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Abstract. This article discusses the method for obtaining a system of fi-
nite-difference equations to calculate the magnetic fields of magnetostric-
tive level transducers (MLT) of the applied type. An optimal numerical 
method for their solution is presented. The formulated problem of finding 
the optimal width of the non-magnetic wall of the reservoir of the applied 
MLT is solved by using the finite-difference approximation of the Maxwell 
system. The article shows the method for obtaining such equations based 
on the method of grids and considers in detail the optimal method for their 
numerical solution. The results of mathematical modeling of the magnetic 
field of the applied MLT using the developed program make it possible to 
determine the optimal value of the non-magnetic wall width of the tank of 
the applied MLT, at which the strength of the longitudinal magnetic field 
of the permanent magnet will be sufficient to form an ultrasonic torsion 
wave in medium of magnetostrictive sound line. Keywords: applied MLT, 
numerical methods, mathematical modeling 

1 Introduction 
Modern industrial conditions have led to the availability of a wide variety of instruments 
for level measurement and control. The requirements for them are very different and de-
pend on the application area. However, the main ones are high accuracy and resolution, the 
ability to work with aggressive media, low cost and relative simplicity of design. All these 
requirements are met by the MLT, in particular, a new subclass of devices - the applied 
MLT on torsional waves. 

A distinctive feature of the applied MLT is the use of a non-contact method for level 
measuring. The transfer of information in them occurs through the interaction of the reser-
voir of the magnetic field of a permanent magnet with the intensity оH  with the magnetic 
field of a magnetostrictive acoustic conduit with current through the non-magnetic wall. 
After this interaction, an ultrasonic torsion wave is formed in the latter's medium, which is 
then read by a signal electro-acoustic transducer [1]. 

The choice of the width H of the non-magnetic wall of the tank, where the MLT is in-
stalled, affects the efficiency of its operation, which is an important task, the solution of 
which makes it possible to improve the characteristics of the applied MLT. 

In order to improve the technical and operational characteristics of the applied MLT, the 
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problem of finding the optimal width H of the non-magnetic tank wall appears during their 
use, at which the strength of its magnetic bias field will be sufficient to form an ultrasonic 
torsion wave in the medium of its acoustic duct. In order to identify such a dependence, the 
calculation of the magnetic field of an applied MLT in this article is carried out using nu-
merical methods and implemented in the form of a computer program. 

2 Materials and Methods 
To solve this problem, it is proposed to apply numerical methods for solving the Maxwell 
system of equations describing the distribution of the magnetic field at any point in space 
[2,3]. It is known that the electromagnetic field is determined by the vectors of magnetic 
induction B , the strengths of electric E , magnetic H  fields and electric displacement 
D , interconnected by the following system [4]: 
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Where ED o , HB o , Ej  – the conduction current density, oo ,  
– the electric and magnetic constants, ,  – the dielectric and magnetic permeabilities of 
the medium,  – the specific conductivity of the substance,  – the volumetric density of 
the electric charge. 

The considered magnetic field of the applied MLT magnetization is stationary; there-
fore, we can take the following in (1): 
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Taking this into account, the system (1) can be reduced to one of the following partial 
differential equations [3]: 

м.стм )grad(div -u ;      (3) 

H-A rot)grad(div 1 ,           (4) 

 
 Where мu  – the generalized scalar magnetic potential ( мgrad uH ), A  

– the vector magnetic potential ( AB rot ), Hdivм.ст  – the density of external 
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sources of the magnetic field. 
The equations (3), (4) are valid at any point of the computational domain, so that their 

direct solution, taking into account the boundary conditions, accurately determine the po-
tential A  and the magnetic field оH  strength of the applied MLT at the point under con-
sideration. The analysis of these equations shows that it is more convenient to solve one 
partial differential equation (3). However, the introduction of a scalar potential мu  is pos-

sible only in the regions with no conduction currents j , which makes it unsuitable for the 
magnetic field calculation of an applied MLT. 

Due to the nonlinearity and anisotropy of ferromagnetic material properties, such char-
acteristics are nonlinear and depend on various parameters. This significantly complicates 
analytical integration (4). However, there are many different methods for the numerical 
solution of such equations to any given accuracy using a computer [3]. 

The most effective is the transition from the considered partial differential equation to 
the difference one, which is its discrete analog, for example, by the method of grids [2, 5]. 
To do this, it is necessary to select a system of nodes (a grid) that fills the computational 
domain based on the following conditions: obtaining smaller errors during the transition to 
the difference equation and a simple difference equation. The computational error, in this 
case, will be most influenced by the distance between the nodes (h step) of the grid. 

As was shown in [3], the difference equations take on a simpler form during a regular 
grid selection. The introduction of irregular grids is justified when solving problems with 
the boundaries of objects of complex geometric shapes. In this case, the objects are limited 
by straight lines, so the use of a regular grid will be effective. 

Let us transform the equation (4) in partial derivatives into the corresponding difference 
equation. In this case, the difference equations for the potential inside the media are sup-
plemented by the equations of a different type at their interfaces (boundary conditions), 
which will lead to the solution algorithm complication due to the need to identify each grid 
point for its belonging to the boundary. This can be avoided by applying the balance meth-
od [3], the essence of which is that when you calculate the static magnetic field in a piece-
wise inhomogeneous medium, one should express the vector B  through the vector poten-
tials of the grid nodes and calculate the resulting integral approximately using Maxwell's 
postulate. 

Using the balance method, we obtain a difference equation corresponding to the equa-
tion (4) in partial derivatives. To do this, let's consider a fragment of four adjacent grid cells 
(Figure 1) and select the points a, b, c, d in the centers of each of them. 
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Fig. 1. The contour of abcd integration for obtaining the difference equations. 4321 ,,,  
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– the coefficients inverse to the mean values of magnetic permeability of each cell with the 
nodes 0,1,2,3,4 of the computational domain 

The equation of the system (1), taking into account the expression (2), can be rewritten 
as follows: 

idlBdlH
ll

,                                                      (5) 

Where l  – the contour of abcd, 1, i – medium conduction current. 
The integral (5) along the contour abcd, we represent as the following sum: 
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Let us choose the grid step sufficiently small, which allows us to consider the tangent 
component of the induction B  constant within the integration intervals. In this case, the 
expression (6) will be written as follows: 
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Where j – the current density averaged among four cells. 
Since ),( yx  is some function, then one can use approximate calculations to cal-

culate the definite integrals in (7), for example, the parabola method [2, 5]. Its application 
to the first integral of the expression (7) allows us to put down the following: 

b
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.                                           (8) 

Let's note also that the tangential component of the induction vector nB  on each seg-
ment of integration, taking into account (4), is expressed through the vector magnetic po-
tentials iA  of the adjacent cells in accordance with the expressions [3]: 
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We obtain the approximations for the remaining integrals similar to (8), taking into ac-
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count the expressions (4) - (6) and (9) from (7), grouping the coefficients of similar terms: 
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The resulting expression (10) is a finite-difference equation for the node 0. Such equa-
tions can be written for all grid nodes, except for those that lie on the boundary of the com-
putational domain, since the behavior of the magnetic field at such points is known and is 
determined by the boundary conditions. This approach makes it possible to obtain a system 
of algebraic equations, which is a difference approximation of the solution (4) of Maxwell's 
equation system (1) for the magnetic field of the applied MLT. The system of equations 
(10) connects the potentials at the nodes of a uniform grid with a given step h. Its analysis 
allows us to highlight some features that must be taken into account when choosing a solu-
tion method: 

• the number of boundary conditions determines the accuracy (error) of the magnetic 
field potential calculation; 

• the method of grid node numbering determines the type of the coefficient matrix; 
• for a large number of unknowns, the matrix of the system coefficients is sparse, ill-

conditioned and symmetric. However, its symmetry can be violated near the boundaries of 
the computational domain (the presence of boundary conditions). 

In the latter case, it will be expedient to perform algebraic transformations of the matrix 
in order to bring it to its previous form, due to the optimality of processing and storage on a 
computer [2, 5]. 

To solve the systems of algebraic equations with the indicated properties, it is advisable 
to use iterative numerical methods [3]. Their essence lies in the fact that the value of the 
desired indicator obtained at the previous step allows you to calculate another, more accu-
rate one, at the current step. The process is repeated until some accuracy criterion is met. 
The advantages of these methods are the relative simplicity of iterative formulas, ease of 
implementation on a computer, guaranteed achievement of the result with the required ac-
curacy, regardless of the accepted initial values of the desired quantities. 

Taking this into account, we put down the system of equations of the form (10) in a ma-
trix form: 

PAu ,                                 (11) 

Where jiaA ,  – the matrix of system coefficients, u – the matrix of unknowns, P  

– the column of the right-hand elements. 
To solve the equations (11), we use the Seidel method [2, 5], the high rate of conver-

gence of which is explained by the fast iterative convergence of the computational process. 
With regard to the considered system (11), the Seidel formula can be written in the fol-

lowing form [3]: 
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Where n
jiu ,  – the values of the unknowns jiu , , calculated at the n-th step, 1

,
~n

jiu  – 

the adjusted values of the unknowns jiu , . 

Hereinafter, we assume that the initial approximation 0
, jiu  is known. 

Seidel's method allows one to obtain a solution to the system of equations (11) with any 
predetermined accuracy . The condition [2, 5] is used as a criterion to achieve a given 
accuracy: 

nn uu ~~max 1 .                                    (13) 

The use of the Seidel method makes it possible to reduce the amount of computer 
memory for storing the initial data and calculated results in the form of a single array. 

An even higher rate of convergence is provided by the methods of upper or lower relax-
ation [3], which are the modification of the Seidel method. Their iterative process is based 
on using the following expression: 
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Where  – the coefficient of convergence acceleration. 
The algorithm of relaxation method use provides for calculating the potential at the 

node 1
,

~n
jiu  in accordance with the Seidel formula (12) and its correction to the value 

1
,
n

jiu  according to the expression (14). The criterion for achieving accuracy  is the ex-

pression similar to (13). 
The choice of the value  affects the rate of convergence and is carried out from the 

condition of the minimum number of iterations. As is known [3], the optimal value of the 
convergence acceleration coefficient depends on the  - the condition number of system 
coefficient matrix. Since it is related to the parameters of each specific problem, it is not 

possible to choose the optimal value of the convergence acceleration factor o  in the gen-
eral case. 

The optimal value of the convergence acceleration coefficient o  can be determined 
approximately. For example, for a rectangular mesh of the size )1()1( MN , where 
N>14, M>14 and the coefficient matrix with 1, the following expression is valid [3]: 
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Thus, in accordance with the expression (15), the value of the convergence acceleration 
coefficient can be selected for a mesh of any size, which, when substituted into the expres-
sion (14), will allow to determine the values of the potentials at all nodes of the computa-

tional domain using the upper relaxation method ( 1o ) with a given accuracy  in the 
least number of iterations. 

Let's note that there are other, more complex iterative methods to solve the systems of 
equations of the form (11), for example, the Richardson method, the alternating triangular 
method, and others [3-5]. However, their use to solve this system of equations is inappro-
priate due to their orientation towards the problems of three-dimensional field calculation 
with complex geometry, which will only introduce additional difficulties during a computer 
program compilation for their implementation. 

3 Results 
The result of this work is a program that allows you to obtain a picture of the magnetic field 
strength оH  of applied MLT magnetization field at the points of the computational domain 
(Figure 2). The advantage of this program over existing analogues is the possibility of ob-
taining a continuous dependence of the magnetic field strength оH  of a permanent magnet 
3 at the point of the magnetostrictive acoustic duct 5 near the float 4 on the width of the 
non-magnetic wall H of the reservoir 1. The program allows you to find the specified de-
pendencies for any geometrical dimensions of the computational domain and the materials 
of the applied MLT elements. To calculate the characteristics of the field, a system of fi-
nite-difference equations (10) is compiled using the balance method and solved by the up-

per relaxation method with the choice of the optimal value o  according to the formula 
(15). 
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Fig. 2. Design scheme of the applied MLT. 

1 - reservoir with a non-magnetic wall and the width H, 2 - guide groove, 3 - permanent 
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magnet, 4 - float body, 5 - sound conduit, 6 - electromagnetic shield, - the thickness of non-
magnetic reservoir wall 1, B - the axial distance between permanent magnet 3 and sound 
conductor 5 

The program is focused on integration into the MATLAB system and the result of its 
work is an m-file containing the program and numerical data for the specified system. 

4 Discussion 
After calculating the magnetic field of the applied MLT using the developed program, they 
obtained the calculated dependences of the magnetic field strength оH  of the permanent 
magnet 3 on the width H of the non-magnetic wall of the tank 1 for different magnetically 
hard materials (Figure 3). 

 

Fig. 3. Dependence of the magnetic field strength оH  of a constant magnet 3 on the width H of the 
non-magnetic wall of the tank 1. 

Fig. 4. shows the results of the magnetic field calculations of an applied MLT, when YUNDK24B 
alloy is selected as a permanent magnet. 

 

Fig. 4. The picture of the magnetic field strength оH  of the applied MLT. 

E3S Web of Conferences 376, 01101 (2023) https://doi.org/10.1051/e3sconf/202337601101
ERSME-2023

8



To test the efficiency of the upper relaxation method with the value of the convergence 

acceleration coefficient o , calculated by the formula (15), the number of iterations neces-

sary to achieve the required accuracy  at various values  was calculated. In the course 

of this computational experiment, the coefficient  from the expression (14) took the fol-

lowing values: 0.5; 0.9; 1; 1.5; (the coefficient o  was calculated by the formula (15)). 
Thus, a dependence was obtained, the graph of which is shown on Figure 5. 

 

Fig. 5. Dependence of the number of iterations n on the convergence acceleration factor . 

As can be seen from Fig. 5, the introduction of the convergence acceleration factor  
makes it possible to reduce significantly the number of required iterations in comparison 
with the Seidel method (at 1). However, the best result can be achieved if the optimal 

value o  is chosen, that allows to solve the problem in the minimum number of iterations. 

5 Conclusions 
Thus, the formulated problem of finding the optimal width H of the non-magnetic wall of 
the reservoir 1 of the applied MLT is solved by using the finite-difference approximation of 
the Maxwell system. The article shows the method for obtaining such equations based on 
the method of grids and considers in detail the optimal method for their numerical solution. 

The results of mathematical modeling of the magnetic field of the applied MLT using 
the developed program make it possible to determine the optimal value of the non-magnetic 
wall H width of the tank 1 of the applied MLT, at which the strength of the longitudinal 
magnetic field оH  of the permanent magnet will be sufficient to form an ultrasonic torsion 
wave in medium of magnetostrictive sound line. 

The introduction of the coefficient o , calculated by the approximate formula (15) al-
lows us to reduce the number of required iterations by 50 times approximately. This signifi-
cantly reduces the requirements of the program for computer resources, reduces the time for 
the problem solution and allows to obtain the results with high accuracy. 

The research was carried out at the expense of a grant from the Russian Science Foun-
dation № 23-29-00207, https://rscf.ru/project/23-29-00207/ 
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