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Abstract. Theoretical ratios of important kinetic characteristics for brittle 

polymers with cracks under mechanical and thermal effects are obtained, 

which underlie the study of the thermokinetics of the process of polymer 

fracture in terms of the theory of the time dependence of strength-durability. 

Rectilinear (internal and surface) cracks in plate-type specimens and internal 

circular (disk-shaped) cracks in polymer fibers are considered. Two test 

modes are considered successively: constant tensile stress, constant absolute 

temperature, unchanging structure, inactive medium, as well as a more 

complex mode of purely thermal loading - the case least developed in the 

theory of destruction. The calculated ratios of a number of limiting 

characteristics and parameters of the destruction process are given: safe and 

critical stress; initial length of a microcrack and its relative critical length; 

safe and critical voltage; local stress at the crack tip (in the fluctuation 

volume); the value of the free surface energy. The above relations are the 

basis for the development of the theory of the time dependence of strength-

durability. Key words: brittle polymers, thermokinetics, cracks. 

1 Introduction 

Modern structural and functional polymeric and composite materials are structurally 

sensitive materials [1-4]. Their creation on the basis of modern technologies is an important 

direction in the development of modern materials science. Structure-sensitive materials are 

obtained by various methods: nanopowder compaction, deposition on a substrate, 

crystallization of amorphous alloys, etc. [1-6] and have unique mechanical and thermal 

properties that allow them to be used in structures subject to various external influences [7,8]. 

An important step in the creation and use of these materials is the development of appropriate 

mathematical models to describe their behavior in a wide range of changes in external 

operational factors. The general methodology for constructing such models is still far from 

complete. First of all, this applies to models that describe the thermokinetics of the fracture 

process during durability testing. The main difficulty in developing such models is the need 

to mathematically describe the mutual influence of macro- and microstages of the destruction 

process, determine the main parameters and limiting characteristics of the process, establish 
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a relationship between molecular constants that characterize the structure of materials on the 

one hand and macroscopic strength characteristics on the other, and, finally , to develop a 

methodology for calculating durability in certain test conditions. The traditional approach to 

the engineering assessment of the mechanical performance of polymeric and composite 

materials involves testing the sample in tension or compression (or torsion) up to failure. The 

stress at which failure occurs is a measure of strength. But this does not take into account the 

time factor, i.e., the finite lifetime of materials under the action of stress, a lower tensile 

strength, which is especially pronounced for polymers and composites based on them. It is 

more expedient to set not the voltage at which the structure should operate, but its life time, 

that is, the durability τ = τ (σ, T) [7,8] and from this ratio calculate the stress that this structure 

can withstand for a given period time at a given test temperature. Explaining this point of 

view is the fact that in real polymer and composite materials there are microdefects (cracks), 

which are responsible for premature failure. After applying a load that exceeds the safe stress 

𝜎0, failure occurs by growing one, less often several, the most dangerous cracks from the 

initial length 𝑙0 to a certain critical length 𝑙𝑘, at which there is a transition to the athermal 

(fast) stage of the fracture process with a critical speed 𝑣𝑘, the value of which is determined 

by the propagation velocity of the elastic perturbations in a solid body. The process ends with 

the loss of the bearing capacity of the part or structure. To estimate the critical speed, the 

Roberts-Wells formula can be used 

𝑣𝑘 = 0.38√
𝐸

𝜌
 ,                        (1) 

Where E is the Young's modulus of the material, ρ is the density. 

In the process of crack growth, the destruction of the material is localized in a small 

neighborhood of its tip Va (fluctuation volume), where local stresses 𝜎∗ activating the process 

of rupture of strained chemical and intermolecular bonds significantly exceed the stresses in 

the rest of the sample volume. Finding the calculated engineering ratios of the indicated 

kinetic characteristics is one of the most important tasks of polymer materials science. The 

purpose of this article is to systematize the most important kinetic characteristics of brittle 

polymers with cracks under mechanical and thermal effects. 

2 Ideological schemes of research 

The registration of submicroscopic cracks in polymers by diffraction methods made it 

possible to determine their sizes (longitudinal and transverse), shape (linear in the form of a 

cut in plate-type samples, circular disk-shaped ones in polymer fibers), and position in the 

sample (surface, internal). Typical sizes of initial microcracks are for PMMA – 1700 𝐴∘, 

polyvinyl butyral - 3000𝐴∘, polyethylene - 170 𝐴∘, polypropylene - 320 𝐴∘, polyvinyl 

chloride - 3000 𝐴∘, capron - 90 𝐴∘ [7]. The data of fractographic studies of the fracture 

surface indicate that the critical crack length 𝑙𝑘 is independent of the cross section of the 

sample, which varied by more than 100 times [7]. In all cases, fracture cracks grow from a 

defect of initial length 𝑙0 along the normal to the direction of maximum tensile stress. To 

characterize the crack, scale relations are fulfilled 

𝜆 << 𝑙0 ≤ 𝑙(𝜏) ≤ 𝑙𝑘 << 𝐿, 
0 ≤ 𝜏 ≤ 𝜏𝑓 ,                       (2) 
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Where λ is the fluctuation crack propagation upon rupture of one or a group of bonds (for 

organic polymers 𝜆 = 12𝛢∘ [5, 6]), 𝜏𝑓(𝜎, 𝑇) is the duration of the slow (thermofluctuation) 

stage of crack growth from the initial to the critical length. Scale relations (2) are the 

substantiating experimental result for the construction of mathematical models. Based on (2), 

a sample in the form of a plate or a cylindrical rod will be interpreted as an elastic plane (x, 

y) with an internal crack |𝑥| < 𝑙0, 𝑦 = 0, or as an elastic half-plane 𝑥 > 0, |𝑦| < ∞ with a 

surface crack 0 < 𝑥 < 𝑙0, 𝑦 = 0, or as an elastic space (x, y, z) with an internal circular 

axisymmetric crack 𝑧 = 0,0 ≤ 𝑟 < 𝑅0. 
In the mathematical model of the thermokinetics of the fracture process in specific cases 

of loading, an important role is given to the analytical formula for the crack growth rate as a 

function of its current length 𝑙(𝑡), of the stress field 𝜎∗ at its tip, more precisely in a small 

fluctuation volume 𝑉𝑎, where thermal fluctuation acts of rupture and recombination of 

strained chemical and intermolecular crack tip and molecular constants characterizing the 

structure of the polymer and the elementary act of breaking strained bonds: 

𝑉 = 𝑉(𝑙; 𝜎∗; 𝑇в; 𝑉𝑎; 𝑈; . . . ) ,              (3) 

Where 𝑈 = 𝑈0 − 𝑞𝑇в is the activation energy for breaking bonds, decreasing linearly with 

increasing temperature; 𝑈0 is the activation energy of the rupture process, extrapolated to 

absolute zero; q is the coefficient of temperature dependence of the activation energy (for 

polymeric organic glasses) 𝑞 ∼ (15 − 20)J/molK; 𝜎0
∗ – thermal fluctuation threshold of 

destruction (safe overvoltage at the crack tip). The fluctuation volume, an important 

molecular structural characteristic of polymers, is calculated on the basis of data on the 

structure of polymers and the mechanism of their destruction [5,6]: 𝑉𝑎 = 𝜆𝜆𝜋𝜆𝑚, where 𝜆𝜋 – 

prebreak bond elongation; 𝜆𝑚 – bond elongation. For non-oriented polymers, (polymer 

glasses formed by linear polymers), for oriented (fibers) 𝑉𝑎 = 6𝜆0
2 ⋅ 𝜆𝑚 = 1.4 ⋅ 10−28м3; 

𝜆𝑚 = 1.5 𝐴∘, 𝜆0 = 4𝐴∘ is the average intermolecular distance in the polymer) [7,8]. Local 

stress in formula (3) 𝜎∗ = 𝜑(𝜎, 𝛽, 𝑙. . . ) is one of the most important local kinetic 

characteristics of strength. The value of σ* depends on the applied external stress σ, the stress 

concentration factor β at the crack tip, which plays an extremely important role in the study 

of defectiveness of materials, the current length of the crack 𝑙(𝑡), geometry of the sample, 

the configuration of the crack and its location in the sample (surface or internal). The value 

𝜎∗ is calculated by the methods of fracture mechanics based on the solution of boundary 

problems of the mathematical theory of cracks. The calculated values of the quantity under 

mechanical and thermal loads make it possible to determine a number of limiting 

characteristics and parameters of brittle polymers with cracks in the overall picture of the 

thermokinetics of the fracture process. 

For stresses σ not too close to safe and not exceeding critical σ0 < σ < σk , the probability 

of recombination (restoration) of bonds at the crack tip is negligibly small compared to the 

probability of their rupture, and the average crack growth rate based on its molecular model 

[7,8] can be written in the following form 

𝑉(𝑙, 𝜎∗, 𝑇в. . . ) = 𝜆𝜈0 𝑒𝑥𝑝 [−
(𝑈−𝑉𝑎𝜎∗)

𝑘𝑇в(𝑙,𝑡)
],                       (4) 

Where 𝜈0– the frequency of thermal vibrations of kinetic units involved in breaking and 

restoring bonds (𝜈0 ∼ 10−13с−1), k is the Boltzmann constant. The durability of a sample 

𝜏 = 𝜏(𝜎, 𝑇) in the form of a plate with a width 𝐿 consists of the times of the rupture process 

at the first (fluctuation) stage 𝜏𝑓(𝜎, 𝑇) during crack growth at a rate (4) from the initial length 

𝑙0 to the critical one 𝑙𝑘 and the second (athermal) 𝜏𝑘 at the limiting rate 𝑣𝑘 (see formula (1)) 
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𝜏 = 𝜏𝜙 + 𝜏𝑘 = ∫
𝑑𝑙

𝑉(𝑙,𝜎∗,𝑇в...)
+

𝐿−𝑙𝑘

𝜈𝑘

𝑙𝑘

𝑙0
 .                      (5) 

3 Stress intensity factors under mechanical and thermal loads 

As mentioned, the fracture of brittle polymers is localized in a small neighborhood of the 

crack tip (in the volume 𝑉𝑎). To find the local stress 𝜎∗ at the crack tip in formula (4), it is 

necessary to use the methods of the mathematical theory of cracks. This will allow us to study 

the asymptotic stress distribution near the crack tip. 

Based on scale relations (2), we will interpret a crack as a cut in a homogeneous and 

elastic isotropic continuum. Let us consider the stress-strain state in the vicinity of the crack 

tip |𝑥| < 𝑙, 𝑦 = 0 in the elastic plane (x, y) under given arbitrary loads acting on the crack 

edges and constant loads at infinity. Simultaneously, there is a thermally stressed state caused 

by a stationary heat flux parallel to the plane of symmetry of the sample. Under plane tension, 

the stress distribution in the vicinity of the crack tip has the form [9]: 

𝜎𝑥𝑥 =
𝐾1

√2𝑟
𝑐𝑜𝑠

𝜃

2
(1 + 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) +

𝐾2

√2𝑟
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
 , 

𝜎𝑦𝑦 =
𝐾1

√2𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) −

𝐾2

√2𝑟
𝑠𝑖𝑛

𝜃

2
(2 + 𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
) ,             (6) 

𝜎𝑥𝑦 =
𝐾1

√2𝑟
𝑠𝑖𝑛

𝜃

2
𝑐𝑜𝑠

𝜃

2
𝑐𝑜𝑠

3𝜃

2
+

𝐾2

√2𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) , 

Where (𝑟, 𝜃) are polar coordinates with the pole at the crack tip; K1, K2, - stress intensity 

factors, which are found from the solution of the problem of the theory of elasticity as a 

function of the load and parameters characterizing the configuration of the body, the shape 

of the crack, its location in the sample, as well as the elastic and thermophysical constants of 

the material. The values K1 and K2 represent the asymptotics of the stress components in the 

vicinity of the crack tip, i.e., ultimately, the local stresses 𝜎∗ in relation (3). This article 

proposes the derivation of a generalized relationship for stress intensity factors in the 

presence of mechanical and thermal loads on the crack faces and outside it. An independent 

approach based on the complex potentials of N.I. Muskhelishvili. It turned out to be very 

effective for this case, a rather complicated problem of the mathematical theory of cracks. 

Let us formulate the problem in terms of stresses using the known relations for plane 

static problems of thermoelasticity [10]. The problem is to determine the stress intensity 

factors in the asymptotic behavior of the stress tensor 𝜎𝑖𝑗(𝑥, 𝑦) in (6) at 𝑧 → ±𝑙, (𝑧 = 𝑥 + 𝑖𝑦) 

based on the solution of the equations: 

equilibrium 

𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
= 0, 

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
= 0;                                                        (7) 

Compatibility 

𝛥(𝜎𝑥𝑥 + 𝜎𝑦𝑦) = −
2𝛽𝑇𝐺

(𝜒−1)(𝜆∗+2𝐺)
𝛥𝑇(𝑥, 𝑦) = 0;                                   (8) 
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Relations of stresses and displacements 

𝜎𝑥𝑥 = 𝜆∗𝑒 + 2𝐺
𝜕𝑈

𝜕𝑥
− 𝛽𝑇(𝜒 − 1)𝑇(𝑥, 𝑦), 

𝜎𝑦𝑦 = 𝜆∗𝑒 + 2𝐺
𝜕𝑉

𝜕𝑦
− 𝛽𝑇(𝜒 − 1)𝑇(𝑥, 𝑦), 

𝜎𝑥𝑦 = 𝐺(
𝜕𝑈

𝜕𝑦
+

𝜕𝑉

𝜕𝑥
), 

𝑒 =
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
                                                           (9) 

In the region 𝐷\𝐵, where 𝐷 = (|𝑥, 𝑦| < ∞), 𝐵 = (|𝑥| < 𝑙, 𝑦 = 0). Here U(x,y), V(x,y) 

are the displacement vector components. 

Omitting the details of cumbersome calculations, we present the result 

𝐾1
± − 𝑖𝐾2

± = 

= −
1

𝜋√𝑙
{∫ √

𝑙 ∓ 𝑥

𝑙 ∓ 𝑥

+𝑙

−𝑙

𝑝(𝑥)𝑑𝑥 ± 𝑖
𝜒 − 1

𝜒 + 1
∫ 𝑞(𝑥)𝑑𝑥 − [𝜎𝑦𝑦

(∞)
− 𝑖𝜎𝑥𝑦

(∞)
]𝜋𝑙

+𝑙

−𝑙

} ∓ 

∓
𝛽∗

𝜋(𝜒+1)√𝑙
{∫ (𝑙 − 𝑥) (

𝜕𝑇+

𝜕𝑦
−

𝜕𝑇−

𝜕𝑦
)

𝑦=0
𝑑𝑥 ± 𝑖 ∫ (𝑇+(𝑥) − 𝑇−(𝑥))𝑑𝑥

+𝑙

−𝑙

+𝑙

−𝑙
}.  (10) 

Here (𝜕𝑇/𝜕𝑦)𝑦=0
± , 𝑇±(𝑥) are the heat flux and temperature on the crack faces, 

respectively; the sign (+) on the left refers to the right crack tip, the sign (-) to the left one. 

Under isothermal loading conditions and in the absence of loads at infinity (𝜎𝑦𝑦
(∞)

= 𝜎𝑥𝑦
(∞)

=

0), we arrive at the expression obtained in [10]. Assuming that the crack edges are free from 

stresses (𝑝(𝑥) = 𝑞(𝑥) = 0) and that there are no stresses at infinity, we find from (10) the 

intensity factors for purely thermal stresses. Relation (10) contains numerous special cases 

of mechanical and thermal loading, each of which can serve as the subject of independent 

research in the study of fracture kinetics. 

4 local stresses at the crack tip 

Let us now turn to the application of relation (10) to derive a number of important kinetic 

characteristics for polymers with cracks. Let us first consider a purely mechanical loading at 

a constant temperature. 

4.1 Internal linear crack 

With uniaxial tension of the sample under constant stress, we find from (10) 

𝐾1 = 𝜎√𝑙, 
𝐾2 = 0,                     (11) 

and from relation (6) is the maximum tensile stress in the vicinity (for definiteness, the right 

one) of the crack tip, achieved in the crack plane: 
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(𝜎𝑦𝑦(𝑥, 0))
𝜎√𝑙

√2(𝑥−𝑙)
𝑚𝑎𝑥

                                  (12)  

Direct experiments (using IR spectrometry) to measure the true stresses on individual 

chemical bonds for solid polymers showed that as we approach the tip of the crack on the 

most stressed bonds, the load increases up to a certain value, after which it remains almost 

constant and exceeds the average stress on the bonds in the sample volume by several orders 

of magnitude. Such bonds are strongly deformed and broken in the first place; their rupture 

is due to the stress attributable to the bond spaced from the crack tip at the distance of its 

fluctuation propagation λ. Thus, the desired local stress at the crack tip a in the final form is 

𝜎∗ = 𝜎𝛽(𝑙0)√
𝑙

𝑙0
 ,                  (13) 

Where the stress concentration factor appears for an internal rectilinear crack of initial 

length 2𝑙0 

𝛽(𝑙0) = 0.71√
𝑙0

𝜆
 .     (14) 

Creep experiments (for σ = const) show that the coefficient 𝛽 practically does not change 

over the lifetime of the sample and is determined by the length of the initial defect in the 

sample. From (13) the value (half-length) of the initial microcrack is found 

𝑙0 = 2𝜆𝛽2 .           (15) 

Numerical calculations based on relations (13–15) give results close to experimental ones 

[7,8]. 

4.2 Edge surface crack 

Let us turn to the consideration of surface cracks. Such cracks are the most common and 

grow from the edge of the sample, where there are the most dangerous defects. When 

calculating σ*, the sample according to (2) is considered as an elastic half-plane (x, y) with 

an edge crack 0 < 𝑥 < 𝑙, 𝑦 = 0. This case is one of the rather complicated cracks in the 

mathematical theory. The approach developed in [6] (for the case of sample tension under 

constant stress at constant temperature) made it possible to obtain the following expression 

for the local stress at the crack tip 

𝜎∗ = 𝜎𝛽(𝑙0)√
𝑙

𝑙0

, 

𝛽(𝑙0) = 0.79√
𝑙0

𝜆
.                (16) 

Hence, the length of the initial surface crack is equal to 

𝑙0 = 1.6𝜆𝛽2 .             (17) 
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So for PMMA 𝜆 = 12 𝐴∘, 𝛽 = 11 [5,6 and 𝑙0 = 2.3 ⋅ 10−7m which is close to the 

estimate of the initial (initial) edge microcrack given in [7,8] (𝑙0 = 1.5 ⋅ 10−7 m) for 

inorganic glass 𝜆 = 5.4 𝐴∘, 𝛽 = 60 [10] and from  we have 𝑙0 = 4μm, which coincides with 

the experimental data in [7,8]. 

4.3 Internal disk fissure 

The next question is internal disc-shaped cracks (circular) cracks. As mentioned above, along 

with linear submicrocracks, disc-shaped submicrocracks oriented perpendicular to the tensile 

force were found in polymers. 

In [11], convenient for calculation ratios for stress intensity factors under mechanical and 

thermal loads were obtained: 

𝐾1
(м)

=
2

𝜋√𝑅
∫

𝑦𝜎0(𝑦)𝑑𝑦

√𝑅2 − 𝑦2

𝑅

0

, 

𝐾1
(𝑇) =

2(1+𝜈)𝛼𝐺

𝜋(1−𝜈)√𝑅
∫

𝑦𝑇0(𝑦)𝑑𝑦

√𝑅2−𝑦2

𝑅

0
.                     (18) 

Here T0(r) is the temperature at the crack 0 ≤ 𝑟 < 𝑅, 𝑧 = 0; it is either given or found 

from the solution of the corresponding thermal problem. Under constant external load 

𝜎0(𝑟) = 𝜎 = 𝑐𝑜𝑛𝑠𝑡 and isothermal test conditions, it follows from (18)   

𝐾1 =
2

𝜋
𝜎√𝑅            (19) 

and the local stress in the λ neighborhood of a circular crack has the form 

𝜎∗ = 𝜎𝛽(𝑅0)√
𝑅

𝑅0

, 

𝛽(𝑅0) = 0.5√
𝑅0

𝜆
,                            (20) 

Where R is the variable radius of the growing crack, 2R0 is the diameter of the initial 

circular crack. From (20) it follows 

𝑅0 = 4𝜆𝛽2 .             (21) 

So, for oriented fibers (polyethylene; polypropylene; polycaproamide), according to [10] 

𝜆 = 4 𝐴∘, 𝛽 ∼ (4 − 7), from here and from (20) the radius of the initial microcrack is 𝑅0 ≈
(10−8 − 10−7) m, which is confirmed by experiments in [7,8]. 

A number of important parameters and limiting characteristics of the fracture process 

should be added to these ratios. The characteristic σ0 requires special consideration. In the 

kinetic theory, the safe stress is introduced by the relation 

𝜎0 =
𝛼пов

𝛽𝜆𝑚
,             (22) 
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Where 𝛼пов is the free surface energy of the material (in vacuum). It was shown in [10] 

that the value coincides with the Griffith fracture threshold 

𝜎0 = 𝜎𝐺0
= √

2𝐸𝛼пов

𝜋𝑙0
 .    (23) 

Thus, from the above relations, the following calculated characteristics of the kinetics of 

the process of brittle fracture of polymers follow: 

safe stress 

𝜎𝐺0
= √

2𝐸𝛼пов

𝑙0
  ,            (24) 

initial length (half-length or radius) of microcracks 

𝑙0 = 𝜆
𝛽2

𝜒2  ,         (25) 

stress concentration factor 

𝛽(𝑙0) = 𝜒√
𝑙0

𝜆
                          (26) 

critical stress 

𝜎𝑘 =
𝑈0−𝑞𝑇

𝑉𝑎𝛽
=

(𝑈0−𝑞𝑇)

𝜒𝑉𝑎
√

𝜆

𝑙0
  ,                     (27) 

relative critical crack length 

√
𝑙𝑘

𝑙0
=

𝑈0−𝑞𝑇

𝑉𝑎𝛽𝜎
;                   (28) 

local stress at the crack tip 

𝜎∗ = 𝜎𝛽(𝑙0)√
𝑙

𝑙0
  .                     (29) 

5 Local stresses under thermal loads 

The calculation of local stresses under purely thermal loads is a practically undeveloped 

problem in the theory of brittle fracture. Of greatest interest are the cases of a steady thermal 

state in materials with a crack. Theoretical and experimental results in [12-15] show that, 

under a steady heat flow in a body with a crack, there is a significant increase in thermal 

stresses caused by a local increase in the temperature gradient in the vicinity of the crack tip. 

It can be assumed that thermoelastic expansion fields (as well as their mechanical 

counterparts) increase the stress intensity at the crack tip, causing it to grow. Experiments 

confirm this assumption [15]. The intensity factors of thermoelastic stresses are as follows 

𝐾1 = 0, 
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𝐾2 =
𝛼𝑞𝑇

4𝜆𝑇
𝐸𝑙3/2                          (30) 

(Plane stress state) and then the desired local thermal stress at the crack tip 

𝜎𝑇
∗ = 𝛽𝜎𝑇 (

𝑙

𝑙0
)

3

2
 ,                  (31) 

 

Where 

𝜎𝑇 = 𝛼𝐸𝑙0

𝑞𝑇

4𝜆𝑇

, 

𝛽(𝑙0) = 0.71√
𝑙0

𝜆
.                          (32) 

The resulting relation for the stress σT in (32) is a fundamental result for the theory of 

thermal failure: the stress σT is a mechanical analogue under thermal loading and links the 

thermophysical, elastic, and structural characteristics of polymers, which makes it possible 

to trace the influence of each factor on the thermal response of a polymer material with initial 

microcrack. Let us add to the above relations a number of interesting characteristics, starting 

with the temperature 𝑇в at the crack tip. First, we find the asymptotic temperature distribution 

near the vertex in the coordinates (r,θ) (as in (6)) in the form 

𝑇(𝑟, 𝜃) = √2𝑙
𝑞𝑇

𝜆𝑇
𝑟1/2 𝑠𝑖𝑛

𝜃

2
.           (33) 

Hence, as TВ we take the average integral value in the λ-vicinity of the right tip of the 

initial microcrack, which gives 

𝑇в = 𝛽𝜆
𝑞𝑇

𝜆𝑇
.          (34) 

Here again, the relationship between macro and micro parameters and their influence on 

the thermal state of the polymer material at the crack tip is traced. Now we can write the 

crack growth rate as 

𝑉(𝑙, 𝜎𝑇
∗, 𝑇в, . . . = 𝜆𝜈0 𝑒𝑥𝑝 (−

𝑈−𝑉𝑎𝜎𝑇
∗

𝑘𝑇в
)              (35) 

Where all the main quantities are calculated. The main external factor causing crack 

growth at the rate (35) is the thermal load with power qT, which is one of the stress 

components. Relations (40) and (43) (at T = TВ) define the stress range 𝜎𝑇 from safe 𝜎𝑇
(0)

 to 

critical 𝜎𝑇
(𝑘)

, which makes it possible to identify the characteristic values of external thermal 

loading from safe 

𝑞𝑇
(0)

=
3.2𝜆𝑇√

𝛼пов
𝐸

𝛼
𝑙0

−3/2
                   (36) 

to critical 
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𝑞𝑇
(𝑘)

=
5.6𝜆𝑇√𝜆(𝑈0−𝑞𝑇в)

𝛼𝐸𝑉𝑎
𝑙0

−3/2
..                  (37) 

Other special cases can be considered similarly. 

6 Conclusions 

1. Theoretical ratios of important kinetic characteristics for brittle polymers with cracks 

under mechanical and thermal effects are obtained, which underlie the study of the 

thermokinetics of the process of polymer destruction in terms of the theory of the time 

dependence of strength-durability. 

2. Rectilinear (internal and surface) cracks in plate-type specimens and internal circular 

(disk-shaped) cracks in polymer fibers are considered. 

3. Two test modes are considered successively: constant tensile stress, constant absolute 

temperature, unchanging structure, inactive medium, as well as a more complex mode of 

purely thermal loading - the case least developed in the theory of destruction. 

4. The calculated ratios of a number of limiting characteristics and parameters of the 

destruction process are given: safe and critical stress; initial length of a microcrack and its 

relative critical length; safe and critical voltage; local stress at the crack tip (in the fluctuation 

volume); the value of the free surface energy. The above relations are the basis for the 

development of the theory of the time dependence of strength-durability. 
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