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Abstract. This paper discusses the features of polar coding as a differential 
encoder for a binary erasure channel. One of the modern methods of error-
correcting coding is polar codes, which has great prospects in the 
development of current and future wireless communication systems. At the 
moment, polar coding is used only in fifth-generation systems. In this paper, 
a description of polar coding is presented, a description of a polar decoding 
algorithm capable of restoring messages with an error probability close to 1 

is presented, and a general model of a binary channel with erasures is 
described. The channel model represents a fixed number of introduced 
errors, depending on the size of the transmitted message. The result of the 
study is the dependence of the bit-error ratio (BER) on the error probability 
for low, medium and high code rates, which illustrate the possibility of the 
polar coding algorithm to restore a message with a partially or completely 
inverse data stream. Keywords: polar codes, block codes, differential 
encoder, generator matrix. 

1 Introduction 

Currently, wireless communication systems are rapidly enhancing together with new 

technologies and algorithms being developed. These innovations can be used to upgrade 

existing developments, enhance the quality and improve data rate. One of the methods for 
increasing system noise immunity is channel coding. 

Modern communication systems employ several coding algorithms, including polar 

codes. Polar coding is a relatively new method of error-correcting coding proposed by Arikan 

in 2008 [1].  

Polar codes hold great promise in the development of communication systems, due to 

their simplicity and ability to bring the data rate closer to the Shannon limit, that is, to the 

boundaries of error-free data transmission with noise interference.  

Polar codes replaced convolutional codes and were applied in the 5G New Radio (NR) 

communication systems [2, 3], namely in channel coding for downlink and uplink 

communication channels in information control channels in the enchanted mobile broadband 

(eMBB), massive machine-type communications (mMTC), and ultra-reliable low latency 
communication (URLLC) scenarios [4]. In particular, they are used in the broadcast channel 

(BCH), as well as in the service information transmission channels: downlink control 

information (DCI) and uplink control information (UCI) [3]. 
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2 Constructing polar codes 

Polar codes are non-systematic block codes with N = 2n (2, 4, 8, etc.) length of a codeword. 

As in block coding, the process of constructing a codeword in polar coding is reduced to 

multiplying message vector u by generator matrix G. 

 d = uG,                                                                 (1) 

where u is a sequence of bits arriving at the multiplier input. 

Arikan matrix [5] is the basic generator matrix (2,2): 

 

1 0

1 1

 
  

G

.                                                (2) 

This is a generator matrix for polar coding, since higher-order matrices are generated 
from it. It should be noted that regardless of the order, all the formed matrices will be square, 

that is, having the equal number of columns and rows. 

The coding procedure is performed as follows: 

 
1 2 1 2 1 2 2

1 0
[  ] [  ] [  ]

1 1
d d u u u u u    

 
  

d

.                             (3) 

In this procedure, d1 and d2 are output channels, while u1 and u2 are input channels. Thus, 

one can see that information about channel u2 is contained in both d1 and d2, while only 

channel d1 contains information about u1. It means that channel u2 is more reliable than u1, 

since there is the information about u2 in both output channels, while the information about 

u1 is only in one of them. Such an operation is called polar transformation, which means that 
after the channel is polarized, one channel becomes more noise-immune, and the other one 

— less. This procedure is shown in Figure 1 

 

Fig. 1.  Polar transformation. 

A generalized data transmission channel in a polar-coded system is shown in Figure 2 

Data stream u arrives at the multiplier block, where it is multiplied by generator matrix GN, 

after which codeword d is formed. Data stream r = [r1, r2, …, rN] arrives at the receiving side 

after modulation and passing the radio wave propagation channel. Vector r values are 

estimates of the log-likelihood ratio (LLR) [6]. LLR is a natural logarithm of the likelihood 

ratio of the fact that the received symbol corresponds to the bit zero value to the fact that the 

received symbol corresponds to a single value: 

 

( | 0)
ln

( | 1)

r i

r i

P r u
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P r u





,                                                     (4) 

where Pr is the probability of occurrence of a certain bit, ri are accepted symbol values 

and u are transmitted bits. 
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Fig. 2. Generalized communication channel diagram. 

3 Polar coding 

The reliability of a channel in a polar-coded system depends on the number of check bits 

formed with its help. 

The idea behind polar coding is to freeze the least reliable channels. It means that we will 

transmit the so-called frozen bits through them, that is, bits with a constant value, for 

example, 0. If the codeword length is N, and the message length is K, then according to this 

principle, N-K bits will be frozen. The encoding procedure is described by the expression: 

 1 1[  ...   ... ]N K Kf f m md G
,                                              (5) 

where fi= 0 are frozen bits and mk are message bits. 

Polar coding can be represented in three ways: using a generator matrix, using a code tree 

and as a block diagram. Each of the methods gives the same result and any of them can be 

used when encoding. All examples are given for N = 4 codeword length. 

Figure 3 shows encoding algorithm thru code tree. 

u0 u1 u2 u3

[u0+u1  u1] [u2+u3  u3]

d = [u0+u1+u2+u3 u1+u3 u2+u3 u3] 

 

Fig. 3. Encoding thru code tree. 

where uN are transmitted bits, and d is a codeword. 

The circles in the above diagram are called vertices, and the rows are called generations. 

The bottom row is the youngest generation; the younger vertices are connected to the older 

ones and are their descendants. 

Figure 4 shows encoding algorithm using a block diagram. 
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Fig. 4. Encoding with help of block diagram. 
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Encoding that employs a generator matrix is written as 

0 1 2 3

1 0 0 0

1 1 0 0
[    ]

1 0 1 0

1 1 1 1

u u u u  

 
 
 
 
  

d uG

    

0 1 2 3 1 3 2 3 3[    ]u u u u u u u u u     
                                 (6) 

Typically, encoding thru code tree and encoding with help of a block diagram are used to 

visualize the polar coding algorithm, while encoding using a generator matrix shows the 

mathematical representation of codeword constructing. Each of the encoding options gives 

the same result at identical parameters. In practice, polar coding is performed using special 

high-speed algorithms. 

4 Polar decoding 

The polar code decoding algorithms are based on the sequential interference compensation 

SC (successive cancellation) approach [7]. The basic algorithm is the algorithm of the same 

name. In addition, there are SCL (successful cancellation list) [8] and SCS (successful 

cancellation stack) [9] algorithms that demonstrate higher efficiency [10]. All three 

algorithms are based on a similar principle: sequential tree traversal and compensation of bit 

operations. 

In all three algorithms, the input data are "soft" estimates of the accepted symbols: log-

likelihood ratio or LLR. 

4.1 The SC algorithm 

The simplest decoding algorithm is SC, because a single decision is made in each iteration 

in this algorithm. Decoding is performed over a number of iterations. Their number coincides 

with the number of code tree branches, excluding the younger generation of descendants. For 
each vertex, one performs the following actions: 

1. Recalculating values for the left descendant (the left incoming branch of the vertex) 

based on the input values of L (LLR). 

2. Decision-making for the right descendant.  

3. Recovering the codeword. 

Let us take a detailed look at each stage. Let a1...aM be LLR values arriving for the left 

descendant, while b1...bM — LLR values arriving from the right descendant. The value of M 

depends on the generation of branches under consideration. So, in the second generation M=1 

(one value arrives at the input from each descendant), in the third M =2, etc. 

Figure 5 provides an explanation of the first decoding stage. 
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f (L1:N/2, L1+N/2:N) 

L = [L1, L2,    LN]

N/2 value  

Fig. 5. Decision-making for the left descendant in the older generation. 

The first stage reduces to making decisions for the left descendant of the M-th order. It 

can be represented as follows: 

 minsum(a1:M,b1:M)=[minsum(a1,b1), minsum(a2,b2), …, minsum(aM,bM)],              (7) 

where minsum is the operation of the minimum approximation sum [11]. 
In the following, let us denote the minsum function as f. 

 ( , ) sign( ) sign( ) min( , )f a b a b a b   ,                                          (8) 

where sign is the operator for number sign generation and min is the minimum value of a pair 

of numbers. 

The second stage is the recalculation of values based on the right descendant. This 

procedure is shown in Figure 6. 

g(L1:N/2, L1+N/2:N, û1:N/2) 

N/2 bits

û1:N/2 N/2 value

 

Fig. 6. Decision-making for the right descendant in the older generation. 

The second stage, that is, making a decision for the right descendant in the older 

generation, can be described as follows: 

 g(a1:M,b1:M,û1:N/2) = [g(a1,b1,û1), g(a2,b2,û2), …, g(aM,bM,ûN/2)],                    (9) 

where û is a "hard" solution deduced from LLRs recalculated in the left branch. û value can 

be deduced from the LLR sign: LLR>0 corresponds to the bit value equal to 0, and vice versa, 

and LLR<0 corresponds to the bit value equal to 1. 

The calculation of each conditional sum of two LLRs and the bit estimated in the previous 

metric is performed using the function 

 ( , , ) (1 2 )g a b c b c a    ,                                              (10) 
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where a is the LLR value of the left branch; b is the LLR value of the right branch; c is the 

bit value estimated by the left descendant. 

Thus, if the values of bit û in the left branch are 0, then a and b add up; and if value û=1, 

then a is subtracted from b. 

The next step is the procedure of recovering a codeword shown in Figure 7. It is executed 

in all iterations except the last one. This stage is equivalent to polar transformation, that is, 

coding. 

N/2 bit in each metric

û1 û2

[û1+û2 û2]

N bits

 

Fig. 7. Codeword recovering. 

In the next iteration, the same steps are repeated for the next branch in traversal order of 

the graph. 

The general code tree illustrating the decoding algorithm for a codeword of size N = 4 is 

shown in Figure 8, where numbers under the operations indicate the order of their execution. 

r = [r1 r2 r3 r4]

Ll = [f(r1,r3), f(r2,r4)]

f(L1,L2) g(L1,L2,û1)

u1 u2 u3 u4

Lr = [g(r1,r3,û1+û2), g(r2,r4,û2)]

f(L3,L4) g(L3,L4,û3)

û3 û4û1 û2

1

2 3

4

5 6

 

Fig. 8. SC decoding algorithm. 

4.2 The SCL algorithm 

In polar coding, the SCL decoding algorithm is used in conjunction with cyclic redundancy 

check (CRC) [9, 12, 13]. This is a kind of cyclic codes that makes it possible to detect errors, 

but not to correct them. CRC is used in communication systems to control the integrity of 

packets. 

The transmission of CRC data packets consists of the original message and check bits 

that are added from the right. The check bits are obtained as the remainder of dividing the 
message polynomial by the generator code polynomial [14]. This operation is performed on 

a shifting register, which allows significantly reducing the computational complexity. 
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When constructing a communication channel model with polar coding, the SCL algorithm 

was used; this method employs two "hard" solutions for each path, while the path is the 

connection of two descendants, the younger and the older. Several solutions are selected both 

for the left and right descendant. As a result, we obtain a group of codewords; the decision 

on the correctness of a codeword is made by calculating the checksum. The CRC calculation 

is performed as follows: decoded codewords are checked by the generated checksum 

polynomial, if a parity bit obtained by the receiver does not match the one calculated by the 

message, then the next codeword is checked.  

The SCL decoder itself is a set of the N-th number of SC decoders. The SCL decoder 

circuit is shown in Figure 9. 
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Fig. 9. SCL decoder. 

In this algorithm, the LLR values as well as path metrics are calculated in each iteration. 

Two types of metrics are considered here: path metric (PM), that is, the total metric, and 

decision metric (DM). 

The square blocks in Figure 9 represent SC decoders. After passing each SC decoder, two 

decisions are made: that the estimate of ûi is equal to 1 and that it is equal to 0. For each 

value, we should deduce DM and add current PM. DM is calculated by the following rules: 

1. If bit estimate is Li≥ 0, then ûi = 0 has DM = 0 and ûi = 1 has DM = |Li|. 
2. If bit estimate Li< 0, then ûi = 1 has DM = 0 and ûi = 0 has DM = |Li|. 

3. If ui is frozen, then DM = 0 at Li ≥ 0, and DM = |Li| at Li < 0. 

5 Distinctive features of polar coding as differential encoder 

One of the coding methods is a differential encoder. In essence, it is modulo two addtion to 

all arriving values with a shift of one character. Let us assume that the input data stream to 

the encoder takes the form u = [u1 u2 u3], then the encoded data stream is d = [u1 u1+u2 

u1+u2+u3]. The differential encoder circuit is shown in Figure 10. 

Z
-1

1 0 1 1 0 1 0 1 1 0 1 1

 

Fig. 10. Differential encoder circuit. 
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The differential decoder also adds modulo two to all the received data with a shift of one 

character. Let the data stream x = [u1 u1+u2 u1+u2+u3] arrive at the decoder input, then the 

decoded data stream takes the following values: u = [u1 u1+u2+u1 u1+u2+u3+u1+u2]. After 

performing modulo two addition to each element of sequence u, we get the following form 

of the decoded message: u = [u1 u2 u3]. The differential encoder circuit is shown in Figure 

11. 

Z
-1

0 1 1 0 1 1 1 0 1 1 0 1

 

Fig. 11. Differential encoder circuit. 

One important feature of polar coding is the ability to decode messages with a bit error 

probability close to 100%, that is, when almost completely or completely inverted bits arrive 

at the decoder. This is due to the encoding algorithm that has properties of differential 

encoding. 

As an example, we take sequence r = [r1, r2, r3, r4]. Let us perform decoding for the left 
descendant: this procedure is shown in Figure 12. 

r = [r1 r2 r3 r4]

Ll = [f(r1,r3), f(r2,r4)]=[L1, L2]

f(L1,L2) g(L1,L2,û1)

u1 u2

û1 û2

 

Fig. 12. Decoding by the left metric. 

The first stage is the following estimation:  

 Ll  = [f (r1,r3), f (r2,r4)] = [L1, L2],                                         (11) 

where f (r1,r3) is the minimum sum between r1 and r3; 

f (r2,r4) is the minimum sum between r2 and r4. 

Next, we estimate the first bit by the youngest left descendant: 

 û1 = [f (L1,L2)].                                                          (12) 

The final stage is to estimate the second bit by the youngest right descendant: 

 û2 = L2 + (1-2∙ û1)∙L1                                                                                  (13) 
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If we represent the above operations as differential coding, given that r1 = u1+ u2+ u3+u4, 

r2 = u2+ u4, r3 = u3 + u4, r4 = u4, then the differential coding process takes the following form: 

Ll = [r1+r3, r2+r4] = [u1+ u2+ u3+u4+ u3 + u4, u2+ u4+ u4] = [u1+ u2, u2] 

û1 = u1+ u2+u2 

It can be noticed from the foregoing that the minimum sum matches the process of 

differential decoding. 

Knowing the estimate of the previous bit, it is possible to recover the next one: in this 

case, by estimating û1, one can get the estimate of û2. 

The bit inversion can be represented as follows: d̄1=u1+u2+u3+u4+1, d̄2= u2+u4+1, d̄3= u3+ 

u4+1, d̄4= u4+1. Then the bit estimation process has the following form: 

1 3 2 4[ ,  ]lL r r r r   
 1 2 3 4 3 4 2 4[ 1 1,  1u u u u u u u u          

                   

 4 1 2 21] [ ,  ]u u u u   
  

 û1 = u1+u2+u2  

It can be seen that the result of decoding inverted bits matches error-free bit decoding. 

From the above example, it is apparent that the process of polar coding and decoding can 

recover the inverse data stream, but the last inverted bit is decoded incorrectly. The 

introduced redundancy and checksum checking process in the SCL algorithm allows 

overcoming this decoding error. 

6 System model 

The diagram of the communication channel simulation using polar coding is shown in Figure 

13. 

Message Coder

Erasure channel

Method of error vector 

formation

Channel type with 

erasures

LLR 

calculation
DecoderBER

Error probability

 

Fig. 13. Communication channel diagram. 

The simulation was carried out in a binary erasure channel for the following code 

parameters: (N,K) = (64,512), (N,K) = (128,256), (N,K) = (512,1024). 

The error vector in the erasure channel is formed according to the Bernoulli distribution. 

Error probability p is used as the input data. 
In the implemented simulation, we used an adaptive calculation of the number of errors 

for the erasure channel. The number of errors is equal to [15]: 

 er inN N p ,                                                          (14) 

where Nin is the size of the input data vector. 
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Figures 14, 15, 16 show the dependencies of BER on the error probability for different 

encoding rates. Since binary alphabet characters, that is, "1" and "0", are transmitted in the 

channel, the probability of erasure equal to 1 corresponds to a complete bit inversion.  
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Fig. 14. Error probability at code rate of 64/512. 
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Fig. 15. Error probability at code rate of 128/256. 
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Fig. 16. Error probability at code rate of 896/1024. 

The resulting graphs take the form of a "bell", so the dependencies are symmetric with 
respect to the central error probability of 0.5, that is, the error probability of 0.9 matches 0.1, 

which means that the decoder can decode a message with an error probability close to 1. This 

effect is associated with the feature of the differential polar code discussed in paragraph 5. 

One can notice that the lower the code rate is, the narrower the graph becomes, and the 

edges take a flat appearance. This corresponds to the classical concept of the error correction 

capability: the lower the code rate is, the greater the number of bit errors that can be corrected, 

and vice versa. Thus, at a low code rate, the dependence tends to zero with a higher error 

probability at the input compared to the average and high code rates. 

7 Conclusion 

This paper presents polar coding as differential. The algorithms of polar and differential 
coding and data transmission through a binary erasure channel have been investigated. The 

comparison of two algorithms and the results obtained in Figures 14–16 make it clear that 

the distinctive feature of polar coding as a differential encoder allows decoding messages, 

even with the error probability close to 100%. Also, the error correction capability depends 

on the code rate: so, for a low code rate, the bit-error probability decline to zero begins at a 

higher value of the error probability compared to the average and high code rates. 
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