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Abstract. A model for calculating the stress-strain state of variable-

thickness composite shells has been developed, based on assumptions such 

us the classical theory of Timoshenko-Mindlin shells. In the proposed 

model, the plate thickness is given by a function of curvilinear coordinates 

and is directly considered in the derivation of the equilibrium equations of 

the plate. The general equations of the theory of variable-thickness 

composite plates are derived. The article analyses the solution of the 

problem of plates bending under uniform pressure considering the variable 

thickness. For the numerical solution, the finite difference method (FDM) 

has been applied to the system of differential equations with matrix 

coefficients. For the resultant algebraic system, the FDM uses the tridiagonal 

matrix algorithm in computing the solution. The calculation results are 

compared with a plate of constant thickness. It is shown that the effect of 

thickness variability is quite significant. Key words: variable-thickness 

plates, theory of Timoshenko-Mindlin shells, tridiagonal matrix algorithm. 

1 Introduction 

Currently, there is a great interest in the modeling of variable-thickness composite plates. 

Examples of such plates are aircraft wings, composite springs, ship hulls made from 

composites, and other structural elements. Variable thickness can be used to increase strength 

in specific areas of the wall or bottom [1], without unnecessary mass cost to the rest of the 

structure. In addition, variable thickness can occur in the presence of object defects [2, 3], for 

example, when a structure is made during curing [4, 5]. Accounting for variable thickness 

can improve the quality of the product and reduce the cost of manufacturing structures. 

Analysis of the behavior of stiffened composite panels with variable thickness skin under to 

uniaxial compression can be used to predict the bending load [6].  

There are various approaches to the modeling of variable-thickness plates. The work [7] 

considers a flat plate, symmetric about the midplane with a variable thickness parameter, 

which is modeled by a set of control points through NURBS basic functions. Strain-

displacement relations in sense of von-Karman theory are employed for large deformation. 

In the articles of Firsanov V.V. [8-11], the calculation of the stress-strain state for plates and 

shells with asymmetric variable thickness is considered, taking into account the influence of 

the boundary layer effect in boundary value problems. In [12], the stability of a multilayer 
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round plates of variable thickness from nonlinear elastic material is studied. In order to 

improve the methods of calculating stability, the author considers plates with functional 

graduation subjected to radical compression. The study was carried out on the basis of the 

theory of plates of first order shear deformations and the field of nonlinear von Karman 

displacements. 

In [13] isotropic plates and composite laminated plates are modeled using variable 

thickness, shear deformable, finite plate elements under different types of compressive loads. 

Improvements in both uniaxial and biaxial buckling loads of over 160% are shown possible 

in composite plates compared to uniform quasiisotropic plates. 

In papers [14-15], the problems of thermoelasticity of variable thickness rotating disks 

are considered. In [14], the disk thickness varies according to a power law, and a semi-

analytical solution for the displacement was obtained. In [15], based on the classical theory 

of plates and first order shear deformations theory, a linear and nonlinear analysis is carried 

out with different thickness-to-radius ratios to account for the influence of shear deformation 

and nonlinearity.  

In [16], the stress-strain state of nonlinear elastic orthotropic thin shells with stiffened 

holes and shells of discretely variable thickness was studied. The reduction surface is not 

necessary the median surface. The constitutive equations are obtained basing on the Lomakin 

theory of plasticity of anisotropic media. 

In this paper, a method for deriving a closed system of equations in the theory of 

composite shells is developed, which generalizes the classical Timoshenko-Mindlin shell 

theory. A description of this theory can be found in [17]. From the equations of the general 

three-dimensional theory of elasticity in curvilinear coordinates, the equilibrium equations, 

the Cauchy relations and the elasticity for shells with variable thickness are derived. A 

complete closed system of equations for flat variable thickness plates is formulated. As an 

example, the problem of bending a plate loaded with uniform pressure is considered. 

2 Mathematical formulation of the problem of elasticity variable-
thickness plates 

Let us consider the quasi-static problem of the three-dimensional linear elasticity theory of 

elasticity in the general formulation. We write the equations included in this system in 

orthogonal coordinatesXi, two of which Xα, α = 1,2 two of which coincide with the lines of 

the principal curvatures of some base surface Σ0 of the structure, the coordinate X3 is oriented 

along the normal to this surface Σ0.  

The equilibrium equations in orthogonal coordinates Xi have the form [18]  

 

(HβHγσαα)
,α

+ (HαHγσαβ)
,β

+ (HαHβσαγ)
,γ

+ σαβHγHα,β + σαγHβHα,γ − 

−σββHγHβ,α − σγγHβHγ,α + H1H2H3ρ
∘
fα = 0,  α, β, γ = 1,2,3, α ≠ β ≠ γ ≠ α, (1) 

 

where σαβ - physical components of the stress tensor in the basis, associated with coordinates 

Xi, Hγ- Lame parameters for coordinates Xi, Hα,β =
∂Hα

∂Xβ  - partial derivatives, ρ
∘
- density, fα- 

mass force density. 

The Cauchy relations in the curvilinear coordinate system have the form [18]: 

εαα = Oαuα,α + OαOβHα,βuβ + OαOγHα,γuγ, 

2εαβ = HαOβ(Oαuα),β + HβOα(Oβuβ),α;  α, β, γ = 1,2,3, α ≠ β ≠ γ ≠ α, (2) 
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where εαβ- small-strain tensor components, uα - displacement vector components, Oα =

1/Hα. 

The stress-strain relations are written as follows: 

σij = Cijklεkl,     (3) 

where Cijkl- components of the elastic modulus tensor.  

We assume that the shell is thin and make the following assumptions [18],  

 H3 = 1; Hα = Aα;  Hα,3 = k̄αAα;     X3k̄α << 1, α = 1,2,   (4) 

where Aα coefficients of the first quadratic form of the base surface Σ0, а k̄α- her principal 

curvatures. 

As in the classical theory of Timoshenko-Mindlin shells, the displacements uα in the shell 

will be considered as linear functions of the coordinate X3, u3 - independent of the coordinate 

X3 

uα = Uα + X3γα,  u3 = W,  α = 1,2;    (5) 

where Uα - displacements, γα normal rotation angles, W – shell deflection. 

The normal stress σ33 in the shell is neglected: 

σ33 = 0     (6) 

For a variable thickness shell, the coordinate X3 takes the values −a−(X1, X2) < X3 <
a+(X1 , X2), where X3 = a±(X1 , X2) – equations of the outer and inner surface of the shell. 

The function  h = a+(X1, X2) + a−(X1, X2) is the thickness of the shell and in this work is a 

variable depending on the coordinates X1, X2.  

Substituting (5) into (2), we obtain expressions for deformations in the shell, coinciding 

with the equations of the classical Timoshenko theory 

𝜀𝛼𝛽 = 𝑒𝛼𝛽 + 𝑋3𝜘𝛼𝛽 ,  𝜀33 = 0,  𝜀𝛼3 = 𝑒𝛼3, 𝛼 = 1,2;   (7) 

where 𝑒11, 𝑒22, 𝑒12- strains, 𝜘11, 𝜘22,𝜘12- curvatures of the middle surface and 𝑒𝛼3 - shear 

strains. All of these functions are expressed in terms of 𝑈𝛼,𝛾𝛼 and W [18]. 

Assuming the shell is orthotropic, the component representation of the stress-strain 

relations (3) given (7) has the form: 

𝜎𝛼𝛼 = 𝐶𝛼𝛼𝑒𝛼𝛼 + 𝐶𝛼𝛽𝑒𝛽𝛽 + 𝑋3(𝐶𝛼𝛼𝜘𝛼𝛼 + 𝐶𝛼𝛽𝜘𝛽𝛽),  𝛼 = 1,2, 

𝜎12 = 2𝐶66𝑒12 + 2𝑋3𝐶66𝜘12,  𝜎23 = 2𝐶44𝑒23,  𝜎13 = 2𝐶55𝑒13.       (8) 

where 𝐶𝛼𝛽 are the components of the elasticity modulus matrix, expressed in terms of the 

components 𝐶𝑖𝑗𝑘𝑙  [18], 6x6 in size. 

The resultant forces 𝑇𝛼𝛽, moments𝑀𝛼𝛽 and shear forces 𝑄𝛼  are obtained by integration 

of the stresses through the variable thickness of composite shells: 

𝑇𝛼𝛽 = ∫ 𝜎𝛼𝛽
𝑎+

−𝑎− 𝑑𝑋3,  𝑀𝛼𝛽 = ∫ 𝜎𝛼𝛽
𝑎+

−𝑎− 𝑋3𝑑𝑋3,  𝑄𝛼 = ∫ 𝜎𝛼3
𝑎+

−𝑎− 𝑑𝑋3,  𝛼 = 1,2.  (9) 
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Mass forces 𝐹𝑒𝛼 and mass moments𝑀𝑒𝛼  are introduced by the formulas: 

𝐹𝑒𝛼 = ∫ 𝜌
∘
𝑓𝛼𝑑𝑋3𝑎+

−𝑎− ,  𝑀𝑒𝛼 = ∫ 𝜌
∘

𝑓𝛼𝑋3𝑑𝑋3𝑎+

−𝑎− ,          (10) 

The boundary conditions on the shell surfaces 𝑋3 = ±𝑎± are assumed to be force only 

(given pressures𝑝𝑒
±): 

𝑋3 = ±𝑎±:  𝜎33
± = −𝑝𝑒

±,  𝜎𝛼3
± = 0,  𝛼=1,2,   (11) 

Displacements can be specified on one part of the end surface of the shell, and the 

components of the stress vector can be specified on the remaining part. 

3 Derivation of equilibrium equations considering the variable-
thickness of the shell 

To obtain the equilibrium equations, we use the formula for the differentiation of the integral 

with respect to the parameter in the case of variable integration limits  

𝐹(𝑋1, 𝑋2),𝛼 = ∫ (𝑓(𝑋1, 𝑋2, 𝑋3))
,𝛼

𝑎+

−𝑎− 𝑑𝑋3 + 𝑓(𝑋1, 𝑋2, 𝑎+)𝑎,𝛼
+ + 𝑓(𝑋1, 𝑋2, −𝑎−)𝑎,𝛼

−  (12) 

We integrate equation (1) over 𝑋3, setting 𝛼 = 3, 𝛽 = 1, 𝛾 = 2, and using formulas (4), 

with boundary conditions (11) and 𝐻31 = 𝐻32 = 0  

∫ (𝐴2𝐴1𝜎33),3𝑑𝑋3
𝑎+

−𝑎−
+ (∫ 𝐴2𝜎13𝑑𝑋3

𝑎+

−𝑎−
)

,1

+ (∫ 𝐴1𝜎23𝑑𝑋3
𝑎+

−𝑎−
)

,2

− 

− ∫ 𝐴1𝐴2�̄�1𝜎11𝑑𝑋3𝑎+

−𝑎− − ∫ 𝐴1𝐴2�̄�2𝜎22𝑑𝑋3𝑎+

−𝑎− + ∫ 𝐴1𝐴2𝜌
∘
𝑓𝛼𝑑𝑋3𝑎+

−𝑎− = 0.         (13) 

Similarly, we transform the second equation in (1), setting 𝛼 = 1, 𝛽 = 2, 𝛾 = 3 

(∫ 𝐴2𝜎11𝑑𝑋3
+𝑎+

−𝑎−
)

,1

− 𝐴2𝜎11
+ (𝑎+),1 − 𝐴2𝜎11

− (𝑎−),1 + (∫ 𝐴1𝜎12𝑑𝑋3
𝑎+

−𝑎−
)

,2

− 𝐴1𝜎12
+ (𝑎+),2 − 

−𝐴1𝜎12 (𝑎−),2 − ∫ 𝜎22𝐴2,1𝑑𝑋3𝑎+

−𝑎− + ∫ 𝜎12𝐴1,2𝑑𝑋3𝑎+

−𝑎− + ∫ 𝐴1𝐴2�̄�1𝜎13𝑑𝑋3𝑎+

−𝑎− +

∫ 𝐴1𝐴2𝜌
∘
𝑓1𝑑𝑋3𝑎+

−𝑎− = 0.                                              (14) 

The third equilibrium equation is obtained for 𝛼 = 2, 𝛽 = 3, 𝛾 = 1: 

(∫ 𝐴1𝜎22𝑑𝑋3
+𝑎+

−𝑎−
)

,2

− 𝐴1𝜎22
+ (𝑎+),2 − 𝐴1𝜎22

− (𝑎−),2 + (∫ 𝐴2𝜎21𝑑𝑋3
+𝑎+

−𝑎−
)

,1

− 𝐴2𝜎21
+ (𝑎+),1

− 

−𝐴2𝜎21
− (𝑎−),1 + + ∫ 𝐴1𝐴2�̄�2𝜎23𝑑𝑋3𝑎+

−𝑎− + ∫ 𝜎21𝐴2,1𝑑𝑋3𝑎+

−𝑎− − ∫ 𝜎11𝐴1,2𝑑𝑋3𝑎+

−𝑎− +

∫ 𝐴1𝐴2𝜌
∘
𝑓2𝑑𝑋3𝑎+

−𝑎− = 0.     (15) 
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We obtain the fourth equilibrium equation with moments by multiplying (1) by 𝑋3 for 

𝛼 = 1, 𝛽 = 2, 𝛾 = 3 and then integrating it over 𝑋3: 

(∫ 𝐴2𝜎11𝑋3𝑑𝑋3𝑎+

−𝑎− )
,1

− 𝐴2𝑎+𝜎11
+ (𝑎+),1 + 𝐴2𝑎−𝜎11

− (𝑎−),1 +

(∫ 𝐴1𝜎12𝑋3𝑑𝑋3𝑎+

−𝑎− )
,2

− 𝐴1𝑎+𝜎12
+ (𝑎+),2 + 𝐴1𝑎−𝜎12

− (𝑎−),2 − ∫ 𝜎22𝐴2,1𝑋3𝑑𝑋3𝑎+

−𝑎− +

∫ 𝜎12𝐴1,2𝑋3𝑑𝑋3 +
𝑎+

−𝑎− ∫ 𝐴1𝐴2𝜌
∘

𝑓1𝑋3𝑑𝑋3𝑎+

−𝑎− = 0. (16) 

Similarly, we obtain the fifth equilibrium equation for 𝛼 = 2, 𝛽 = 3, 𝛾 = 1: 

(∫ 𝐴1𝜎22𝑋3𝑑𝑋3
𝑎+

−𝑎−
)

,2

− 𝐴1𝜎22
+ 𝑎+(𝑎+),2 + 𝐴1𝜎22

− 𝑎−(𝑎−),2 + (∫ 𝐴2𝜎21𝑋3𝑑𝑋3
𝑎+

−𝑎−
)

,1

− 𝐴2𝜎21
+ 𝑎+(𝑎+),1 + 

+𝐴2𝜎21
− 𝑎−(𝑎−),1 − ∫ (𝐴1𝐴2𝜎23)

𝑎+

−𝑎−
𝑑𝑋3 + ∫ 𝜎21𝐴2,1𝑋3𝑑𝑋3

𝑎+

−𝑎−
− ∫ 𝜎11𝐴1,2𝑋3𝑑𝑋3

𝑎+

−𝑎−
+ 

+ ∫ 𝐴1𝐴2𝜌
∘
𝑓2𝑋3𝑑𝑋3𝑎+

−𝑎− = 0.     (17) 

Thus, we obtain five equilibrium equations considering the variable thickness of the 

shells. 

4 Equilibrium equations for the shells of the variable-thickness 

We write equations (13-17) for shells using integral relations for forces and moments (9-10):  

−𝐴1𝐴2(𝑝𝑒
+ − 𝑝𝑒

−) + (𝐴2𝑄1),1 + (𝐴1𝑄2),2 − 𝐴1𝐴2(�̄�1𝑇11 + �̄�2𝑇22) + 𝐴1𝐴2𝐹𝑒3

= 0 

   (18) 

(𝐴2𝑇11),1 + (𝐴1𝑇12),2 − 𝑇22𝐴2,1 + 𝑇12𝐴1,2 − 𝐴2𝜎11
+ (𝑎+),1 − 𝐴2𝜎11

− (𝑎−),1 (19) 

(𝐴1𝑇22),2 + (𝐴2𝑇21),1 + 𝑇21𝐴2,1 − 𝑇11𝐴1,2 + 𝐴1𝐴2�̄�2𝑄2 − 

−𝐴1𝜎22
+ (𝑎+),2 − 𝐴1𝜎22

− (𝑎−),2 − 𝐴2𝜎21
+ (𝑎+),1 − 𝐴2𝜎21

_ (𝑎−),1 + 𝐴1𝐴2𝐹𝑒2 = 0 (20) 

(𝐴2𝑀11),1 + (𝐴1𝑀12),2 − 𝐴1𝐴2𝑄1 − 𝑀22𝐴2,1 + 𝑀12𝐴1,2 − 
−𝐴2𝑎+𝜎11

+ (𝑎+),1 + 𝐴2𝑎−𝜎11
− (𝑎−),1 − 𝐴1𝑎+𝜎12

+ (𝑎+),2 + 𝐴1𝑎−𝜎12
− (𝑎−),2

+ 𝐴1𝐴2𝑀𝑒1 = 0 

(21) 

(𝐴1𝑀22),2 + (𝐴2𝑀21),1 − 𝐴1𝐴2𝑄2 + 𝑀21𝐴2,1 − 𝑀11𝐴1,2 − 
−𝐴1𝑎+𝜎22

+ (𝑎+),2 + 𝐴1𝑎−𝜎22
− (𝑎−),2 − 𝐴2𝑎+𝜎21

+ (𝑎+),1

+ 𝐴2𝑎−𝜎21
− (𝑎−),1

−
+ 𝐴1𝐴2𝑀𝑒2 = 0 

(22) 

5 The stress-strain relations of variable-thickness composite shells 

Substituting expressions (8) into (9), we find the relationship between forces, moments, 

shear forces and deformations 𝑒𝛼𝛽 ,  𝜘𝛼𝛽: 

𝑇11 = �̄�11𝑒11 + �̄�12𝑒22 + 𝐵11𝜘11 + 𝐵12𝜘22, 
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𝑇22 = �̄�22𝑒22 + �̄�21𝑒11 + 𝐵22𝜘22 + 𝐵21𝜘11, 

𝑇12 = 2�̄�66𝑒12 + 2𝐵66𝜘12, 𝑇21 = 2�̄�66𝑒21 + 2𝐵66𝜘21, 

𝑀11 = 𝐵11𝑒11 + 𝐵12𝑒22 + 𝐷11𝜘11 + 𝐷12𝜘22,    (23) 

𝑀22 = 𝐵22𝑒22 + 𝐵21𝑒11 + 𝐷22𝜘22 + 𝐷21𝜘11, 

𝑀12 = 2𝐵66𝑒12 + 2𝐷66𝜘12, 𝑀21 = 2𝐵66𝑒21 + 2𝐷66𝜘21, 

𝑄1 = 2С̄55𝑒13, 𝑄2 = 2С̄44𝑒23. 

The reduced stiffnesses are defined by the formulas 

�̄�𝛼𝛽 = ∫ 𝐶𝛼𝛽𝑑𝑋3𝑎+

−𝑎− ,  𝐵𝛼𝛽 = ∫ 𝐶𝛼𝛽𝑋3𝑎+

−𝑎− 𝑑𝑋3,   𝐷𝛼𝛽 = ∫ 𝐶𝛼𝛽(𝑋3)2𝑎+

−𝑎− 𝑑𝑋3,      (24) 

Due to the variability of the shell thickness, the equilibrium equations (19)-(22) include 

additional unknowns - 𝜎𝛼𝛽
± - stresses on the outer and inner surfaces of the shell. Let us find 

additional stress-strain relations that connect these stresses with deformations and curvatures 

𝑒𝛼𝛽 ,  𝜘𝛼𝛽 of the base surface of the shell.  

Considering formulas (7) and (8), we calculate the values of strains 𝜀𝛼𝛽
±  and stresses 𝜎𝛼𝛽

±  

on the outer surfaces of the shell: 

𝜀11
± = 𝑒11 ± 𝑎±𝜘11, 

𝜀22
± = 𝑒22 ± 𝑎±𝜘22,      (25) 

𝜀12
± = 𝑒12 ± 𝑎±𝜘12, 

𝜎11
± = 𝐶±

11𝑒11 + 𝐶±
12𝑒22 ± 𝑎±(𝐶±

11𝜘11 + 𝐶±
12𝜘22), 

𝜎22
± = 𝐶±

22𝑒22 + 𝐶±
21𝑒11 ± 𝑎±(𝐶±

22𝜘22 + 𝐶±
21𝜘11),            (26) 

𝜎12
± = 2𝐶±

66𝑒12 ± 2𝑎±𝐶±
66𝜘12. 

6 Solution of the problem of bending a variable-thickness plate 

Using the described technique, we solve the problem of bending a variable-thickness plate. 

In this case, the elasticity equations depend only on the coordinate 𝑿𝟏 and the number of 

equilibrium equations becomes three: 

(𝑄1),1 = 𝛥𝑝 − 𝐹𝑒3,  𝛥𝑝 = 𝑝+ − 𝑝−, 

(𝑇11),1 − 𝜎11
+ (𝑎+),1 − 𝜎11

− (𝑎−),1 + 𝐹𝑒1 = 0,   (27) 

(𝑀11),1 = 𝑄1 − 𝑀𝑒1 + 𝑎+𝜎11
+ (𝑎+),1 − 𝑎−𝜎11

− (𝑎−),1. 

The relationships between strains and displacements are defined as 
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 𝑒11 = 𝑈1,1,  𝜘11 = 𝛾1,1,  2𝑒13 = 𝛾1 + 𝑊,1,    (28) 

Formulas (23) and (26) take the form 

𝑇11 = �̄�11𝑒11 + 𝐵11𝜘11,  𝑀11 = 𝐵11𝑒11 + 𝐷11𝜘11,  𝑄1 = 2С55𝑒13, 

𝜎11
± = 𝐶±

11(𝑒11 ± 𝑎±𝜘11),   (29) 

The plate is loaded with uniform pressure, the left edge is rigidly clamped, the right one 

is free: 

𝑋1 = 0:  𝑈1 = 0, 𝛾1 = 0,  𝑊 = 0, 
𝑋1 = 𝑙:  𝑇11 = 0, 𝑀11 = 0, 𝑄1 = 0, 

𝑀𝑒1 = 0,  𝛥𝑝 = 𝑐𝑜𝑛𝑠𝑡, 𝐹𝑒1 = 𝐹𝑒3 = 0   (30) 

Let us express the equilibrium equations (27) in terms of displacements 𝑈1, 𝑊, 𝛾1 and 

replace them with the expressions for the integral characteristics 𝑇11, 𝑀11, 𝑄1 (29) expressed 

in terms of displacements, taking into account (28). We obtain a system of three second-order 

differential equations. 

{

(𝑊,11�̄�55) + [𝛾1,1�̄�55 + 𝑊,1�̄�55,1] + 𝛾1�̄�55,1 = 𝛥𝑝,

(𝑈1,11�̄�11 + 𝐵11𝛾1,11) + [𝛾1,1(𝑆1 + 𝐵11,1) + 𝑈1,1(𝑆2 + �̄�11,1)] = 0,

(𝐷11𝛾1,11 + 𝐵11𝑈1,11) + [𝛾1,1(𝑆3 + 𝐷11,1) − 𝑊,1�̄�55 + 𝑈1,1(𝑆1 + 𝐵11,1)] − 𝛾1�̄�55 = 0.

 (31) 

where 

�̄�𝛼𝛽,1 = 𝐶𝛼𝛽
+𝑎+ + 𝐶𝛼𝛽

−𝑎−; 𝐵𝛼𝛽,1 = (𝐶𝛼𝛽
+𝑎+(𝑎+),1 − 𝐶𝛼𝛽

−𝑎−(𝑎−),1); 

                                       𝐷𝛼𝛽,1 = (𝐶𝛼𝛽
+(𝑎+)2(𝑎+),1 + 𝐶𝛼𝛽

−(𝑎−)2(𝑎−),1). (32) 

𝑆1 = −𝑎+𝐶11
+𝑎+

,1 + 𝑎−𝐶11
−𝑎−

,1; 𝑆2 = −𝐶11
+𝑎+

,1 − 𝐶11
−𝑎−

,1; 

𝑆3 = −(𝑎+)2𝐶11
+𝑎+

,1 − (𝑎−)2𝐶11
−𝑎−

,1. 

We write system (32) as a second-order matrix differential equation with respect to the 

variable 𝑿𝟏: 

[𝐾1]{𝑦}′′ + [𝐾2]{𝑦}′ + [𝐾3]{𝑦} = −{𝐾4},   (33) 

Where 

𝑦 = (
𝛾

𝑊
𝑈

),[𝐾1] = (

0 �̄�55 0

𝐵11 0 �̄�11

𝐷11 0 𝐵11

),[𝐾2] = (

�̄�55 �̄�55,1 0

𝑆1 + 𝐵11,1 0 𝑆2 + �̄�11,1

𝑆3 + 𝐷11,1 −�̄�55 𝑆1 + 𝐵11,1

), (34) 

[𝐾3] = (
�̄�55,1 0 0

0 0 0
−�̄�55 0 0

), {𝐾4} = (
−𝛥𝑝

0
0

). 
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A numerical modeling technique, finite difference method (FDM), was applied, as a 

result, the problem was reduced to solving a system of equations with matrix coefficients. 

For the resultant algebraic system uses the tridiagonal matrix algorithm (TDMA) [19] in 

computing the solution with boundary conditions (30) of the form: 

{
[𝐶0]{𝑦}0 − [𝐵0]{𝑦}1 = {𝐹0},

−[𝐴𝑁]{𝑦}𝑁−1 + [𝐶𝑁]{𝑦}𝑁 = {𝐹𝑁}.
   (35) 

7 Calculation results for the stress-strain state of a variable-
thickness plate 

Consider a model of a variable thickness composite beam made of carbon fibers with the 

following properties. 

𝐸1 = 120GPa; Е2 = 3GPa; Е3 = 6GPa,  𝜇12 = 0.1; 𝜇13 = 0.15; 𝜇23 = 0.1, 
𝐺12 = 2GPa; 𝐺13 = 5GPa; 𝐺23 = 2GPa. 

The pressure is 𝛥𝑝 = 10Pa, the beam length is 𝑙 = 𝜋, m, the upper boundary of the beam 

is given by the function 𝑎+ = 𝑠𝑖𝑛( 𝑋1)/5,  and the lower bound is constant 𝑎− = 0.1.  

To compare the results, we have also considered the solution for a constant thickness 

beam whose boundaries are the same 𝑎+ = 𝑎− = 0.1. 

Figure 1 shows the distributions of displacements 𝑈1, deflections 𝑊 and angles of rotation 

𝛾1 along the length of the beam with variable thickness (red line) and constant (green line). 

 
a) 

 
b) 

 
c) 

Fig. 1. Distributions of displacement (a), deflection (b), and angle of rotation (c) along the length of 

the beam for the case of constant (red lines) and variable thickness (green lines).  

Figure (2) shows the graphs of the distribution of forces, moments and shear forces for a 

plate with constant (green line) and variable thickness (red line). 
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a) 

 
b) 

 
c) 

Fig. 2. Distribution of axial force (a), bending moment (b) and shear force (c) along the length of the 

plate, for the case of constant (green lines) and variable (red lines) thickness.  

Figure 2 shows that unlike the forces and moments, the shear force does not depend on 

the thickness of the beam, and the moment and axial force change significantly. The moment 

has a maximum value in the middle of the plate and not at the pinched end, as in the case of 

a constant thickness plate. 

8 Conclusions 

A model for calculating the stress-strain state of composite shells of variable thickness 

has been developed, based on assumptions similar to the classical theory of Timoshenko-

Mindlin type shells. 

As an example, the solution of the problem of plate bending under uniform pressure is 

considered, taking into account the variable thickness. Comparison of the calculation results 

with a constant thickness plate shows that the effect of thickness variability is quite 

significant.  
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