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Abstract. The main features of the fuzzy sets and their corresponding 

membership functions were presented in terms of the fuzzification process 

and further by the de-fuzzification operation. The convexity of the 

𝛼 −(alfa) cuts of the fuzzy sets is used in the decomposition of the fuzzy 

sets. The alfa cuts of the fuzzy sets were defined precisely in terms of the 

pair of functions and their lowest upper and greatest lower bounds. The 

convex combination of the intervals of the sub-regions of the fuzzy sets 

and their membership function were considered as the points of the de-

fuzzified values of the fuzzy sets. The methods of the de-fuzzification to 

the crisp sets were presented by the formulas to find the defuzzification 

regions and de-fuzzified values. The compositional concepts of the 

inference as the expansion of the extension principle were introduced to 

formalize further the fuzzy reasoning by the set of fuzzy rules based on the 

approximate reasoning. 

1 Fuzzy membership function and the defuzzification to the 
crisp set 

Let 𝑈 be a set called as a universe  and 𝐹 ⊂ 𝑈 with the corresponding elements such as 𝑥 ∈
𝐹, 𝑥 is either affiliated with or not affiliated with 𝐹 . We can define a characteristic function 

for 𝑥 ∈ 𝐹 by the set of the ordered pairs (𝑥, 0), 𝑥 ∉ 𝐹 or  

(𝑥, 1), 𝑥 ∈ 𝐹, correspondingly to the standards of the classical set.  

The characteristic function  is the function from 𝐹 to{0,1}: 

𝜙𝐹(𝑥) = {
1, 𝑥 ∈ 𝐹
0, 𝑥 ∉ 𝐹

, where {0,1} is called the evaluation set. The value of 0 is associated 

with non-membership and the value 1 is associated with the membership. 

In contrast to the conventional classical set theory, we can define a fuzzy set where the 

membership value ascribes  a degree to a specified  element affiliated with the set. 

Definition. If the evaluation set is the closed interval of the real numbers such that 

[0,1] ∈ ℝ ,then 𝐹 is defined as the fuzzy set and the function 𝜙𝐹(𝑥) is the grade of 

membership of 𝑥 ∈ 𝐹: 𝜙𝐹: 𝐹 ⟶ [0,1] ∈ ℝ. 

The fuzzy set 𝐹 is the set of ordered pairs such as 𝐹 ≔ {𝑥, 𝜙𝐹(𝑥)}, 𝑥 ∈ 𝑈. 
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The membership function of the fuzzy set 𝐹 ⊆ 𝑋 is denoted as 𝜙𝐹(𝑥) and defined as it 

is in [13, 14,15] which can be interpreted by the following: nearer the value of the grade of 

membership to 1 then 𝑥 is more affiliated to 𝐹 : 

𝜙𝐹(𝑥): 𝐹 ⟶ [0,1] ∈ ℝ. 

If the membership function 𝜙𝐹(𝑥): 𝐹 ⟶ Φ[0,1] ∈ ℝ, where Φ[0,1] ∈ ℝ  is a family of 

the closed intervals of the real numbers then the membership function represents the 

interval-valued fuzzy sets of F. 

The main features of the membership function comprise of the core, support, and 

boundaries. 

The normalized fuzzy set is the set where the membership function 

 𝜙𝐹(𝑥) = 1. 

If 𝜙𝐹(𝑥) < 1, then such set is a sub-normal fuzzy set. 

Definition. For any elements of the universe the inequality 𝑥 ∈ 𝑋, 𝑥1 < 𝑥 < 𝑥2 upholds 

that 𝜙𝐹(𝑥) ≥ min[𝜙𝐹(𝑥1), 𝜙𝐹(𝑥2)] and such fuzzy set is called the convex fuzzy set. 

The membership function of the convex fuzzy set is strictly increasing and decreasing 

while the values of x are increasing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. 

If the criterion of the convexity of the fuzzy sets is violated, then such fuzzy sets are 

non-convex. 

The figure 1 presents the main features such as support, core, boundaries and the shape 

of the convex fuzzy set and non-convex fuzzy set. 

Definition. The crossover point of the fuzzy set is the point where 𝜙𝐹(𝑥) = 0.5. 

The height of the fuzzy set is the point where the maximum value of the membership 

function reached: 

ℎ𝑔ℎ𝑡𝐹(𝑥) = 𝑚𝑎𝑥𝜙𝐹(𝑥) 

 

Fig. 1. the main features such as support, core, boundaries and the shape of the convex fuzzy set and 

non-convex fuzzy set. 
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The compelling idea of the defuzzification is engaging to the principle to find the point 

where the fuzzy set is converted to the crisp set. 

The defuzzification to the crisp set occurs at the point or region of the domain of the 

fuzzy set where the fuzzy set is transformed into the crisp set. 

One of the methods of the defuzzification is the 𝛼–cut defuzzification method which is 

known as the decomposition method. 

2 𝜶 – cut decomposition method 

Definition. The elements of the fuzzy set where the membership function approaches the 

value to the certain degree of 𝛼 is called the 𝛼–cut of the fuzzy set [13, 14]: 

𝐹𝛼(𝑥) = {(𝑥, 𝜙𝐹(𝑥)), 𝜙𝐹(𝑥) ≥ 𝛼, 𝑥 ∈ 𝑋, 𝛼 ∈ [0,1]}. 

The Figure 2 illustrates the 𝛼–cut of the fuzzy set. 

 

Fig. 2. The 𝛼–cut of the fuzzy set. 

Definition. The fuzzy set is called the power fuzzy set if the fuzzy set represents the 

union of the 𝛼–cuts: 

𝐹𝛼 =∪ 𝐹𝛼 = 𝐹𝛼1 ∪ 𝐹𝛼2 ∪ …∪ 𝐹𝛼𝑛 and 𝐹𝛼(𝑥) = 𝛼𝐹𝛼(𝑥). 

The following theorem represents the defuzzification principle based on the 𝛼–cuts. 

Theorem 1. If the union of the 𝛼–cuts is  

∪𝛼∈[0,1] 𝐹𝛼 = 𝐹𝛼(𝑥) then 𝐹𝛼(𝑥) = 𝛼𝐹𝛼(𝑥) is the power fuzzy set. 

Proof. Let us denote the fuzzy set 𝐹𝛼𝑖(𝑥) = {(𝑥𝑖 , 𝛼𝑖)} ≑
𝛼𝑖

𝑥𝑖
, 𝑖 = 1,2, … , 𝑛. 

Then, according to the definition of the 𝛼–cuts we can represent the fuzzy sets as stated 

above: 

𝐹𝛼1(𝑥) =
𝛼1

𝑥1
+

𝛼1

𝑥2
+⋯+

𝛼1

𝑥𝑛
, 

𝐹𝛼2(𝑥) =
0

𝑥1
+

𝛼2

𝑥2
+⋯+

𝛼2

𝑥𝑛
, 

𝐹𝛼𝑛(𝑥) =
0

𝑥1
+

0

𝑥2
+⋯+

0

𝑥𝑛−1
+

𝛼𝑛

𝑥𝑛
. 
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Here 0 is the empty set and 𝛼1, 𝛼2, … , 𝛼𝑛 are 

 𝛼𝑖–cuts, 𝛼𝑖 ∈ [0,1], 𝑖 = 1,2, … , 𝑛. 

Hence, we can represent the cuts as the union: 

𝐹𝛼1 ∪ 𝐹𝛼2 ∪ …∪ 𝐹𝛼𝑛 = 𝐹𝛼(𝐹𝛼1 ∪ 𝐹𝛼2 …∪ 𝐹𝛼𝑛) = 𝛼𝐹𝛼(𝑥)■ 

Based on the decomposition theorem we can state the following two corollaries. 

Corollary 1. The cardinality of the power fuzzy set is |𝐹| = ∑ 𝜙𝐹(𝑥)𝑥∈𝐹  and the relative 

cardinality is ‖𝐹‖ =
|𝐹|

|𝑥|
. 

Corollary 2. (The inclusion principle): The fuzzy sets 𝐹1, 𝐹2 ⊂ 𝐹(𝑥), 𝐹1 ⊆ 𝐹2 are 

inclusive if for ∀𝑥 ∈ 𝑋, 𝜙𝐹1 ≤ 𝜙𝐹2. 

In a case of the strict inequality the inclusion is strict, too. 

The convexity of the fuzzy set can be extended to the 𝛼–cuts of the fuzzy set. 

Definition: The fuzzy set is convex if for ∀𝑥1, 𝑥2 and small 𝜆 > 0 the membership 

function is determined by the minimum operator: 

𝜙𝐹𝛼(𝜆𝑥1 + (1− 𝜆)𝑥2) ≥ min(𝜙𝐹𝛼
(𝑥1), 𝜙𝐹𝛼

(𝑥2)). 

The fuzzy set is convex if all its cuts are convex in terms of the convexity. 

We can re-define the cuts of the fuzzy sets by the pair of the fuzzy set with reference to 

their lowest upper bound and greatest lower bound defined as it is [13,14, 15, 16, 17, 18, 

19]. 

Definition. 𝛼–cut of the membership function 𝜙𝐹(𝑥) ≥ 𝛼, 𝛼 ∈ [0,1] is given by the pair 

of the functions (𝐼(𝛼), 𝑆(𝛼)) as it is: 

𝐼(𝛼) = {
𝑖𝑛𝑓𝜙𝐹𝛼

(𝑥), 𝛼 > 0

inf 𝑆𝑢𝑝𝑝𝜙𝐹𝛼
(𝑥), 𝛼 = 0

 and 𝑆(𝛼) = {
𝑠𝑢𝑝𝜙𝐹𝛼

(𝑥), 𝛼 > 0

𝑠𝑢𝑝𝑆𝑢𝑝𝑝𝜙𝐹𝛼
(𝑥), 𝛼 = 0

 

Next theorem states the convexity principle of the cuts of the fuzzy sets. 

Theorem 2. The 𝛼–cut fuzzy set 𝐹𝛼(𝑥) = 𝛼𝐹𝛼(𝑥) =∪(0,1] 𝐹𝛼 ,𝐹𝛼(𝑥) = {(𝑥, 𝜙𝐹(𝑥)),

𝜙𝐹(𝑥) ≥ 𝛼, ∀𝛼 ∈ (0,1] ∈ ℝ}, where 𝐹𝛼(𝑥) ≠ ∅, 𝜙𝐹(𝑥): 𝐹𝛼 → [0,1] ∈ ℝ, is the convex 

fuzzy set if the inequality upholds: 

𝛼(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ min(𝛼(𝑥1), 𝛼(𝑥2)) , 𝑥1, 𝑥2 ∈ 𝐹𝛼 ⊆ 𝑋, 𝛼(𝑥): 𝐹𝛼(𝑥) ⟶ [0,1] ∈ ℝ. 

Proof. If we choose the element 𝑥̇ ∈ 𝐹𝛼, then there is existing the neighborhood around 

this point such as 𝑁(�̇�). 
Suppose we choose one more point such as �̈� ≠ �̇�, �̈� ∈ 𝐹𝛼 , 𝜙𝐹𝛼

(�̈�) ≤ 𝜙𝐹𝛼
(�̇�). 

Using the definition of the convexity we can obtain the following inequality: 

𝛼(𝜆�̈� + (1 − 𝜆)�̇�) ≥ min(𝛼(�̇�), 𝛼(�̈�)) = 𝛼((�̇�), (�̈�)) = 𝛼(�̈�). 

The point 𝜆�̈� + (1 − 𝜆)�̇� ∈ 𝐹𝛼 , �̈� ∈ 𝐹𝛼 ∩ 𝑁(�̇�). Hence, we have arrived at the statement 

which contradicts the convexity at the point �̇�. 
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3 The fuzzy 𝜶 − cuts in terms of the union, intersection and 
complement of the fuzzy sets 

The operator OR  𝐹1⋁𝐹2  for the cuts of  the union are: (𝐹1 ∪ 𝐹2)
>𝛼 = 𝐹1

>𝛼 ∪ 𝐹2
>𝛼 =

{𝑥,max(𝜙𝐹1 , 𝜙𝐹2)}, 𝑥 ∈ 𝑋 

The operator AND 𝐹1⋀𝐹2 for the cuts of the intersection are: (𝐹1 ∩ 𝐹2)
>𝛼 = 𝐹1

>𝛼 ∩

𝐹2
>𝛼 = {𝑥,min(𝜙𝐹1

, 𝜙𝐹2
)}, 𝑥 ∈ 𝑋 

The operator NOT 𝐹𝑐 = ¬𝐹 for the cuts of the complement are: (𝐹𝑐)>𝛼 = 𝐹≤1−𝛼 =
{𝜙𝐹(𝑥) ≤ 1− 𝛼}, 𝑥 ∈ 𝑋. 

The Cartesian product of the fuzzy sets 𝐹1 × 𝐹2, 𝐹1 ⊆ 𝑋1, 𝐹2 ⊆ 𝑋2  is a fuzzy set based 

on the domain 𝑋1 × 𝑋2 with the corresponding membership function as 

𝜙𝐹1×𝐹2
(𝑥1, 𝑥2) = min(𝜙𝐹1

(𝑥1), 𝜙(𝑥2)) 

The Cartesian co-product 𝐹1 + 𝐹2 is the fuzzy set with the corresponding membership 

function as 

𝜙𝐹1+𝐹2
(𝑥1, 𝑥2) = max(𝜙𝐹1(𝑥1), 𝜙𝐹2(𝑥2) . 

4 The aggregation of the fuzzy sets by the union and 
intersection 

The function 𝑡 norm aggregates two fuzzy membership functions as it is by the standard 

intersection rule: 

𝑡: [0,1] × [0,1] → [0,1]. Here 𝑡(𝜙𝐹(𝑥), 1) = 𝜙𝐹(𝑥) 

𝜙𝐹1⋂𝐹2
(𝑥) = 𝑡 (𝜙𝐹1

(𝑥), 𝜙𝐹2
(𝑥)) = min(𝜙𝐹1

(𝑥), 𝜙𝐹2
(𝑥)) 

𝑡 −norm is the binary two valued function which meets the characteristics of the 

associative, the commutative, monotonically increasing, symmetric functions such as 

𝑡(𝜙𝐹1 , 𝜙𝐹2) = 𝑡(𝜙𝐹2 , 𝜙𝐹1) symmetry 

𝑡 (𝜙𝐹1(𝑥), 𝑡(𝜙𝐹2(𝑥), 𝜙𝐹3(𝑥))) = 𝑡 (𝑡 (𝜙𝐹1
(𝑥), 𝜙𝐹2

(𝑥)) , 𝜙𝐹3(𝑥))   associativity 

If 𝜙𝐹1(𝑥) ≤ 𝜙𝐹2(𝑥)  and 𝜙𝐹3(𝑥) ≤ 𝜙𝐹4(𝑥) , then 

 𝑡 (𝜙𝐹1
(𝑥), 𝜙𝐹3

(𝑥)) ≤ 𝑡(𝜙𝐹2
(𝑥), 𝜙𝐹4

(𝑥)) 

The function 𝓈 −co-norm is the binary two-valued function such as 

𝓈: [0,1] × [0,1] → [0,1]. Here 𝓈(𝜙𝐹(𝑥), 0) = 𝜙𝐹(𝑥)  

𝜙𝐹1∪𝐹2
(𝑥) = 𝓈 (𝜙𝐹1

(𝑥), 𝜙𝐹2
(𝑥)) = max(𝜙𝐹1

(𝑥), 𝜙𝐹2
(𝑥)) 

Similarly, the characteristics of the associative, the commutative, monotonicity of the 

functions are applicable to the 𝓈 −co-norms such as 

𝓈(𝜙𝐹1
, 𝜙𝐹2

) = 𝓈(𝜙𝐹2
, 𝜙𝐹1

) symmetry 
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𝓈 (𝜙𝐹1(𝑥), 𝓈(𝜙𝐹2(𝑥), 𝜙𝐹3(𝑥))) = 𝓈 (𝓈 (𝜙𝐹1
(𝑥), 𝜙𝐹2

(𝑥)) , 𝜙𝐹3(𝑥))   associativity 

If  

𝜙𝐹1(𝑥) ≤ 𝜙𝐹2(𝑥)  and 𝜙𝐹3(𝑥) ≤ 𝜙𝐹4(𝑥) , 

then 

𝓈 (𝜙𝐹1
(𝑥), 𝜙𝐹3

(𝑥)) ≤ 𝓈(𝜙𝐹2
(𝑥), 𝜙𝐹4

(𝑥)) 

There are existed analogous 𝑡 −norm and 𝓈 −co-norm operators such as minimum 

𝑡𝑚𝑖𝑛, algebraic product 𝑡𝑎𝑝 , bounded product 𝑡𝑏𝑝 ,drastic product 𝑡𝑑𝑝  and, concurrently, 

maximum 𝓈𝑚𝑎𝑥 ,algebraic sum 𝓈𝑎𝑠 , bounded sum 𝓈𝑏𝑠 ,drastic sum 𝓈𝑑𝑠 as it is: 

for  𝜙𝐹1
(𝑥) = 𝛼, 𝜙𝐹2

(𝑥) = 𝛽 there are the following operators involved such as 

𝑡𝑚𝑖𝑛(𝛼, 𝛽) = 𝑚𝑖𝑛(𝛼, 𝛽) = 𝛼⋀𝛽 

𝑡𝑎𝑝(𝛼, 𝛽) = 𝛼 × 𝛽 

𝑡𝑏𝑝(𝛼, 𝛽) = 0⋁(𝛼 + 𝛽 − 1) 

𝑡𝑑𝑝(𝛼, 𝛽) = {

𝛼 ∵ 𝛽 = 1

𝛽 ∵ 𝛼 = 1

0 ∵ 𝛼 < 1, 𝛽 < 1

 

The 𝑡 −  norm operators are related to each other by these inequalities: 

𝑡𝑚𝑖𝑛 ≥ 𝑡𝑎𝑝 ≥ 𝑡𝑏𝑝 ≥ 𝑡𝑑𝑝 

For the co-norms the following operators involved such as 

𝓈𝑚𝑎𝑥(𝛼, 𝛽) = 𝑚𝑎𝑥(𝛼, 𝛽) = 𝛼⋁𝛽 

𝓈𝑎𝑠(𝛼, 𝛽) = 𝛼 + 𝛽 − 𝛼 × 𝛽 

𝓈𝑏𝑠(𝛼, 𝛽) = 1⋀(𝛼 + 𝛽) 

𝓈𝑑𝑠(𝛼, 𝛽) = {

𝛼 ∵ 𝛽 = 0

𝛽 ∵ 𝛼 = 0

1 ∵ 𝛼 > 0, 𝛽 > 0

 

There are associated with these operators the following inequalities: 

𝓈𝑑𝑠 ≥ 𝓈𝑏𝑠 ≥ 𝓈𝑎𝑠 ≥ 𝓈𝑚𝑎𝑥 

There are the order relations as the inequalities with the consideration to their 

reciprocate values: 

𝓈𝑑𝑠 ≥ 𝓈𝑏𝑠 ≥ 𝓈𝑎𝑠 ≥ 𝓈𝑚𝑎𝑥 ≥ 𝑡𝑚𝑖𝑛 ≥ 𝑡𝑎𝑝 ≥ 𝑡𝑏𝑝 ≥ 𝑡𝑑𝑝 
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The triangular norms and co-norms are uniquely connected to each other by the 

following principle such as 

𝓈𝑡 (𝜙𝐹1
(𝑥), 𝜙𝐹2

(𝑥)) = 1 − 𝑡(1 − 𝜙𝐹1
(𝑥), 1− 𝜙𝐹2

(𝑥)) , 

𝑡𝓈 (𝜙𝐹1
(𝑥), 𝜙𝐹2

(𝑥)) = 1− 𝓈(1 − 𝜙𝐹1
(𝑥), 1− 𝜙𝐹2

(𝑥)) 

Theorem 3.  If 𝐹1, 𝐹2 are fuzzy sets of the universe 𝑋  and their  complements are  

𝐹′
1 = 𝑋 ∖ 𝐹1, 𝐹

′
2 = 𝑋 ∖ 𝐹1 , then (𝐹1 ∪𝑡 𝐹2)

′ = 𝐹′
1 ∩𝑡 𝐹

′
2 . 

Proof.  Let 𝑥 ∈ (𝐹1 ∪𝑡 𝐹2)
′ . Then 𝑥 ∉ 𝐹1 ∪𝑡 𝐹2 . Hence 𝑥 ∉ 𝐹1, 𝑥 ∉ 𝐹2 . 

From this we may conclude that 𝑥 ∈ 𝐹′
1, 𝑥 ∈ 𝐹′

2 .Therefore, 

𝑥 ∈ (𝐹′
1 ∩𝑡 𝐹

′
2) ⊆ (𝐹1 ∪𝑡 𝐹2)

′ .  Thereafter,  𝐹′
1 ∩𝑡 𝐹

′
2 ⊆ (𝐹1 ∪𝑡 𝐹2)

′∎  

Morgan’s Law for the sets is contented  by this theorem to connect the union and 

intersection of the compliments of the fuzzy sets as it is: 

(𝐹1 ∩𝑡 𝐹2)
′ = 𝐹′

1 ∪𝑡 𝐹
′
2, 

(𝐹1 ∪𝑡 𝐹2)
′ = 𝐹′

1 ∩𝑡 𝐹
′
2 

The triangular norm and co-norm connected by the union and intersection to generate 

the consequent membership function as it is: 

𝜙𝐹1∩𝑡𝐹2(𝑥) = 𝓈𝑡(𝜙𝐹1(𝑥), 𝜙𝐹2(𝑥))  for 𝐹1 ∪𝑡 𝐹2 ⊆ 𝐹1 ∩𝑡 𝐹2 . 

If we keep, 𝜙𝐹1(𝑥) = 𝛼, 𝜙𝐹2(𝑥) = 𝛽 then the  fuzzy compliment’s operator is the 

continuous function 𝒸 such as  : 

𝒸: [0,1] → [0,1]  by satisfying to the boundary, monotonicity , involution conditions: 

𝒸(0) = 1, 𝒸(1) = 0yj 

𝒸(𝛼) ≥ 𝑐(𝛽), 𝛼 ≤ 𝛽 

𝒸(𝑐(𝛼)) = 𝛼 

As it is stated the norms and co-norms  are having  two-fold nature then the Morgan’s 

theorem can be reinstated in terms of the compliments  to connect the norm and co-norm 

operators with their compliments. 

Theorem 4. The 𝑡 − norm is uniquely assigned to  𝓈 − co-norm by the compliment 

operator 𝒸: 

(ℱ ∩𝑡 𝒢)
𝒸 = ℱ𝒸 ∪𝑡 𝒢

𝒸 

(ℱ ∪𝑡 𝒢)
𝒸 = ℱ𝒸 ∩𝑡 𝒢

𝒸 

where ℱ, 𝒢 are fuzzy sets associated with the membership functions 𝜙ℱ(𝑥), 𝜙𝒢(𝑥) 
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Proof.  By the definition  of the intersection, we can determine the compliment of the  

intersection of the fuzzy sets of ℱ and 𝒢 

𝒸 ≔ ℱ ∩𝑡 𝒢 with the corresponding membership function 

𝜙𝒸(𝑥) ≔ 𝑡 (𝜙ℱ(𝑥), 𝜙𝒢(𝑥)) , ∀𝑥 ∈ 𝑋 

Since there are involved the properties of the symmetry and associativity of the norms 

then the following upholds: 

ℱ ∩𝑡 𝒢 ⊆ ℱ,ℱ ∩𝑡 𝒢 ⊆ 𝒢 ⇒ ℱ ∩𝑡 𝒢 ⊆ ℱ ∩ 𝒢 

Since every intersection generates the dual union then we can state: 

ℱ ∩𝑡 𝒢 ≔ (ℱ𝒸 ∩𝑡 𝒢
𝒸)𝒸 

Therefore, the relations follow with respect to norms : 

(ℱ ∩𝑡 𝒢)
𝒸 = ℱ𝒸 ∪𝑡 𝒢

𝒸 

(ℱ ∪𝑡 𝒢)
𝒸 = ℱ𝒸 ∩𝑡 𝒢

𝒸 

There is the following theorem which states that for the convex fuzzy sets there is 

existing the defuzzied value of the argument of the aggregated crisp function [13, 14]. 

Theorem 5. Let 𝐹𝛼(𝑥) ≠ ∅ be a 𝛼–cut fuzzy set. If the point x belongs to the convex 

fuzzy set, then �̌� ∈ 𝑋 is the upper bound of the membership function and the point �̌� = 𝑥∗ 
is the de-fuzzified value of 𝜙𝐹𝛼

(𝑥∗) = 𝑠𝑢𝑝𝜙(�̌�). 

Proof. Suppose there is existing �̂� ∈ 𝑋, 𝜙𝐹𝛼
(�̂�) < 𝜙𝐹𝛼

(�̌�). The convexity criterion of the 

fuzzy set leads to the inequality: 𝜆�̂� + (1− 𝜆)�̌� ∈ 𝐹𝛼(𝑥), 𝜆 ∈ [0,1]. 
Correspondingly, followed by the convexity at the point we can use the inequality such 

as: 𝜙𝐹𝛼
(�̌�) < 𝜙𝐹𝛼(𝜆�̂� + (1 − 𝜆)�̌�), 𝜆 ∈ (0,1). Since the function is convex and 𝜙𝐹𝛼(�̂�) <

𝜙𝐹𝛼(�̌�), then we have that 𝜙𝐹𝛼
(�̌�) > 𝜙𝐹𝛼(𝜆�̂� + (1 − 𝜆)�̌�), 𝜆 ∈ (0,1). Hence, we have 

gotten the contradiction and 𝜙𝐹𝛼
(𝑥∗) = 𝑠𝑢𝑝𝜙(�̌�) and 𝑥∗ is the de-fuzzified value.  

There is following next theorem, which states that the de-fuzzified value can be found at 

the lowest upper bound of the membership function of the 𝛼–cut fuzzy sets. 

Theorem 6. For the 𝛼–cut convex fuzzy set let consider the interval (𝛿, 휀) ∈ [𝑥1, 𝑥2], 
𝛿 < 휀, and 𝜙𝐹𝛼

(𝛿) < 𝜙𝐹𝛼
(휀), such that 𝜙𝐹𝛼

(𝑧) ≤ 𝜙𝐹𝛼
(𝛿) for 𝑧 ∈ [𝑥1, 𝛿). Then 

(1) 𝜙𝐹𝛼
(𝑧) = 𝑖𝑛𝑓𝜙𝐹𝛼(𝑥) at 𝑧 ∈ [𝑥1, 𝛿). 

(2) If 𝜙𝐹𝛼
(𝛿) ≥ 𝜙𝐹𝛼

(휀), then 𝜙𝐹𝛼
(𝑧) ≤ 𝜙𝐹𝛼

(휀) and 𝜙𝐹𝛼
(𝑧) = 𝑠𝑢𝑝𝜙𝐹𝛼(𝑥) for 𝑧 ∈

(휀, 𝑥2]. 
Proof. Let us consider the interval 𝑧 ∈ [𝑥1, 𝛿). Next, let use the contradiction to suppose 

that 𝜙𝐹𝛼
(𝑧) > 𝜙𝐹𝛼

(𝛿). Because of the convexity at 𝛿 we obtain that 𝜙𝐹𝛼
(𝛿) <

max{𝜙𝐹𝛼
(𝑧), 𝜙𝐹𝛼

(휀)} = 𝜙𝐹𝛼(휀) and this result contradicts that 𝜙𝐹𝛼
(𝑧) < 𝜙𝐹𝛼

(𝛿). 

Thereafter 𝜙𝐹𝛼
(𝑧) = 𝑠𝑢𝑝𝜙𝐹𝛼(𝑥). 

The part 2 is being proven by utilizing the same contradiction. 
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5 Defuzzification to the crisp sets and methods to find the 
defuzzification regions 

The defuzzification to the crisp set occurs at the region where we convert the fuzzy set into 

the crisp set. One of the methods of the defuzzification is the 𝛂–cut method. Here for the 

given fuzzy set 𝐹(𝑥) we are going to define the crisp set 𝐹𝛼(𝑥) = {𝑥:𝜙𝐹𝛼(𝑥) ≥ 𝛼, 0 < 𝛼 <

1 [13, 14,15]. 

E.g. 1. The fuzzy set is given as the matrix: 𝐹(𝑥) = (
1 0.95 0.7
0.4 0.9 0.3
0.5 0.2 0

). 

For the 𝛼 = 0.95 the crisp set is 𝐹𝛼(𝑥) = (
1 1 0

0 0 0

0 0 0

). 

For the 𝛼 = 0.3 the crisp set is 𝐹𝛼(𝑥) = (
1 1 1

1 1 1

1 0 0

). 

There are inference methods with antecedents and consequent are considered in Fuzzy 

Logic there. Among them the graphical approaches by Mamdani, Sugeno and etc. [16, 17, 

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,30].  

The composition rule of inferences by Zadeh [9] is the expanded extension principle 

when the membership function is not a bijective one. In such scenario the extension 

principle is the only particular case of the rule of the inference. 

If we assume that the 𝐹 −  is the fuzzy relation at mapping 𝑋 × 𝑌 , 𝐹𝑋 −is the fuzzy set 

on 𝑋 , then the deriving fuzzy set 𝐹𝑌 −is the cylindrical shape as the extension 𝑓(𝐹𝑥) with 

the base of 𝐹𝑥 .  In terms of the membership functions there is  

𝜙𝑓(𝐹𝑥)(𝑥, 𝑦) = 𝜙𝐹𝑥
(𝑥), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌  

Based on the intersection we arrive to 

𝜙𝑓(𝐹𝑥)∩𝐹(𝑥, 𝑦) = 𝑚𝑖𝑛{𝜙𝑓(𝐹𝑥)(𝑥, 𝑦), 𝜙𝐹(𝑥, 𝑦)} = 𝑚𝑖𝑛{𝜙𝐹𝑥
(𝑥), 𝜙𝐹(𝑥, 𝑦)} 

Since there is the cylindrical projection in the form of the intersection such as 𝑓(𝐹𝑥) ∩ 𝐹 

here , then we  yield to the following: 

𝜙𝐹𝑦
(𝑦) = 𝑚𝑎𝑥𝑥𝑚𝑖𝑛{𝜙𝐹𝑥

(𝑥), 𝜙𝐹(𝑥, 𝑦)} = ⋁𝑥{𝜙𝐹𝑥
(𝑥)⋀𝜙𝐹(𝑥, 𝑦)} 

This rule of inference helps to acknowledge the acceptance of the fuzzy set reasoning 

based on the If-Then rules. 

The 𝛼–cut of the fuzzy sets as the decomposition of the fuzzy sets leads to the 

aggregated crisp sets defined by the Sugeno systems, which says: 

If two antecedents 𝑥1 ∈ 𝐹𝛼1, 𝑥2 ∈ 𝐹𝛼2 generates 𝑦 = 𝜙𝛼(𝑥1, 𝑥2), then 𝑦 = 𝜙𝛼(𝑥1, 𝑥2) is 

the consequent crisp function. 

The aggregated crisp function can be obtained by utilization of the various methods 

such as [6, 7, 8, 9, 10, 11, 12]: 

The weighted average defuzzification method here exists  by the following rules. 

Rule 1. If 𝑥1 ∈ 𝐹𝛼1 , 𝑥2 ∈ 𝐹𝛼2, then 𝑦1 = 𝛽𝑥1 + 𝛾𝑥2 + 𝛿. 

Rule 2. 𝑥1 ∈ 𝐹𝛼3, 𝑥2 ∈ 𝐹𝛼4, then 𝑦2 = 휁𝑥1 + 휀𝑥2 + 𝜖,𝛽, 𝛾, 𝛿, 휀, 𝜖, 휁 ∈ [0,1]. 

The following formula provided by utilization of the Sugeno systems offers the formula 

to find the consequent crisp function as it is: 𝑦∗ =
𝑤𝑦1

𝑦1+𝑤𝑦2
𝑦2

𝑤𝑦1+𝑤𝑦2

, where 𝑤𝑦1 , 𝑤𝑦2 – the value 

of the assigned weight to the consequents. 
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The Fig. 3 illustrates the Sugeno approach to find the aggregated crisp function. 

 

Fig. 3. The Sugeno approach to find the aggregated crisp function. 

The value of 𝑥∗, 𝑦∗ = 𝑓(𝑥∗) refers to the defuzzification to the crisp sets to find the 

argument of the crisp sets. 

There are existing various methods to obtain the de-fuzzified value of the argument. 

(1) Center of the summation method: 𝑥∗ =
∑ 𝜙𝑥𝑖

(𝑥)𝑥𝑖
𝑛
𝑖=1

∑ 𝜙𝑖
𝑛
𝑖=1 (𝑥)

. 

(2) Center of the largest area method: 𝑥∗ =
∫𝜙(𝑥)𝑥𝑑𝑥

∫𝜙(𝑥)𝑑𝑥
. 

(3) First or last Maximum method: the first maximum is given at 𝑥∗ = 𝑖𝑛𝑓𝑥∈𝐹𝜙(𝑥) =
ℎ𝑔ℎ𝑡𝜙(𝑥), 𝑥 ∈ 𝐹 ⊆ 𝑋; the last maximum is given at 𝑥∗ = sup 𝜙(𝑥) = ℎ𝑔ℎ𝑡𝜙(𝑥), 𝑥 ∈ 𝐹 ⊆
𝑋. 

Let us consider the rule system with two antecedents and one consequence. 

Mamdani systems: If 𝑥1 is 𝐹1 and 𝑥2 is 𝐹2, then 𝑦 is 𝐹𝑦. Here two inputs as the 

antecedents generates one output  and all sets 𝐹1, 𝐹2, 𝐹𝑦 – fuzzy sets. 

That means the output is the fuzzy set, which requires the further application of one of 

the defuzzification methods such as 𝛼–cut methods. 

In the case of the multiple inputs: If 𝑥1 ⟶ 𝐹1
𝑘 and 𝑥2 ⟶ 𝐹2

𝑘, then 𝑦𝑘 ⟶ 𝐹𝑦
𝑘 , 𝑘 =

1,2, … , 𝑛. 

For the case of the 2-input Mamdani systems there are existed two methods: 

(1) Max-Min inference method. 

(2) Max-product inference methods. 

It is worth to note that wherever the antecedents are connected by the topological 

operator AND there is utilized the minimum operator of the membership function. 

Whenever there is used the topological operator OR, then there is used the maximum of the 

membership function. 

(1) Max-Min inference method. There is considered 2 rule system with two 

antecedents and one consequent: 

Rule 1. If 𝑥1 ⟶ 𝐹1
1 AND 𝑥2 ⟶ 𝐹2

1, then 𝑦1 ⟶ 𝐹𝑦
1. Here there is used MIN operator. 

Rule 2. If 𝑥1 ⟶ 𝐹1
2 OR 𝑥2 ⟶ 𝐹2

2, then 𝑦2 ⟶ 𝐹𝑦
2. Here there is used MAX operator. 

 

Fig. 4. The Max-Min inference method, where the shaded region is the truncated membership fuzzy 

function, which was aggregated by Max and Min. 
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The Fig. 4 illustrates the Max-Min inference method, where the shaded region is the 

truncated membership fuzzy function, which was aggregated by Max and Min. The shaded 

region represents the region, which is supposed to be further defuzzied to obtain the crisp 

set. This can be done by 𝛼–cut method. 

(2) Max-product inference method. The difference between MAX-MIN and Max-

product methods is in the obtained defuzzied region, which is in a case of Max-Min method 

is called the truncated region while in a case of Max-product method it is called the scaled 

region. 

 

Fig. 5. How to obtain the scaled shaded region for the defuzzied values. 

The rule 1. There is used MIN operator for AND in Max product method. 

The rule 2. There is used Max operator for OR in Max product method. 

The Fig. 5 illustrates how to obtain the scaled shaded region for the defuzzied values. 

The graphs from two rules integrated in each other to obtain the scaled region which is 

shaded. 

Centroid method for the defuzzification to crisp set 

The centroid method is alternatively called the method of the center of gravity to find 

the defuzzification values. There is the formula is given to find the de-fuzzified value of the 

crisp set: 

𝑥∗ =
∫𝐹(𝑥)𝑥𝑑𝑥

∫𝐹(𝑥)𝑑𝑥
. 

There is given Fig .6 to illustrate the centroid method to find the de-fuzzified value of x. 

 

Fig. 6. Illustrate the centroid method. 
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The equation of the lines from a to b, b to c , c to d ,d to e and e to f is given by using 

the point-slope formula for the line, or the slope formula for the line, e.g. such as: 
𝑦−𝑦1

𝑥−𝑥1
=

𝑦2−𝑦1

𝑥2−𝑥1
. 

The general equation of the line is 𝑦 = 𝑚𝑥 + 𝑐 in slope-intercept form. If we apply the 

integration process to find the de-fuzzified value, then we must evaluate the following 

integrals over the certain specified regions: 

𝑥∗ =
∫ 𝑦𝑎𝑏𝑥𝑑𝑥+∫ 𝑦𝑏𝑐𝑥𝑑𝑥+∫ 𝑦𝑐𝑑𝑥𝑑𝑥+∫ 𝑦𝑑𝑒𝑥𝑑𝑥+∫ 𝑦𝑒𝑓𝑥𝑑𝑥

8

6

6

4

4

3.5
3.5
1

1

0

∫ 𝑦𝑎𝑏𝑑𝑥+∫ 𝑦𝑏𝑐𝑑𝑥+∫ 𝑦𝑐𝑑𝑑𝑥+∫ 𝑦𝑑𝑒𝑑𝑥+∫ 𝑦𝑒𝑓𝑑𝑥
8

6

6

4

4

3.5
3.5
1

1

0

= 𝐴. 

So, after evaluating the integrals we obtain the de-fuzzified value for 𝑥∗ = 𝐴 ⊆ ℝ by 

using the centroid method. 

Next method is called 

Maximum principle or height method 

This method is applicable if the fuzzy sets and their union have the maximum height: 

ℎ𝑔ℎ𝑡(𝐹(𝑥)) = 𝑚𝑎𝑥𝜙𝐹(𝑥
∗) ≥ 𝜙𝐹(𝑥), ∀𝑥 ∈ 𝑋. 

Center of the Largest Area defuzzification method 

This particular method is used wherever the fuzzy set has more than one subregions and 

the center of the gravity can be used to calculate the de-fuzzified value: 𝑥∗ =
∫𝜙𝐿𝐴(𝑥)𝑥𝑑𝑥

∫𝜙𝐿𝐴(𝑥)𝑑𝑥
, 

where LA sub-notation is used to denote the region with the largest area and x is the center 

of the gravity of the largest region. 

Method of the First or Last Maxima to find the de-fuzzified value 

For this method the de-fuzzified value is found at the greatest lower bound: 

𝑥∗ = 𝑖𝑛𝑓𝑥∈𝑋{𝜙𝐹(𝑥) = ℎ𝑔ℎ𝑡(𝐹(𝑥)). 
Center of the Sums method to find the de-fuzzified value 

The de-fuzzified value can be found by using the formula: 𝑥∗ =
∑ 𝑥𝜙𝐹(𝑥)
𝑛
𝑖=1

∑ 𝜙𝐹(𝑥)
𝑛
𝑖=1

. 

The weighted average method to find the de-fuzzified value 

This method is applicable to the symmetric functions. There is used the following 

formula to evaluate the de-fuzzified value: 𝑥∗ =
∑𝑥𝜙𝐹(𝑥)

∑𝜙𝐹(𝑥)
. 

6 Conclusion 

The fuzzification concepts such as the fuzzy sets and their corresponding membership 

functions with further descriptors such as the core, support plane, boundaries, heights, sub-

normal and normalized fuzzy sets were introduced to be mostly relevant to the fuzzification 

and farther defuzzification operations required to apply in processing of the soft solutions. 

The compelling idea to find the de-fuzzified value of the soft solution has led the route 

of the research to redefine the alfa-cuts of the fuzzy sets as the pair of functions 

substantiated on their lower and upper bounds. 

The decomposition of the fuzzy power sets was outlined in terms of the decomposition 

theorem as the main tool in the de-fuzzification process. 

The farther steps to find the de-fuzzified values of the soft solutions were presented on 

the basis of the alfa-cuts of the convex fuzzy sets. There was proven the next theorem 

which supports the convexity principle of the alfa-cuts of the fuzzy sets. 

Next development was shown in the form of the theorem which was introduced to help 

to find the de-fuzzified value of the convex alfa-cuts of the fuzzy sets. This theorem stated 
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that the de-fuzzified values of the soft solution is located in the region of the upper and 

lower bounds of the membership function. 

Further, there was introduced one more theorem which was the extended version of the 

previous one to prove that the de-fuzzified value(s) belongs to the upper bounds of the sub-

regions of the alfa-cuts. 

The defuzzification formulas and defuzzification operations to the crisp sets were 

shown by utilizing the inference methods with multiple antecedents and consequents rules 

and formulas. 
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