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Abstract. A basic mathematical model of the deformation of a large elastic 

element of a small spacecraft in its plane is constructed. Deformations are 

caused by a temperature shock after a small spacecraft leaves the Earth’s 

shadow on the solar portion of the orbit. The model is used to conduct a 

computational experiment with the aim of assessing perturbations acting on 

a small spacecraft due to temperature shock. The temperature distribution 

during thermal shock is described by a one-dimensional model of thermal 

conductivity. The classical theory of thin plates is used to determine the 

deformations. The results of the estimation of disturbing factors are obtained 

as a result of a computational experiment for a model small spacecraft. These 

results indicate the need to compensate for the impact of temperature shock 

for small technological spacecraft. The data obtained can be used in the 

design of small space-craft for technological purposes. Keywords: small 

spacecraft, temperature shock, disturbing factor. 

1 Introduction 

Current trends associated with the miniaturization of space technology contribute to the 

widespread use of small spacecraft in various fields of science, engineering and technology. 

The small spacecraft have proven themselves in remote sensing of the Earth from space (for 

example, «Aist – 2D» [1, 2]), scientific experiments in space (for example, Lomonosov [3]) 

and other areas due to the low cost and short term of the space project. The small spacecraft 

plan to use for the development of space technology in the near future. The middle-class 

technological spacecraft series (for example, Foton [4, 5], Bion [6, 7], SJ [8, 9]) can soon be 

supplemented with small spacecraft (for example, the Vozvrat – MKA project [10]). 

An important requirement for technological spacecraft is the observance of 

microacceleration conditions [11, 12]. These conditions determine the feasibility of 

implementing one or another gravitationally sensitive process on board the spacecraft., Fig. 

1 is presented [13, 14] to compare the level of micro-accelerations required and achievable 

on board the international space station. It shows how the capabilities of modern space 

technology lag behind the needs of space materials science. Therefore, ensuring the required 
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level of microacceleration is an important and urgent task when creating new space 

technology for over forty years. 

 

Fig. 1. There are the required (curve 1) and attainable at the international space station (curve 2) level 

of micro-acceleration (cited from [13]). 

The use of small spacecraft for the needs of space materials science will be associated 

with the solution of a specific problem. The relatively small mass of a small spacecraft in the 

presence of large elastic elements in its composition is the reason for the significant influence 

of oscillations of elastic elements on the orbital motion of the spacecraft. Tests of promising 

new ROSA solar panels on the international space station [15, 16] confirmed the seriousness 

of this problem. Periodic immersion of a small spacecraft in the shadow of the Earth and exit 

from it contribute to the occurrence of temperature shock. This blow causes disturbing 

factors. Their action violates the favorable conditions for micro-acceleration. Therefore, in 

this paper, we develop a model for the deformation of the elastic element of a small spacecraft 

in its plane. 

It is precisely the longitudinal force that makes the largest contribution to the field of 

micro-accelerations during temperature shock (Fig. 2) as shown by preliminary studies [17]. 

 

Fig. 2. There is the dependence of the longitudinal force at the attachment point of the elastic element 

to the casing of a small spacecraft on time during temperature shock (cited from [17]). 

In this case, the dynamics of the temperature field for various layers of the elastic element 

when a small spacecraft leaves the Earth’s shadow is shown in Fig. 3 [17]. 
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Fig. 3. There is the temperature change dynamics of the layers (1–4) of the elastic body of a small 

spacecraft (cited from [17]). 

There is the question remained open of the need to take into account the longitudinal 

inertial force arising from the comprehensive expansion of the elastic element of a small 

spacecraft after it leaves the Earth’s shadow in paperwork [17]. Therefore, we will retain the 

validity of the results of solving the one-dimensional heat conduction problem under thermal 

shock (Fig. 3) and estimating the internal longitudinal force N (Fig. 2) and analyze the 

temperature strain of the elastic element in its plane more carefully 

2 The deformation model of an elastic element in its plane 

Let us consider the effect of temperature shock on a large elastic element of length a when a 

small spacecraft leaves the Earth’s shadow on a part of the orbit illuminated by the Sun (Fig. 

4).  

 

Fig. 4. There is a scheme of thermal shock of a large elastic element when leaving the Earth’s shadow 

(х0 y0 z0 is the main connected coordinate system). 

We believe that at the moment when the small spacecraft left the Earth’s shadow, the 

elastic element had a flat undeformed equilibrium shape and was uniformly heated up to 200 

K. This formulation fully corresponds to the one-dimensional heat conduction problem 

solved in [17], the results of which are presented in Fig. 3. There is a comprehensive 

expansion of a large elastic element and the loss of stability of a rectilinear undeformed flat 

shape from due to temperature shock, when leaving the Earth’s shadow. Let us analyze the 

motion of various points of the elastic element. We will choose 7 different points from the 

following considerations (table 1) for this purpose. 
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Table 1. There is Features of the Coordinates of the Points Selected for the Analysis of the Elastic 

Element of a Small Spacecraft. 

Point x coordinate y coordinate 

1 a/2 0 

2 a/2 “+” 

3 a/2 “–” 

4 < a/2 “–” 

5 < a/2 “+” 

6 > a/2 “–” 

7 > a/2 “+” 

The point 1 has a single acceleration component 11 ww z


= and is associated with the loss 

of stability of the flat shape of the elastic element. The points 2 and 3 lying on the midline 

have two components of acceleration associated with loss of stability and comprehensive 

expansion in the direction of the у axis. A similar picture would be observed for points lying 

on the x axis, except for the point 1. They have two acceleration components associated with 

loss of stability and comprehensive expansion in the direction of the x axis. The points that 

do not lie on the midlines have three components of acceleration associated with loss of 

stability and comprehensive expansion in the directions of the x and y axes. 

We will build a basic model of deformation of the elastic element of a small spacecraft in 

its plane (Fig. 5). 

 

Fig. 5. There is the deformation model of an elastic element during temperature shock in the xy plane. 

The following simplifying assumptions were made. 

1. The elastic element is a uniform rectangular plate. 

2. Boundary conditions: three free edges and one edge are rigidly embedded in the body 

of a small spacecraft. 

3. The points of the elastic element located to the left of 2/ax =  (Fig. 5) do not move. 

4. The points of the elastic element located to the right of 2/ax =  move freely. 

5. The temperature of the points of the elastic element depends only on the z coordinate 

(Fig. 4). 

6. The deformation of the points of the elastic element in the direction of the y axis is 

symmetric with respect to the x axis. 

Fig. 5 shows the distribution of the elementary volumetric force dN acting on each point 

of the elastic element to the left of the line 2/ax = . It is the same for each point and, 

according to [15, 16], is equal to: 

( ) ( ) ( )( ) dzdydxzTtzTEtdN 0,, 0−= ,                                           (1) 

Where   is the coefficient of linear expansion of the material of the elastic element; E 

is Young's modulus; ( )tzT ,  and ( )tzT ,0  are respectively, the final and initial temperature 

distribution of the elastic element. 
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This part of the elastic element experiences a longitudinal compression deformation in 

the x axis direction due to the rigidly fixed left edge of the elastic element. 

There are no internal forces in the direction of the longitudinal axis x in this part since the 

points of the elastic element located to the right of  2/ax =  move freely. Fig. 5 shows the 

geometric location of the points of the elastic element having an arbitrary coordinate 

axa  *2/ , as well as the diagram of the displacements ),( txx  of these points in the 

direction of the x axis. This plot represents a uniform distribution of the displacements of the 

indicated points in the direction of the x axis since ),( txx  does not depend on the y 

coordinate. In the general case, ),( txx  should also depend on z. However, the thickness of 

the elastic element is significantly less than its other two sizes in the problem under 

consideration. Therefore, the dependence on z can be neglected. The values ),( txx  

increase from 0 at 2/ax =  to the maximum value for the points of the free right edge of the 

elastic element ( ax = ) as the x coordinate increases. We use the equation of static 

equilibrium [17, 18] to evaluate them: 

( ) ( ) ( ) ( )( ) 







−−= 

−

 dzzTtzTtxxEbtxN

h

h

2/

2/

0 0,,,,  ,                                (2) 

Where b is the width and h is the thickness of the elastic element. 

( ) ( )  .2/,0,,1
2

),(

2/

2/

0 axafordzzTtzT
a

x
txx

h

h

−







−= 

−

                     (3) 

Then, we can obtain the deformation field ),( txx  of the points of the elastic element of 

the small spacecraft in the x axis direction using the temperature distribution (Fig. 3) and 

expression (3). This field is shown in Fig. 6. 

 

Fig. 6. There is the dynamic field of displacements in the x-axis direction of the points of the elastic 

element of a small spacecraft in the process of thermal shock. 

An elastic element 5 m long, 0.5 m wide and 6 mm thick was considered. Fig. 6 shows 

that the displacements of the points of the elastic element the coordinate of which is less than 

mx 5,2=  are equal to zero. The lines mx 5=  (the right free edge of the elastic element in 

Fig. 5) correspond to the maximum displacements. A linear dependence ),( txx  on x is 
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observed in each section of the figure perpendicular to the time axis. It corresponds to 

expression (3). A nonlinear dependence is observed corresponding to the temperature 

distribution (Fig. 3) in cross sections perpendicular to the x axis. 

3 Evaluation of the longitudinal force of inertia 

Let us further evaluate the inertia force x


 arising due to the expansion of the elastic element 

in the direction of the x axis caused by thermal shock. Its module is equal to: 

( )dxtxx
a

m
a

a

x ,

2/

=      ,                                                  (4) 

Where m is the mass of the elastic element; ( )txx ,  is acceleration of its points in the 

direction of the longitudinal axis x. 

We obtain ( )txx ,  using the expression (3) to use the expression (4): 

( )
2

22
2

2

2

2,
t

x
x

tx

x
x

x

x
txx




+




+




= 

  ,                                        (5) 

Where x  is the velocity of the points of the elastic element in the direction of the x axis. 

There is in the expression (5), according to (3): 0
2

2

=




x

x . Therefore: 

( )
2

22

2,
t

x
x

tx

x
txx




+




= 

  .                                                (6) 

Imagine the x coordinate of the points of the elastic element taking into account 

displacements in the following form: 

( ) ( )txxxtxx ,, 0 += , 

where х0 is the initial value of the coordinates of the points before deformation. 

Then we have: 

( ) ( )
( )

( )
( )
t

txx
txx

x

txx
txxtxx




+




==

,
,

,
,, 

   

Therefore: 

( )
( )

( )
t

txx

x

txx
txx








−

=
,

,
1

1
, 



 .                                      (7) 

We obtain substituting the expression for x  (7) into the expression for acceleration 
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( )txx ,  (6): 

( )
2

22

1

1
2,

t

x

t

x

x

xtx

x
txx




+








−




= 




 .                                     (8) 

Further, we find the partial derivatives of the displacements of the points of the elastic 

element in the direction of the x axis using expression (3): 

( ) ( )  dzzTtzT
ax

x
h

h


−

 −=



2/

2/

0 0,,
2
 ; 

                                     
( )

dz
t

tzT

a

x

t

x
h

h


−












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


2/

2/

,
1

2
 ;                                     (9) 

( )
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t

tzT

a

x

t

x
h

h


−












−=


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2/

2/

2

2

2

2 ,
1

2
 ; 

( )
dz

t

tzT

atx

x
h

h


−






=




2/

2/

2 ,2
 . 

We substitute these expressions in (8) and use the temperature field distribution shown in 

Fig. 3. As a result, we obtain the dynamic acceleration field in the x axis direction which is 

shown in Fig. 7.  

 

Fig. 7. There is the dynamic acceleration field of the points of the elastic element of a small 

spacecraft in the direction of the x axis during temperature shock. 

Fig. 7 shows a pronounced dynamic part of the transition process. It is expressed in a 

quasilinear spasmodic increase in accelerations ( )txx ,  followed by a less intense decrease 

and transition through zero. At the same time, a temperature balance is practically reached 

by the end of the tenth second characterized by constant values of displacements x  relative 

to the initial flat undeformed position and practically zero values of accelerations  x . 

We will further evaluate the inertia force x  using expression (4) and the dynamic 

acceleration field shown in Fig. 7. A graph of the dependence of the inertia force x  on time 
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for the mass of an elastic element of 50 kg is shown in Fig. 8. 

 

Fig. 8. There is the dependence of inertia Φx on time during temperature shock. 

The inertia force x  in contrast to the force N (Fig. 2) changes sign passing through zero. 

It is explained by the fact that the sign of the force N depends on the sign of the temperature 

difference (expression (1). The temperature difference was always positive and did not 

change its sign since the elastic element only heated during the considered time interval of 

10 s. The sign of inertia x  depends on whether accelerated or delayed expansion is 

observed. If accelerated expansion is observed in the most dynamic part of the transient 

process, then its speed constantly decreases. Therefore, at some time intervals the force N 

and x  are directed in different directions and in others – in one direction. However, they 

are directed in different directions in the most dynamic part of the transition process.  

4 Conclusions 

The basic deformation model of the elastic element of a small spacecraft in its plane is 

constructed taking into account the accepted simplifying assumptions. The longitudinal 

inertia force arising from temperature shock was estimated with-in the framework of the 

constructed model. The obtained values of the longitudinal inertia force make up about 10% 

of the values of the longitudinal internal force N which was adopted as the main perturbing 

factor for developing the co-trol law in [17]. This control law is designed to compensate for 

the effect of temperature shock on the level of micro-accelerations. The estimates carried out 

in the presented work still leave open the question of taking into account the longitudinal 

inertia force. On the one hand, favorable conditions can be violated at its maximum value. 

However, on the other hand, its influence is an extremely short-term phenomenon that fits 

into the framework of the most dynamic part of the transition process. 

The issue of accounting   has a meaning from a theoretical point of view be-cause a more 

minimal value of microaccelerations will be achieved than without taking it into account in 

this case. This accounting depends on the capabilities of the real executive bodies of the 

orientation and motion control system of a small spacecraft from a practical point of view. It 

most likely will be possible and sufficient to adjust the initial value of the thrust of the 

executive body in most cases. At the same time, the real spread of this thrust may not even 

allow compensating   even at the initial moment of time not to mention its dynamics.  
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