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Abstract. When designing products made of composite materials intended 
for use in difficult conditions of inhomogeneous deformations and 
temperatures, it is important to take into account viscoelastic, including 
spectral and dynamic, properties of the binder and fillers. The article 
considers dynamic characteristics (complex modulus, complex malleability, 
their real and imaginary parts, loss angle tangent) and spectral characteristics 
of relaxation and creep and their dependence on each other. The above-
mentioned characteristics were found for all known types of creep kernel 
and relaxation kernel. To find the spectral characteristics, one of the 
numerical methods of reversing the Laplace transformation was used - the 
method of quadrature formulas. Algorithms and computer programs have 
been compiled to implement this method. Key words: composite materials, 
viscoelastic properties, spectral properties, dynamic properties, Laplace 
transformation, quadrature formulas. 

1 Introduction 
When designing products made of composite materials intended for use in difficult conditions 
of inhomogeneous deformations and temperatures, it is important to take into account the 
viscoelastic properties of the binder and fillers [1]. All viscoelastic characteristics, both static 
and dynamic, are expressed, ultimately, through relaxation and creep nuclei [2, 17].  

Relaxation and creep kernel reflect the specific properties of a particular material. There 
are many model variants of such cores proposed at different times scattered in the literature. 
All of them were systematized and brought together in the work [17], and a mutual 
connection between them was established there [17]. An alternative and generalized approach 
is to determine the spectral characteristics of relaxation and creep - the density of the 
relaxation spectrum and the creep spectrum. It is necessary to link all the defining viscoelastic 
functions through spectral characteristics. It is also necessary to establish the relationship 
between the relaxation spectral density and the creep spectral density. 

Thus, the density of relaxation spectra, for example, becomes the primary and main 
viscoelastic characteristic of the material, it is specific to each specific material and is subject 
to experimental determination in each specific case. In this work, a partial implementation of 
this program is proposed. 
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2 Mathematical formulations of the problem, accepted 
assumptions 
For isotropic viscoelastic materials, the defining relations between stress and strain tensors 
are written as follows 

0 0

0 ,  0 ,
t t

t G t G t d t J t J t d  (1) 

Where G t  and J t  are relaxation and creep functions, respectively [1-15]. 

The function G t  describes the change in stress over time with constant deformation. 
This process is called stress relaxation. In this process, the tension decreases with time, that 
is, the function G t  is decreasing. 

The function J t  describes the change in deformation over time at constant stress. This 
process is called creep deformation. In the process of creep at constant stress, the deformation 
increases, that is, the function J t  is increasing. 

In the theory of elasticity between an elastic module G  and malleability J  there is a 
simple connection [1-4] 

                                                    1.GJ   (2) 

However, in the theory of viscoelasticity, there is no such simple connection between the 
relaxation and creep functions. 

Let's write down formulas (1) in the Laplace image space using the convolution theorem 

                         ,    .p pG p p p pJ p p  (3) 

From formulas (3) follows 

2 1.p G p J p  (4) 

This expression defines the relationship between the images of relaxation and creep 
functions. 

In the theory of the Laplace transform, the following limiting relations take place 

                              
0

lim 1,    lim 1,
t t

G t J t G t J t  (5) 

That is, relations of type (2) in the theory of viscoelasticity take place only in two limiting 
cases: when 0t  and when t . 

Convenient relaxation function G t  and creep function J t  present in dimensionless 
form. 

To do this, we denote 
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1
0 0 0 00 ,  [ ];    ,    0 ,  [ ].G t G t G G Pa J t J g t J J Pa (6)

The functions t and g t are dimensionless. The function t is called the 

relaxation kernel, and the function g t is the creep kernel.
By virtue of (2) and (5) it will be

     0 0 0
1,    lim 1,    lim 1.

t t
G J t g t t g t (7)

In the Laplace image space between the images of dimensionless functions t and

g t there is a relation of type (4):

2 1.p p g p (8)

3 Dynamic characteristics of viscoelastic materials and the 
relationship between them

The most well-known dynamic characteristics are the complex module *G i and the 

complex malleability *J i :

* *
0 0,  ,G i i G J i i J g* , (9)

Where and gg are the images of the relaxation kernel and the creep kernel, 
respectively, in the Fourier space.

There is the following relationship between formulas (9) [14-16]:

* * 1.G i J i (10)

Complex modulus and complex malleability, as the name implies, have real and 
imaginary parts:

  * ' '' * ' '',    ,G i G iG J i J iJ (11)

Where 'G and ''G are real (accumulation modulus) and imaginary (loss 

modulus) parts of  complex module, ;Pa 'J and ''J are real and imaginary parts 

of complex compliance, 1 .Pa
By substituting formulas (11) into (10) we obtain the following expressions

' ' '' '' ' '' '' '1,    0,G J G J G J G J (12)
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from which important ratios can be obtained: 

2 2' ' * '' '' *

2 2' ' * '' '' *

,    ,

,    .

G J J i G J J i

J G G i J G G i
 (13) 

Let's return to expressions (12) and write the second equation in the form 

1 1'' ' '' ' ,G G J J  (14) 

Where the left side of the equality, by definition, is called the tangent of the loss angle 
tg , so 

1'' ' .tg G G  (15) 

Then it follows from (14) and (15) that 

1'' ' .tg J J  (16) 

4 Relaxation and creep spectra and their relation to relaxation and 
creep kernels 

In [2-3], the relaxation function G t  is defined as follows: 

1

0

exp ,G t H t d G  (17) 

Where H  is the relaxation time distribution function (relaxation spectrum), 
1 .Pa s  

Taking into account (6), the relaxation kernel t  is expressed in terms of the relaxation 

spectrum H  as 

1 1
0

0

exp .t G H t d G  (18) 

From this formula by substitution 1  we can get the expression 
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2 1
0

0

exp ,H t d G t G  (19) 

in which the integral expression is nothing but a direct Laplace transform. This means that 
the function 2 1H  is the original, and the function 0G t G  is the image. By 

inverting the Laplace transform, we can define 2 1H  by t , and then by reverse 

substitution 1  we find H : 

2 1 1
0 ,H G t GL  (20) 

Where 1L  is the inverse Laplace transform operator; 1  is the Dirac delta function, 

s . Since the value G  is a constant, the summand 2 1G  at 0  is zero. 

Then (20) takes a simpler form: 

2 1
0 .H G tL  (21) 

In [2-3], the creep function J t  is defined as 

1
0

0

1 exp ,J t j t d J  (22) 

Where j  is the lag time distribution function, or creep spectrum, 1 1Pa s . 

Taking into account (6), the creep kernel g t  is expressed in terms of the creep 

spectrum j  as 

1 1
0

0

1 1 exp .g t J j t d  (23) 

By substitution 1  we obtain an expression similar to (20), applying to which the 

inverse of the Laplace transform, we define j : 

2 1 1
0 ,j J J g tL  (24) 

Where 0
0

tJ J t j d J .   

 
E3S Web of Conferences 376, 01042 (2023) https://doi.org/10.1051/e3sconf/202337601042
ERSME-2023

5



 

 

Note that the summand 2 1J  at 0  is zero, if 0J const  (a 

viscoelastic solid). Then (24) is written in the form 2 1
0 .j J g tL  For the case 

when J  (viscous or viscoelastic fluid), the summand 2 1J  is undefined. 

5 Relation of relaxation and creep spectra to each otheR 

According to (8), there is a mutual relationship between the relaxation kernel t  and the 

creep kernel g t  in the Laplace image space. Taking into account (18) and (23), it becomes 

obvious that the functions of the relaxation spectrum H  and the creep spectrum j  
are also not independent. 

Let's define formulas linking the spectra together. Let's start with the fact that from (18) 
we find the image of the relaxation kernel. Then, using (8), we find the image of the creep 
kernel. Applying the inverse Laplace transform operator 1L  to the function 

1
0J p J g p , we get an expression similar to (20) from which we can get the function 

2 1j . By reverse substitution 1  we find the creep spectrum j , and then, 

taking into account (5) and (7), the final formula takes the form 

112 1 2 122 2 ,j G p H G pL L  (25) 

Where 2L  and 2L  are operators of direct and inverse Laplace transformations, 
respectively, applied twice. 

Similarly, we can derive a formula expressing the relaxation spectrum through the creep 
spectrum: 

2 2
1

2 2 2 1 .H J p p jL L  (26) 

6 Known types of relaxation and creep functionS 

In [17], the known types of relaxation and creep kernels and their derivatives (Abel, Rabonov, 
Rzhanitsyn functions, etc.) were presented in the form of tables. Using these data, the 
dynamic and spectral characteristics of each of these kernels were further found. 

6.1 Dynamic and Spectral Characteristics of Creep and Relaxation Kernels 

Using the data from the tables from [17] and the formula (9)-(16), (21) and (24) the dynamic 
and spectral characteristics of the known creep kernels and relaxation kernels were obtained. 
The results are shown in Tables 1-6. 

Maxwell functions  
Table 1 shows the dynamic and spectral characteristics of Maxwell kernels. 
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Table 1. Dynamic and spectral characteristics of Maxwell kernels. 

№ Relaxation Creep 

1 1exp t  11 t  

2 2 1 1
0G t t  2 1 1

0 1J t t t  

3 1
0 1G i i  1 1

0 1J i  

4 
12 2 2 2

0 1G  0J  

5 
12 2

0 1G  1 1
0J  

6 1 1   0 

Kohlrausch functions 
Table 2 shows the dynamic and spectral characteristics of Kohlrausch kernels. 

Table 2. Dynamic and spectral characteristics of Kohlrausch kernels. 

№ Relaxation Creep 

1 

1 1exp t  

1

0

1 !r z r z r

r

r t  

1

0

1 z r z r
r

r

b z r t  

2 
1 12

0
0

1 !r z r z r

r

G t r z r t  
1 12

0
0

z r z r
r

r

J t b s z r t  

3 
1

0
0

1 1 ! exp 0.5r z r

r

G z r r i z r  0
0

exp 0.5z r
r

r

J b i z r  

4 
1

0
0

1 1 ! cos 0.5r z r

r

G z r r z r  0
0

cos 0.5z r
r

r

J b z r  

5 
11

0
0

1 1 ! sin 0.5r z r

r

G z r r z r  0
0

sin 0.5z r
r

r

J b z r  

In Table 2  takes values 0 1 , 0 1b , 

11

1
1 1 !

r
k

r r k
k

b k z k b , 1,2,..., ,r 1z k k , 

1z r r , 
1

sins z r z r . When 0 , Kohlrausch's 

characteristics turn into Maxwell's characteristics. 
Abel functions 
Table 3 shows the dynamic and spectral characteristics of Abel kernels. 

Table 3. Dynamic and spectral characteristics of Abel kernels. 

№ Relaxation Creep 

1 
1

0

1
r z z

r

z t  11 t  

2 
12 1

0
0

r z z

r

G t s z t  
12 1 1 1

0J t t t  
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3 0
0

exp 0.5
r z

r

G i z  0 1 exp 0.5J i  

4 0
0

cos 0.5
r z

r

G z  0 1 cos 0.5J  

5 0
0

sin 0.5
r z

r

G z  0 sin 0.5J  

6 
11

sin 0.5 cos 0.5  0.5tg  0 

In Table 3  takes values 0 1 , 
1

sins z z , z r . When 1 , 
Abel's characteristics turn into Maxwell's characteristics. 

7.4 Rabotnov functions  
Table 4 shows the dynamic and spectral characteristics of the Rabotnov kernels. 

Table 4. Dynamic and spectral characteristics of Rabotnov kernels. 

№ Relaxation Creep 

1 1 1
1

1
0

1 1 1r z z

r

z t  2 2
1

21 1 zzz t  

2 1 1
1 12 1

0 1
0

1 r z z

r
G t t s z t  2 2

1 12 1
0 2

z zJ t t s z t

3 11
0 1 1

0
1 1 exp 0.5r z

r
G z i z  2

0 21 exp 0.5zJ i z  

4 11
0 1 1

0
1 1 cos 0.5r z

r
G z z  2

0 21 cos 0.5zJ z  

5 11
0 1 1

0

1 sin 0.5r z

r

G z z  2

0 2sin 0.5zJ z  

6 2
1

2 2sin 0.5 cos 0.5zz z  20.5tg z  0 

In Table 4  takes values 0 1, 
1

sins z z , 1 1z r , 2z
. When 1 , Rabotnov's characteristics turn into Maxwell's characteristics. 

7.5 Rzhanitsyn functions  
Table 5 shows the dynamic and spectral characteristics of the Rzhanitsyn kernels. 

Table 5. Dynamic and spectral characteristics of Rzhanitsyn kernels. 

№ Relaxation Creep 

1 
11

1 11 ,z t z  
11

2 2
1

1 ,
r

z t z  

2 112 1
0 1 1

z
G t s z t t  

212 1 1
0 2

1
1

z

r
J t t s z t t  

3 1

0 11 exp
z

G iz 2

0 2
1

1 exp
z

r
J iz  
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4 1

0 11 cos
z

G z 2

0 2
1

1 cos
z

r
J z

5 1

0 1sin
z

G z 2

0 2
1

sin
z

r

J z

6 1
1

1 1sin cos
z

z z 0

In Table 5 takes values 0 1 , 1 1 ,t th t 1 1h t is the Heaviside 

function, 
1

sins z z , 1z , 2z r ,
1

1 1

0

, exp
t

t d is 

the lower incomplete gamma function [18-19], ,arctg 1/22 21
. When 1 , Rzhanitsyn's characteristics turn into Maxwell's characteristics.

Gavriljak-Negami functions
Table 6 shows the dynamic and spectral characteristics of Gavrilyak-Negami kernels.

Table 6. Dynamic and spectral characteristics of Gavrilyak-Negami kernels.

№ Relaxation Creep

1 1 1
1

1
0

1 1 1r z z

r

a r z t 2 2
1

2
1 0

1 1 1m z z
m

r m

D z t

2 1 1
1 12 1

0 1
0

1 r z z

r
G t t a r s z t 2 2

1 12 1
0 2

1 0
1 m z z

m
r m

J t t D s z t

3 1

0 1
0

1 1 exp 0.5r z

r
G a r i z 2

0 2
1 0

1 1 exp 0.5m z
m

r m
J D i z

4 1

0 1
0

1 1 cos 0.5r z

r
G a r z 2

0 2
1 0

1 1 cos 0.5m z
m

r m
J D z

5 1

0 1
0

1 sin 0.5r z

r
G a r z 2

0 2
1 0

1 sin 0.5m z
m

r m
J D z

In Table 6 , takes values 0 1 , 0 1 , 1z r , 

2 ,z r m
1 2

1 2 1

1

1
0 0 0

r

r

k km r

m j j
k k k j

D a k k , 

1
!a r r r , 0k m , 0rk , 1,2,...,r , 0,1,...,m , 

1
sins z z . When 1, Gavrilyak-Negami 's characteristics turn into 

Rzhanitsyn's characteristics, and when 1 they turn into Maxwell's characteristics.
In tables 1-6, the functions of the kernels are indicated under number 1, the spectra of the 

kernels are indicated under number 2, the complex module and complex compliance are 
indicated under number 3, respectively, and their real and imaginary parts are indicated under 
numbers 4-5. Number 6 indicates the tangent of the loss angle and its limit values at

0 and at , respectively. 

E3S Web of Conferences 376, 01042 (2023) https://doi.org/10.1051/e3sconf/202337601042
ERSME-2023

9



 

 

Remark. Using Tables 1-6 and (13), it is possible to obtain the following functions already 
in an analytical form: the Abel accumulation modulus and the Abel loss modulus, the 
Rabotnov accumulation modulus and the Rabotnov loss modulus, the real and imaginary 
parts of the complex malleability of Rzhanitsyn. 

6.2 Numerical method for solving the problem 

Relaxation and creep spectra, according to (21) and (24), are found through relaxation and 
creep kernels by reversing the Laplace transform. We will solve this problem using one of 
the numerical methods of reversing the Laplace transform - the method of quadrature 
formulas with equal coefficients [20]. This method was described in detail in the previous 
work [17]. 

6.3 Examples of numerical solution of the problem 

Computer programs were written that implement the method of quadrature formulas for 
finding spectra. Here are some calculations obtained using these programs. 

Figures 1-6 show graphs obtained by the method of quadrature formulas. To construct the 
functions of the spectra, the following parameters were set: 100  (for the Rabotnov 
spectra 20 ), =0.5, =0.5, 0.5,  1,h s 0 1,G 0 1.J  

Figures 1, 3 and 5 show graphs of the relaxation spectra of Abel, Rabotnov and 
Rzhanitsyn, respectively. 

Figures 2, 4 and 4 show graphs of the creep spectrum of Abel, Rabotnov and Rzhanitsyn, 
respectively. 

The green graphs correspond to the analytical functions (or in the form of an approximate 
finite series) of the spectra, while the red graphs correspond to the functions of the spectra 
obtained by the numerical method mentioned above. 

  

Fig. 1. Abel relaxation spectrum at 100n , 
0.05срH . 

Fig. 2. Abel creep spectrum at 100n , 
0.008срj . 
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Fig. 3. Rabotnov relaxation spectrum at 
100n , 0.025срH . 

Fig. 4. Rabotnov creep spectrum at 100n , 
0.006срj . 

  
Fig. 5. Rzhanitsyn relaxation spectrum at 

100n , 0.007срH . 
Fig. 6. Rzhanitsyn creep spectrum at 100n , 

0.003срj . 

All the necessary calculations were performed in the Wolfram Mathematica. 

7 Conclusions 
After analyzing the results, we draw the following conclusions: 

1) the graphs of the relaxation and creep spectra were obtained fairly accurately (the 
maximum error of calculations does not exceed 5% on average), despite the fact that the error 
is very noticeable in the initial time sections. Numerical finding of the functions of the 
Kohlrausch and Gavriljak-Negami yield spectra caused difficulties associated with a 
complex recursive formula in these kernels; 

2) for all kernels (except for the kernels of Kohlrausch and Gavrilyak-Negami), their 
dynamic characteristics were obtained in the form of analytical functions, even though the 
functions of some kernels are represented as an approximate infinite series; 

3) formulas defining the spectra through each other have not proved to be very effective 
in practice (with the exception of Maxwell spectra). It is possible that for greater efficiency, 
the direct and inverse Laplace transform in these formulas should be replaced by an 
approximate one (the integrand function should be written as an approximate infinite series). 
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