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Abstract. In a one-dimensional approximation and in the absence of 

friction forces, a mathematical model has been developed for the steady flow 

of an incompressible fluid along a straight line, for example, a drainage 

gutter, into which a distributed flow flows from above. The boundary 

condition missing for solving the system of equations of momentum and 

continuity is determined using the principle of minimum potential energy. 

For a rectangular chute, equations are obtained that allow one to calculate 

the distributions of the layer thickness and fluid velocity along the length of 

the chute with a plug at one end and without a plug, slope and without slope 

to the horizon, depending on the intensity of the incoming flow, the size of 

the chute, and the density of the liquid. This model, by means of a simple 

recalculation, can also be extended to the flow in a trough of a different 

cross-sectional profile. The results of the study can be applied to the 

calculation of external drainage systems. Keywords: mathematical model, 

fluid, flow, chute, rectangular chute, momentum equation, continuity 

equation, fluid flow rate, fluid flow velocity. 

1 Introduction   

This task relates mainly to systems for the drainage of rainwater from the roofs of buildings 

or other structures, although other applications are possible. The problem of choosing the 

optimal dimensions of drainage gutters (trays) and the angles of their inclination to the 

horizon is of great practical importance and was solved mainly in an experimental plan. There 

are no theoretical works on this problem in the literature. In this paper, a mathematical model 

is presented and a method is given for calculating the flow characteristics (flow velocity, 

liquid layer thickness) depending on the size of the chute, its angle of inclination, the presence 

or absence of a plug, and the intensity of the flow entering the chute [1]. 

2 Model and method 

The problem is solved approximately analytically under the following assumptions, which 

slightly distort the essence of the process, but greatly simplify the calculations and make them 

more visual: 
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– absence of friction; 

– the steady-state one-dimensional flow (along the troughs); 

– the kinetic energy of the incoming flow is negligible. 

Calculation schemes are shown in fig. 1 and 2, which show: the origin of coordinates in 

the upper section of the gutter; the x axis is along the gutter; the angle of inclination of the 

chute to the horizon; Q [kg/(m∙s)] – uniformly distributed in the horizontal direction vertical 

linear flow of liquid flowing into the chute 

 

Fig. 1. Calculation scheme of fluid flow in a chute with a plug. 

 

Fig. 2. Calculation scheme of fluid flow in a chute without a plug. 

The flow of an incompressible fluid in a chute can be described by the following system 

of equations [1]: 

– continuity 

G Q x cos=             (1) 

where  ( )G G x=  is the flow rate of the liquid through the section x; 

- amount of movement 

( )d G dP =
                       (2) 

where v is the fluid velocity averaged over the cross section; 

P is the projection onto the x axis of the resultant of all external forces acting on the flow 

[2-3]. 

The fluid moves under the influence of gravity only. It can be conveniently divided into 

two parts: 

1) hydrostatic pressure force caused by a change along the x-axis of the height of the 

liquid column; 

2) longitudinal (along the x axis) component of the force of gravity arising from the 

inclination of the chute to the horizon 

( ) sin ,dP d pF g F dx= − +  
                 (3) 

where ρ – liquid density; 

 p – height-average hydrostatic pressure of the liquid column; 

F – cross-sectional area of the layer; 
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g – free fall acceleration 9.81 m/s2. 

Combining (2) and (3) and taking into account that 

G F=
,          (4) 

we get 

( ) ( )2
sin 0.d Fv d pF g Fdx + −  =

                    (5) 

Integration gives 

2

0

sin ,

x

Fv pF g Fdx C + −   =
             (6) 

where C is the constant of integration. 

3 Research and results 

Rectangular gutter 

Next, it is necessary to specify the values p and F, which depend on the shape of the cross 

section of the gutter. In practice, gutters of various cross sections are used: rectangular, V-

shaped, U-shaped, semicircular, etc. Each of them has different formulas for calculating p 

and F[4]. 

To demonstrate the mathematical model, we restrict ourselves to a rectangular gutter. For 

him 

( ) ( )

( ) ( )

;

1
cos ,

2

F x bh x

p x gh x

=

  




      (7) 

where h(x) is the thickness of the liquid layer in the direction perpendicular to the x axis, 

b is the width of the inner cavity of the gutter [5]. 

Substituting equation (7) into (5) and (6), we obtain in general the momentum equation 

for a steady flow of liquid in the absence of hydraulic losses in a rectangular chute: 

2 21
cos sin ;

2
d hv gh gh dx+  = 
 
 
         (8) 

2

0

1
cos sin C.

2

x

h v gh g hdx+  =  +
 
 
 


    (9) 

There are two different concepts for draining liquid through a chute: 

1) with a plug at the upper end of the gutter; 

2) without plug. 
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Gutter with plug 

An example is shown in fig. 1. 

In this case v(0) = 0. Then from (9) it follows 

2

0

1
cos ,

2
С gh= 

             (10) 

where h0 is the layer thickness in the initial section. 

Instead of (9), one can write 

2 2 2

0

0

1 1
cos sin cos .

2 2

x

hv gh g hdx gh+  =  + 
 
 
 


          (11) 

Since h0 is still unknown, we get a problem without the necessary boundary condition. 

To determine h0, we use the well-known principle of minimum potential energy (in this 

case, only mechanical energy) for a liquid in a closed stationary system, which is the “chute-

liquid” system [6]. 

We write (11) for the outlet section x = l, expressing v(l) in terms of h using (1) and (7) 

( ) ( )
( )

2 2 2

2 2

0 2

0

1 cos 1
sin cos cos .

2 2

l
Q l

g hdx gh gh l
b h l


 +  = + 




                (12) 

In equation (12), up to a factor ρb, on the left is the maximum linear potential energy 

accumulated by the flow, and on the right is the linear kinetic energy acquired by the flow, 

plus its residual linear potential energy at the output[7,8]. 

Since the quantities , , , ,Q b l   are given, the only variable can be only h(l). As can be 

seen from (12), the potential energy does indeed have a minimum in h(l), which is found 

from the condition 

( ) ( ) ( )
( )

2 2 2

2

0 2 2

0

1 cos
sin cos cos 0.

2

l
d Q l

g hdx gh gh l
dh l b h l


 +  = − +  =



 
 
 

  

From here 

( )

12

33 cos
.

Ql
h l

b g


=



  
   
             (13) 

Substituting (13) into (12), we obtain 

( ) ( )
1 3

5 31 3

0

0

1 3
cos sin cos .

2 2

x
Ql

gh g h x dx g
b

 +  = 


 
 
 


              (14) 

Taking into account (14), (1), (4), we can transform equation (11) to the form 
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( )

( ) ( ) ( )
2 1 3

5 32 1 3cos 1 1 3
cos sin cos 0.

2 2

l

x

Qx Ql
gh x g h x dx g

b h x b


+  +  −  =

 

   
   
   


   (15) 

By solving numerically the semi-analytical equation (15), one can find the dependence 

h(x), then using (7) and (4) calculate v(x). 

Let us consider two particular cases of flow in a chute with a plug [9]. 

Gutter without tilt to the horizon ( 0) =  

The flow occurs under the action of only the hydrostatic pressure gradient. From (13) and 

(14) it follows 

( )( )
2 3 1 3

0
3 ;h Ql b g

−
=  

 

( ) ( )( )
2 3 1 3

.h l Ql b g
−

=  
 

Equation (15) reduces to 

( )( ) ( ) ( )( ) ( )
2 4 33 1 33

2 0.
2

Qx b gh x Ql b g h x + −  =

                (16) 

Having calculated h(x) from (16), then we can calculate the dependence of v(x) using the 

equation 

( ) ( )( ) ,v x Qx bh x= 
                 (17) 

obtained from (1) and (4) at. In this case, the flow velocity at the outlet of the chute is 

equal to 

( ) ( )( )
1 3

.v l Qlg b= 
               (18) 

Thus, in the absence of a chute inclination, the problem of calculating the flow 

characteristics in a rectangular chute with a plug is completely solved analytically [10]. 

For calculations, equation (16) is conveniently represented in a dimensionless form by 

introducing the notation 

0
/h h h=

; 
.x x l=
              (19) 

Dividing all terms (16) by 
3

0
h , and transforming, we obtain an equation that does not 

explicitly contain physical parameters 

3 3 2 2
2 3 0h h x

−
− +  = .              (20) 

Also, introducing the notation for the dimensionless flow velocity 
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( ) ( ) ( ) ( )( )3 ,v x v x v l x h x= =
                (21) 

can be obtained from the distribution distribution. Both of these distributions are 

presented in Table 1. 

Table 1. Distribution ( )h x and ( )v x  for a gutter with a plug without inclination to the horizon. 

x  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

h  1 0.9975 0.9916 0.9816 0.9671 0.9470 0.9210 0.8868 0.8401 0.7717 0.5773 

v  0 0.0579 0.1164 0.1764 0.2387 0.3048 0.3361 0.4557 0.5497 0.6732 1.0 

These distributions for a given type and location of the gutter are universal, i.e. do not 

depend on physical parameters , , , ,Q b l g . 

As an example for specific values (water): Q = 0.1…1.0 kg/(m∙s); l = 10 m; b = 0.1 m; ρ 

= 103 kg/m3 basic parameters are: h0 = 0.037…0.1732 m; h(l) = 0.02154…0.1 m; v(l) 

=0.4640…1.0 m/s. 

Chute with a critical angle of inclination 

It can be seen from equation (14) that at small angles   it decreases 0h with its increase. 

For some   , which we call critical кр , 0 0h = . Then from (14) 

( ) ( )
4 3

5 3 2 3

кр кр

0

3
sin cos

2

l
Ql

g h x dx
b

  =


  
   
   


             (22) 

and from equation (22) we can calculate кр . 

However, to determine кр  from equation (22) is difficult when the distribution is 

unknown h(x) [11]. 

Another way is less labor intensive. From equation (15) 

2 2 2

2 3

cos 2 cos
sin cos .

9

dh Q x Q x

b h b ghdx

 
=  −  −

 

      
      

          (23) 

From the analysis of this derivative one can see the nature of the change h(x). At 0 = , 

the function h(x) has a maximum at x = 0 and decreases  monotonically as it grows, the 

position of the maximum shifts towards larger x, and at some кр =  / 0dh dx = for x = l. 

It should be noted that with respect to the horizon, h continuously decreases with increasing 

x, otherwise there would be no flow [12,13]. Thus, from (23) one can obtain by putting in it

( / ) 0x ldh dx = = , 

( )( ) ( )( )22 2

кр кр
sin cos 2 ,Q b l gh l  = 

 

or, replacing h(l) by its expression in equation (13), 
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( )
( )( ) ( )

2 3 1 3кр

4 3

кр

sin
2 .

cos
Q b lg

−


=  


       (24) 

At кр =  , the hydrostatic pressure derivative is positive over the entire length of the 

chute, and the fluid moves only under the action of the longitudinal (along the x-axis) gravity 

[14]. However, with growth , the amount of liquid stored in the chute decreases. If done

кр   , the nature of the flow will not change, but the amount of liquid will be even less, 

and the active length cosl   the groove will shrink [15]. 

Comparing equations (22) and (24) one can obtain 

( ) ( )
0

3
.

4

l

h x dx lh l=
               (25) 

The result obtained is interesting in that it can be used to find the amount of liquid stored 

in the chute at кр =   without numerical integration h(x). Indeed, the mass of the liquid in 

this case is equal to 

( )
кр

0

3
( ) .

4

l

M b h x dx b l h l=  = 
 

For example, for water without taking into account an insignificant correction for 

( )
1 3

кр
cos   in the same range of parameters as for the previous example, Mcr = 16.15…75 

kg. For comparison, the mass of accumulated water in a gutter without slope for the same 

conditions, calculated using Table 1, is M = 33.92...157.49 kg, i.e. twice as much Mkr. Thus, 

a chute with an inclination кр =   has the advantage of less loading compared to a chute 

without slope. In addition, at кр    stub is not needed. The critical angle itself calculated 

for the same parameters is 
0 0

кр 0, 247 ...1,146 = . At the same time, the sagging of the lower 

end of the gutter in relation to the horizon is 0.043 ... 0.2 m. 

Gutter without plug 

In general, liquid can flow from both ends of the trough (Fig. 2). When the chute has no 

slope, two equal flows are formed, directed opposite to each other. Between them, exactly in 

the middle of the gutter, a fixed ridge (elevation) appears, which acts as a plug. Both streams 

move, pushing away from this crest under the action of only hydrostatic pressure forces [16]. 

If the chute is inclined, for example, to the right, then the ridge moves to the left. The left 

side is shortened and the right side is lengthened. The left flow moves only under the action 

of the pressure force, weakened due to the reverse action of the longitudinal force of gravity, 

and the right flow accelerates under the action of both of these forces acting in one direction. 

At a critical angle of inclination, the ridge is forced out of the trough and only one right-hand 

flow remains [17]. This case has already been considered in Section 1.2. 

It is convenient to solve the problem separately for each section of the gutter. 

Section 2 (x0 < x ≤ l) 

In this case, equation (9) should be written in the form 
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0

2 1
cos sin .

2

x

x

h v gh g hdx C+  −  =
 
 
 


     (32) 

We also find the constant C for the boundary x = x0: 

( )2

0

1
cos .

2
C gh x= 

               (33) 

The continuity equation will be the same as (1*), only 0   . Then, taking into account 

(33), (1*) and (4), equation (32) is transformed to the form 

( ) ( )

0

2 22

0 0
cos cos1 cos

sin 0.
2 2

x

x

Q x x gh xgh
g hdx

b h

−  
+ −  − =



 
 
 


    (32*) 

Also, minimizing the potential energy by, we find 

( ) ( ) ( )( ) ( )
2 3 1 3 1 3

0
cosh l Q l x b g

−
= −  

 

and we obtain a semi-analytical solution of the momentum equation in the final form 

( )

( )

( ) ( )
( )

2 2 32

5 3 1 30 0
cos cos1 3

sin cos 0.
2 2

l

x

Q x x gh x Q l x
g hdx g

b h x b

−   −
+ +  −  =

 

   
   
   


       (34) 

Equating the left parts of equations (31) and (34) with 0x x=  , we obtain an equation for 

calculating the coordinate of the crest 0x x0 separating two flows 

( ) ( )( )
2

5 3 4 31 3 4 3

0 0

0

3
cos sin .

2

l
Q

g x l x g hdx
b

 − − = 


 
 
 


            (35) 

When 0 = solving this equation 0 / 2x l= . In this case, equations (31) and (34) are 

identical and have the form 

( )

( )

( )
2 1 32

1 3
2 1 3

0,
2 2

Q x l gh x Ql
g

b h x b

−
+ − =

 

   
   
   

   (36) 

that is, they coincide with the equation for gutters with a plug at 0 =  only l/2 is taken 

instead of l, and the argument in the first term is not x, but x - l/2 (or l/2 - x). 

By introducing dimensionless variables: 

( ) ( )2 ;h h x h l=
 2

2

l x
x

l

−
=
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and dividing all the terms of Eq. (36) by h3(x0), we obtain an equation in dimensionless form 

that exactly coincides with Eq. (20). For dimensionless speed ( ) ( )v x v l =  (wherein 

( ) (0)l =  ) we obtain an equation coinciding with equation (21). Thus, the data in Table 1 

are also valid for this variant of the gutter at half the length. The values of the basic 

(boundary) values calculated for the same values of the parameters as in paragraph 1.1 are: 

h(l/2) = 0.0235…0.1094 m; h(0) = h(l) = 0.0136…0.0630 m; v(0) = v(l) = 0.363…0.7937 

m/s, those. less (but not 2 times, but less) than for a gutter with a plug. The mass of water 

accumulated in each half of the gutter M1/2 = 21.37…99.48 kg. However, for the entire 

gutter, the mass of water is 2 times greater, which significantly exceeds the mass of water 

accumulated in the gutter with a plug without a slope. That is, the gutter without a plug is 

more loaded [18]. 

It follows from the analysis that, of all the options, the least loaded at a given Q is the 

chute with a critical angle of inclination. However, it is far from optimal for practice due to 

the highly uneven loading along the length. Also, since Q can change, a fixed slope angle 

will not always be critical. Therefore, in practice, it is advisable to use gutters with small 

angles of inclination (less than the critical one for the operating range Q). The accepted 

plumbing norms for the inclination of water gutters are no more than 3–5 mm per 1 m [19]. 

It should be noted that, although the model was brought to calculations only for a 

rectangular trough, it can also be applied by a simple recalculation for the flow in a trough of 

a different profile: semicircular, trapezoidal, triangular, etc [20]. 

The use of the mathematical model presented in this study will make it possible to more 

reasonably choose the optimal parameters of the gutters in practice. 

4 Conclusion 

The use of the principle of minimum potential energy made it possible to develop a 

mathematical model of a one-dimensional steady flow of an ideal incompressible fluid in a 

straight trough into which a distributed flow flows from above. 

For a rectangular chute, analytical and semi-analytical solutions of the momentum 

equation were obtained to calculate the distributions of the velocity and thickness of the liquid 

layer along the length of the chute with and without inclination to the horizon, the presence 

of a plug at one end and without a plug, depending on the intensity of the incoming flow, the 

size of the chute and density liquids. 

An equation is obtained for calculating the value of the angle of inclination, at which the 

value of the layer at the upper end of the gutter with a plug becomes equal to zero (critical 

angle) and the need for a plug disappears. 

It is shown that at angles less than the critical one, in a trough without a plug between two 

flows flowing from both ends, a fixed ridge (elevation) is formed, the coordinates of which 

depend both on the angle of inclination and on the physical parameters of the flow. 
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