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Abstract. The work is devoted to the issues of non-stationary heat 

transfer. The article presents a solution for the distribution of the 

temperature field in an infinite rectangular plate with an adiabatically 

isolated side. As a result, an analytical expression of the plate temperature 

distribution is obtained in the form of a series containing trigonometric and 

exponential functions. The paper also considered special cases when the 

internal thermal resistance of thermal conductivity is greater and when the 

external resistance of heat output is less. Special cases were interpreted 

physically. One of the special cases leads the problem to a problem with 

boundary conditions of the first kind, when the surface temperature is 

constant, which indicates the reliability of the results obtained. 

1 Introduction 

The creation of installations that are optimal in terms of energy consumption for today is 

unthinkable without a deep study of the thermophysical processes that take place in these 

installations. 

An impressive layer of work is devoted to the study of heat exchange processes. In 

particular, works describing non-stationary heat exchange in modern heat exchange 

elements of heat exchange equipment are of particular scientific interest [1-3]. 

It is known that the propagation of heat in solids is described by a system of differential 

equations of thermal conductivity. Finding a solution to problems of this class is associated 

with many mathematical difficulties. At the same time, there are various methods for 

solving classical boundary value problems of non-stationary thermal conductivity and 

generalized type problems [4-6]. 

The paper considers the case of an adiabatically isolated wall. Which leads to the fact 

that the task is asymmetric. Several papers have been devoted to the calculation of 

temperature fields in the presence of adiabatic isolation [7, 8]. The solution of non-

symmetric problems has a very complex and large result, the practical application of which 

is associated with great difficulties. Most of the solutions found in the literature are 

obtained for the so-called symmetric heat exchange conditions, when the maximum 

(minimum) temperature of the system is in the geometric centre of the body. In this paper, 

by applying the method of separation of the transients, the nonstationary problem of 
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temperature distribution in an unconstrained plate under boundary conditions of the third 

kind was solved. As a result, a fairly simple analytical solution of the temperature field 

distribution is obtained. At the same time, it was assumed that the thermophysical 

characteristics of the substance do not change during the cooling process. 

2 Main Part 

Consider a homogeneous plate with a thickness δ with constant physical characteristics (fig. 

1). At the same time, at the initial moment of time t = 0, the temperature in the plate is 

evenly distributed and equal to To. 

 

Fig. 1. Rectangular plate with adiabatically insulated wall. 

To find a solution to the problem, it is necessary to solve a one-dimensional differential 

equation of thermal conductivity 
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To begin with, let's introduce a new variable 
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In this case, equation (1) is simplified 
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We will look for a solution in the form of a product of two functions: one of which X(x) 

is a coordinate function, the other is Y(τ) –time 

)()(),(  YxXxT =                                 (7) 

Applying the Fourier method, we equate both functions to the constant k2. As a result of 

this action, we obtain linear differential equations 

02 =+ XkX                                 (8) 

02 =+ YkY                                (9) 

The solution of equation (8) will be found in the form 

kxBkxAxX sincos)( +=                             (10) 

The solution of the second equation (9) is found in the form 

2)( kCexY −=                    (11) 

It follows from condition (3) that 

0)()( =+  hXX                            (12) 

and from condition (4) it follows that 

0)0( =X                              (13) 

First, let's use condition (13) 

00cos0sin =+− BkAk                         (14) 

It follows from it that B = 0. Then the solution of equation (10) will be found in the 

following form 

kxAxX cos)( =           (15) 
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Now we apply the second boundary condition (3) 

0cossin =+−  kAhkAk                   (16) 

Where from 
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Transform the right part 
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Denote the product kδ by μ. Then the expression (18) will take the form 
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The dimensionless number of Bio. 

Equation (19) itself with constant coefficients is characteristic or transcendental. Thus, 

we obtain a set of functions satisfying the boundary condition 
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As a result, we get a set of temperature functions 
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To satisfy the boundary condition (2), it is necessary to put the numbers Mn equal to the 

generalized Fourier coefficients 
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Substituting now the values of Mn in (22), we obtain a formula for determining the 

temperature field in an asymmetrically cooled homogeneous plate 
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In dimensionless form, equation (24) is written as 
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Where 
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The Fourier criterion. 

We will conduct a study of the behavior of the temperature field of the plate. In the case 

when the number Bi tends to infinity, it means that the intensity of external heat transfer is 

infinitely high. Which leads to the fact that the surface temperature of the plate is equal to 

the ambient temperature. In this case, we obtain a problem with boundary conditions of the 

first kind when the surface temperature is constant. 

3 Conclusions 

In this paper, an analytical expression was obtained for finding the temperature field in a 

plate of infinite length with an adiabatically isolated side. According to the obtained 

analytical expression, the temperature field of the plate during cooling at any time has the 

form of an asymmetric curve in the form of a cosine and decreases in time according to the 

exponential law. Special cases were also considered. To do this, the resulting solution was 

investigated for small and large values of the Bio number. The reliability of the results is 

confirmed by the fact that one of the particular cases leads the problem to a problem with 

boundary conditions of the first kind, when the surface temperature is constant. 
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