 3 3 3

(0) (0) (0) (0) (0) (1) (0) (1)
, , 3 3, /3 33 3/3

(0) (0) (1) (1)
3 3 3

0,

, ,
1 1  ( ),  ( ), ,  
2 2

: 0; :[ ] 0, [ ] 0, 0;

(0) (0) (0) (0)
3 3 3 3 3, ,3 3

i

i i KL KL i k k IJ IJKL KL IJk k

IJ I J J I I I I

i S i i i

C C C C

u u u u u

u u

   (8)

The problem for the first approximation has the following form:

(1) (0) 2 (0) (0)
3/3 ,

(1) (1) (1) (1) (1) (1)
3 3 3 3 3 3 3

(1) (1) (1) (1) (1) (2) (1) (2)
, , 3 3, /3 33 3/3

(1) (1)
3 3 3

,

, ,
1 1  ( ),  ( ), ,  
2 2

: 0; :[ ] 0, [

(1) (1) (1) (1)
3 3 3 3 3, ,3 3

i iJ J i i

i i KL KL i k k IJ IJKL KL IJk k

IJ I J J I I I I

i S i

u h

C C C C

u u u u u

u(2) (2)] 0, 0;i iu

  (9)
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Problem for the second approximation

(2) (1) 2 (1) (1)
3/3 ,

(2) (2) (2)
3 3 3 3 3

(2) (2) (2) (2) (2) (3) (2) (3)
, , 3 3, /3 33 3/3

(2) (2) (3) (3)
3 3 3

,

,
1 1  ( ),  ( ), ,  
2 2

: 0; :[ ] 0, [ ] 0, 0;

i iJ J i i

i i KL KL i k k

IJ I J J I I I I

i S i i i

u h

C C

u u u u u

u u     (10)

Problem for the third approximation

(3) (2) 2 (2) (2)
3/3 ,

(3) (3) (3)
3 3 3 3 3

(3) (3) (2) (3) (3) (4) (3) (4)
, , 3 3, /3 33 3/3

(3) (0) (0)
3 3 0 3 3, 3

(3) (
3

,

,
1 1  ( ),  ( ), ,  
2 2

: (1 ( )) ;

:[ ] 0, [

(0) ((0) (
3 3

i iJ J i i

i i KL KL i k k

IJ I J J I I I I

i A I i

S i i

IV

u h

C C

u u u u u

p q u u

u 4)

(4)

] 0,

0;iu

   (11)

etc. Here and below, the operations of averaging over the plate thickness are denoted

0.5
( ) ( )

0.5

n n
i iu u d , 

0.5 0.5

f fd fd , 
0.5

( )f f f d

and also marked: 3 323 2ijK ijKC C , 33 3333 33ij ijC C .

    The oscillation equations (7) after the introduction of the functions (0) (1) (2), ,i i ih h h , take 
the form

             (0) (1) 2 (2) ... 0i i ih h h .                                             (12)

The solution of the local problem of zero approximation (8) are the functions 
(1) (0) (0), ,j kl iju , they depend on the local coordinates l and the input data of this problem -

displacements (0) ( )j Ju x . The solution to problem (9) is the functions (2) (1) (1), ,j kl iju , and 
(1) (0),j iju are the input data in this problem. In problem (10), the functions (3) (2) (2), ,j kl iju

are unknown, and (2) (1) (1), ,j kl iju are the input data, and so on.
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5 Solving the zero approximation problem
Due to the fact that problems (8)-(10) are one-dimensional with respect to the local variable 
, their solution can be found analytically. The solution of the equilibrium equations with 
boundary conditions in the local problem (8) has the form

                                                (0)
3 0i                                                                (13)

Substituting into this equation the expression for (0)
3i from system (8), and taking into 

account the Cauchy equation of the same system for (0)
3k , we obtain a differential equation 

with respect to (1)
iu . The solution to this equation has the form

                        (1) (0) (0)
3, 2I I KL IKLu u U ,   (1) (0)

3 3KL KLu U ,                             (14)

( )iKL iKLU Z    1
3 3 3
1

3 3 3iKL i j j KLZ C C .

Stresses (0)
IJ , unlike (0)

3i , are non-zero              

                      (0) (0) (0)
IJ IJKL KLC ,                                                    (15)

(0) 1
3 3 3 3

1
3 3 3IJKL IJKL IJk k i i KLC C C C C .

6 Solution of the problem of the first, second and third 
approximations
The solution of the equations of steady oscillations (9) - (11) together with the boundary 
conditions on S and 0.5 has the form

(1) (0) (0)
3 ,

(0)
i iJ J iu ,

                                             (2) (1) (1)
3 ,i iJ J iu ,                                          (16)

(3) (0) (0) (2) (2)
3 3 3, 3 ,( )(0) (0)

3)(0) (0)
3 3i A I I i iJ J ip p u p u u

If we substitute expressions (15) into the first formula (16), we get

                     (1) (0) (0) (0)
3 ,

(0)
I KL J IJKL IC u ,    (1) (0)

33 3
(0)
3u .               (17)
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We express the deformations (1)
3k from the 2nd group of system (9), then, taking into 

account formulas (16), we obtain

                     (1) (1) (0) 1 (0) 1 (0)
3 , 3 3 3 3

1 1 (0)
3 3 3 3

(0)
k kKL KL KL J k I IJKL k i iZ C C C u .              (18)

If we now substitute (18) into the 3rd group of relations (9), then we find the remaining 
stresses of the 1st approximation

               (1) (0) (1) (0) (0) (0)
,

(0)
IJ IJKL KL IJKLM KL M IJi iC N G u ,                                   (19)

(0) 1 (0)
3 3 3

1
3 3 3IJKLM IJk k P PMKLN C C C ,    1

3 3 3
1

3 3 3IJi IJk k iG C C .

Deformations (1)
KL , taking into account formulas (9), (14), can be represented as

(1) (0)
,KL KL KLMNS MN SФ ,                                          (20)

(0)
3,KL KLu ,     ( )KLMNS LMN KS KMN LSФ U U .                (21)

Taking into account formulas (20), expressions (19) take the form

       
(1) (0) (0) (0) (0)

,IJ IJKL KL IJKLM KL M IJi iC N G u(0) (0)(0)(0) (N (0) ((0)
KL MN (0)

IJKLM
(0)
iu

,                            (22)

(0) (0) (0)(0)
IJKLM IJKLM IJPQ PQKLMN N C Ф .

7 Averaged equations of steady oscillations of multilayer plates
Averaging the asymptotic expansion of the equations of motion (7) of the equilibrium plate, 
taking into account the boundary conditions, we obtain

(0) (0) (1) (1)
, ,

2 (2) (2) (0) (0)
, 3 3, 3

( )

( ( ) ) ... 0

(0) (1) (1)( )(1) (1)

(2) (0) (0)
3 3( )

iJ J i iJ J i

iJ J i A I I i

u u

u p p u p u
      (23)

where are indicated

0 0p p p ,     0 0( )A Ap q p p      0 0( )I II A p Vp q Vp .

We multiply the first equation of system (7) by and integrate them over the thickness, 
then we obtain the following auxiliary equation
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(0) (0) (1)
, 3

2 (1) (1) (2)
, 3

( )

( ) ... 0
IJ J I I

IJ J I I

u

u

(0)(0)(0)

(1)(1)(1)u ,              (24)

Let us introduce the notation for forces IJT , moments IJM and shear forces IQ in the 
plate

(0) (1) ...IJ IJ IJT ,

(1) 2 (2) (0) (0)
3 3 3 3, 3 ...(0) (0

3 3I I I A I I iQ p p u p u     (25)

(0) 2 (1) ...IJ IJ IJM .

and also introduce the notation for the generalized displacements of the plate

(0) (1) 2 (2) ...i i i iU u u u

(1) 2 (2) ...I I IГ u u                                 (26)

where .
If only the main terms of the asymptotic expansions are retained in these expressions, 

then, taking into account (14), we obtain

(0)
i iU u ,     (0) (0)

3,I I KL IKLГ Ru R ,

2IKL IKLR U , 2R .                                    (27)

Taking into account the introduced notation (25) and (27), equations (23) and (24) can be 
written in the following form:

(0)
,

(0)
IJ J IT u , (0) 2 (0) (0)

, 3 3 3,
(0) 2 (0) (0)
3 3 3J J A I IQ u p p u p u , (0) (0)

, 3, , ,(0) (0)
3 ,IJ J I I K L IKLM Q Ru u R (28)

We express IQ from the third equation of system (26) and substitute into the second 
equation , as a result we get

(0) (0) (0) (0) (0)
, 3 3, , 3 3, 0(0) (0) (0) (0) (0

3 3 3 3IJ IJ II K IL IKL A I IM u Ru u R p p u p u        (29)

- desired averaged equations of aeroelastic vibrations of a multilayer plate, here denoted: 
2p p , 2

A Ap p , 2
I Ip p .
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8 Average constitutive relations of plate theory

Substituting expressions (15) and (22) for stresses (0)
IJ and (1)

IJ , into the integrals of 
formulas (25), we obtain

  
(0) (0) (0)

,IJ IJKL KL IJKL KL IJKLM KL M IJi iT C B K G u(0)
iu

,                      (30)

(0) (0) (0)
,

ˆ
IJ IJKL KL IJKL KL IJKLM KL M IJi iM B D K G u(0)

iu
,                    (31)

where are the tensors of the averaged elastic constants of the plate

(0) 1
3 3 3 3

1
3 3 3IJKL IJKL IJKL IJk k i i KLC C C C C C ,                         (32)

(0)
IJKL IJKLB C ,        

(0)
IJKLM IJKLMK N (0)N (0)

IJKLMNI ,

2 2 (0)
IJKL IJKLD C ,          

2 (0)
IJKLM IJKLMK N (0)(0)

IJKLMNI ,

IJi IJiG G ,     2ˆ
IJi IJiG G ,

9 Closed system of equations for aeroelastic deformations of a 
multilayer plate

The system of averaged constitutive relations (30)-(32) includes deformations (0)
KL of the 

middle surface , curvatures KL and gradients of deformations (0)
,KL N , which depend on 3 

functions (0)
Iu , (0)

3u of global variables Ix ,

            (0) (0) (0)
, ,

1 ( )
2IJ I J J Iu u ,      (0)

3,KL KLu .                           (33)

Substituting further relations (30), (31) and (33) into (28), (29) we obtain a system of 3 
equations for 3 unknown displacements:

0(0) (0) (0) (0)
, 3, , , 0(0) 0IJKL K LJ IJKL KLJ IJKLM K LMJ IJi i J IC u B u K u G u u ,

(0) (0) (0) (0)
, 3, , 3

(0) (0) (0) (0)
3 3, , 3 3,

ˆ ˆ( ) ( ) 0

(0)
3

(0) (0) (0) (0)
3 3

ˆ(0) (0) ( )(0) (0)
3

IJKL K LJI IJKL KLJI IJKLM K LMJI

IJ IJ IJ K IL IKL ILK A I I

B u D u K u u

R G u u R G p p u p u
(34)

E3S Web of Conferences 376, 01039 (2023) https://doi.org/10.1051/e3sconf/202337601039
ERSME-2023

9



This system has the fourth order of derivatives with respect to the coordinates with respect 
to deflection (0)

3u , as in the classical theory of Kirchhoff-Love plates, and the third order of 

derivatives with respect to longitudinal displacements (0)
Iu , and also contains mixed 

derivatives (0)
,
(0)
i IJu of the 4th order. The aeroelastic terms contain derivatives at the lowest 

derivatives - the first order (0)
3
(0)
3u and (0)

3,Iu .

10 Solution of the problem of flexural aeroelastic vibrations of a 
composite plate
Let us consider harmonic bending aeroelastic vibrations of a symmetric orthotropic 
multilayer plate made of composite material, when there are no longitudinal movements

                               0 0Iu , 0 0
3 3 1( )u u x                                           (35)

Then the system of equations (34) is reduced to one equation of aeroelastic vibrations:

         0(0) (0) (0) (0)
1111 3,1111 3 1 3,1 113 3,11( ) 0(0) (0) (0)

3 1 3 1 3 11( )113 0AD u p p u p u R G u u           (36)

Let us consider the case when the pressure on the plate surface changes according to the 
harmonic law  cosp p t ,  0Ap . Then the solution of Eq. (36) will be sought in 
the following form

                              0
3 cosu u x t                                                   (37)

From (36) we obtain the following equation for calculating the amplitude of transverse 
oscillations

                    2 2
1111 ,1111 1 ,1 113 ,11( ) 0D u p u R G u u p             (38)

The solution of the differential equation (38) with the hinged boundary conditions was 
implemented in a program in the python programming language. The calculations were 
carried out for a composite material based on glass fibers and an epoxy matrix with the 

following parameters: : 42 10h m, 1L m, 31000т
кg
м

- matrix density, 

32000f
кg
м

- glass fiber density, 0.6f - composite reinforcement coefficient, 

1mE GPа - matrix elasticity modulus, 200,fE ГПа - fiber elasticity modulus.

The constants 1111D , R and included in the differential equation (34) were calculated 

from the values of the elastic moduli ijklC , which, in turn, were calculated using the method 
from [16] for the values of the constants of the epoxy matrix and glass fibers using the SMCM 
software package implemented in the c++ programming language.
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Fig. 1. Dependence of composite plate deflection on the aeroelastic pressure coefficient   at zero 
frequency.   

 
Fig. 2. Dependence of composite plate deflection on the aeroelastic pressure coefficient   at zero 
frequency.   

The dependence of the transverse displacements of the composite material on the 
aeroelastic pressure coefficient 1p  was studied. Calculations were carried out in the absence 
of aeroelastic oscillations 0 , when the effect of the gas flow on the plate is caused only 
by aeroelastic quasi-stationary deformation, determined by the coefficient 1p  (Fig. 1). As 

the coefficient 1p increases, the maximum plate deflection decreases, which is due to the 
appearance of additional plate rigidity caused by aeroelastic interaction with the gas flow. 

     Figure 2 shows the results of the calculation of plate aeroelastic vibrations under 
0.1s  at for various values of the coefficient 1p . In this case, with an increase in the 

coefficient 1p , the amplitude of the plate oscillations also decreases due to the appearance 
of additional plate rigidity caused by taking into account the resistance of the gas flow. 

All values of deflection u x , coordinates and parameters 1p  and p - are 
dimensionless. 

11 Conclusions 
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A theory for modeling aeroelastic deformations of a composite thin plate is proposed based 
on the asymptotic theory using the piston theory as boundary conditions. 

The basic equations of the asymptotic theory are obtained - a system of averaged 
equations for aeroelastic vibrations of a plate, and a sequence of local problems. For local 
problems, a solution is obtained in an explicit analytical form. 

As an example, calculations of vibrational aeroelastic oscillations of a thin plate made of 
composite material are carried out and the dependence of oscillations on the pressure of an 
external gas flow is studied. It is shown that with an increase in the coefficient of aeroelastic 
pressure of the gas flow, the additional rigidity of the plate increases, as a result of which the 
amplitude of the plate deflection decreases. 
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