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Abstract. This paper aims to investigate the oscillatory characteristics of a 

neutral third order nonlinear difference equation. Utilizing the comparison 

principle, we get some new standards that guarantee that any solution to the 

neutral difference equation oscillates or approaches zero. Applications are 

then examined to show that the key theorems are valid. 

1 Introduction 

Consider the third order nonlinear difference equation with neutral terms 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) + 𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) = 0,  𝑚 ≥ 𝑚0                     (1) 

 

where 𝑦(𝑚) = 𝑥(𝑚) ± 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)) and 𝛽, 𝛾, 𝜆 are the ratio of odd positive integers. 

We assume throughout the article that 

H1) {𝜙(𝑚)}, {𝜈(𝑚)}, {𝜁(𝑚)}, {𝜔(𝑚)} are positive real sequences; 

H2) 𝑣 and 𝜌 are positive integers ∋ 𝜌(𝑚) < 𝑚, 𝑣(𝑚) < 𝑚 and lim𝑚→∞  𝜌(𝑚) = ∞; 

H3) lim𝑚→∞  𝐴(𝑚,𝑚1) → ∞ where 𝐴(𝑚,𝑚1) = ∑𝑠=𝑚1
𝑚−1  

1

𝜙

1
𝛽(𝑠)

; 

 
H4) ∑𝑠=𝑚1

∞  𝜁(𝑠) = ∞ or 

∑  

∞

𝑠=𝑚1

1

𝜈(𝑠)
< ∞ and ∑  

∞

𝑠=𝑚1

1

𝜈(𝑠)
∑  

𝑠−1

𝑢=𝑠1

[
1

𝜙(𝑢)
∑  

𝑢−1

𝑣=𝑢1

 𝜁(𝑣)]

1
𝛽

= ∞; 

 

H5) Furthermore, 𝑣(𝑚) is strictly increasing and ℎ(𝑚) = 𝑣−1(𝜌(𝑚)) < 𝑚 with 

lim𝑚→∞  ℎ(𝑚) = ∞ : 

A nontrivial real sequence {𝑥(𝑚)} that is determined for each 𝑚1 ≥ 𝑚0 and satisfies 

equation (1.1) is referred to as a solution of (1.1). If a solution {𝑥(𝑚)} is neither eventually 

positive nor eventually negative, it is referred to as oscillatory; otherwise, it is referred to as 

nonoscillatory. 

Because it is used in several fields of engineering and natural science, the oscillation 

theory of functional differential equations has attracted a lot of interest recently. Difference 

equations are used to approximate differential equations. It aids in the advancement of digital 
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machines. Differential equations are used in many different fields of science, engineering, 

and statistics ([1], [3], [4], [5], [11], [12]). Further references for the oscillatory and 

asymptotic behaviour of the second order difference equation include 

([2], [6], [7], [8], [13], [14]) Numerous areas of science and mathematics, including 

population dynamics, delayed network system dynamics, and others, can benefit from the 

application of neutral delay difference equations. For neutral difference equations, various 

writers have recently investigated novel oscillation conditions [10]. By utilising the 

comparison theorem, our goal in this study is to give the oscillation and asymptotic results 

for equation (1.1). 

2 Main Results 

The demonstration of our main result depends heavily on the next lemma. 

Lemma 2.1. (see [9]) "Let 𝜁(𝑚) be a positive real sequence and let 𝜌 be a positive 

integer. If the difference inequality 

 
Δ𝑦(𝑚) + 𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) ≤ 0, 

 

has an eventually positive solution, then the difference equation 

 
Δ𝑦(𝑚) + 𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) = 0, 

 

has an eventually positive solution". 

Theorem 2.2. Let 𝑦(𝑚) = 𝑥(𝑚) + 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)) and (H1) - (H4) hold. Suppose that 

𝜆 ≤ 1, lim𝑚→∞  𝜔(𝑚) = 0 and ∃𝑐 ∈ (0,1) such that 

 

Δ𝑈(𝑚) + 𝑐𝛾𝜁(𝑚) (∑  𝑚−1
𝑠=𝑚5

 
𝐴(𝑠,𝑚4)

𝜈(𝑠)
)
𝛾

𝑈
𝛾

𝛽(𝜌(𝑚)) = 0      (2) 

 

is oscillatory. Then, every (1) solution is oscillatory or approaches to zero. 

Proof. Let {𝑥(𝑚)} is a non oscillatory solution of (1). We can posit that 𝑥(𝑚) > 0, then 

there exists 𝑚1 ≥ 𝑚0 such that 𝑥(𝑚) > 0, 𝑥(𝜌(𝑚)) > 0 and 𝑥(𝑣(𝑚)) > 0∀𝑚 ≥ 𝑚1. 

From (1), we have 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) = −𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) ≤ 0 ,𝑚 ≥ 𝑚1  (3) 

 

which implies 𝜙(𝑚)Δ(𝜈(𝑚)Δ𝑦(𝑚))𝛽 is nonincreasing and of one sign. We claim that, 

∃ 𝑚2 ≥ 𝑚1 ∋ Δ(𝜈(𝑚)Δ𝑦(𝑚)) > 0 for all 𝑚 ≥ 𝑚2. Contrarily, suppose that there is 𝑚2 ≥
𝑚1 and a constant 𝑒 > 0 ∋ 

 

𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽 ≤ −𝑒, 𝑚 ≥ 𝑚2

(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽 ≤ −𝑒
1

𝜙(𝑚)
, 𝑚 ≥ 𝑚2

 

 

Summing up the last inequality from 𝑚2 to 𝑚 − 1 and using (H3), thus 

 

𝜈(𝑚)Δ𝑦(𝑚) ≤ 𝜈(𝑚2)Δ𝑦(𝑚2) − 𝑒∑  𝑚−1
𝑠=𝑚2

1

𝜙(𝑠)
1
𝛽

→ −∞  as 𝑚 → ∞, 

Again summing from 𝑚3 to 𝑚 − 1, we obtain 
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𝑦(𝑚) ≤ 𝑦(𝑚3) − 𝑒∑  𝑚−1
𝑠=𝑚3

1

𝜈(𝑠)
∑  𝑠−1
𝑢=𝑠3

1

𝜙(𝑢)
1
𝛽

→ −∞  as 𝑚 → ∞,  

 

which is a contradiction. Hence Δ(𝜈(𝑚)Δ𝑦(𝑚)) > 0 for all 𝑚 ≥ 𝑚2. 

Now, the following two cases will be analyzed 

 
I 𝑦(𝑚) > 0, Δ𝑦(𝑚) > 0, or 

II 𝑦(𝑚) > 0, Δ𝑦(𝑚) < 0. 

 

Case I: In this case 𝑦(𝑚) = 𝑥(𝑚) + 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)), we carry 

 

𝑥(𝑚)  = 𝑦(𝑚) − 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)) = 𝑦(𝑚) (1 −
𝜔(𝑚)𝑥𝜆(𝑣(𝑚))

𝑦(𝑚)
)

 ≥ 𝑦(𝑚) (1 −
𝜔(𝑚)𝑦𝜆(𝑚)

𝑦(𝑚)
) = 𝑦(𝑚) (1 −

𝜔(𝑚)

𝑦1−𝜆(𝑚)
)

 

 

In light of the fact that {𝑦(𝑚)} is a nondecreasing and there exists a constant such that  

𝑦(𝑡) ≥ 𝑘, where 𝑘 > 0. Considering this, the last inequality becomes 

 

𝑥(𝑚) ≥ (1 −
𝜔(𝑚)

𝑘1−𝜆
) 𝑦(𝑚) 

Or 
𝑥(𝑚) ≥ 𝑐𝑦(𝑚), 

 

where 𝑐 ∈ (0,1).  Now, combining the inequalities (2) and (3), we have 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) ≤ −𝑐𝛾𝜁(𝑚)𝑦𝛾(𝜌(𝑚)).               (4) 

 

Hence Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) ≤ 0, ∀𝑚 ≥ 𝑚3 and so, we have  

Δ(𝜈(𝑚)Δ𝑦(𝑚)) > 0, Δ𝑦(𝑚) > 0, ∀𝑚 ≥ 𝑚4. It follows that 

 

𝜈(𝑚)Δ𝑦(𝑚) = 𝜈(𝑚4)Δ(𝑚4) + ∑
(𝜙(𝑠)(Δ(𝜈(𝑠)Δ𝑦(𝑠)))𝛽)

1
𝛽

𝜙
1
𝛽(𝑠)

𝑚−1

𝑠=𝑚4

  

≥ 𝜙
1

𝛽(𝑚)Δ(𝜈(𝑚)Δ𝑦(𝑚))∑𝑠=𝑚4
𝑚−1  

1

𝜙
1
𝛽(𝑠)

.  

 

Using the condition (H3) 

 

𝜈(𝑚)Δ𝑦(𝑚) ≥ 𝐴(𝑚,𝑚4)𝜙
1

𝛽(𝑚)Δ(𝜈(𝑚)Δ𝑦(𝑚)).                      (5) 

 

Summing the previously mentioned inequality to 𝑚5 to 𝑚 − 1, we get 

 

𝑦(𝑚)  ≥ ∑  𝑚−1
𝑠=𝑚5  

𝐴(𝑠,𝑚4)

𝜈(𝑠)
𝜙
1

𝛽(𝑠)Δ(𝜈(𝑠)Δ𝑦(𝑠))

 ≥ ∑  𝑚−1
𝑠=𝑚5  

𝐴(𝑠,𝑚4)

𝜈(𝑠)
[𝜙

1

𝛽(𝑚)Δ(𝜈(𝑚)Δ𝑦(𝑚))] .
                      (6) 

 

Combining (4) and (6), we obtain 
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Δ𝑈(𝑚) + 𝑐𝛾𝜁(𝑚)( ∑  

𝑚−1

𝑠=𝑚5

 
𝐴(𝑠,𝑚4)

𝜈(𝑠)
)

𝛾

𝑈
𝛾
𝛽(𝜌(𝑚)) ≤ 0, 

 

where 𝑈(𝑚) = 𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽. Hence by Lemma 1 the corresponding equation 

 

Δ𝑈(𝑚) + 𝑐𝛾𝜁(𝑚)( ∑  

𝑚−1

𝑠=𝑚5

 
𝐴(𝑠,𝑚4)

𝜈(𝑠)
)

𝛾

𝑈
𝛾
𝛽(𝜌(𝑚)) = 0, 

 

has a positive answer as well, which is the opposite of the hypothesis. 

Case II: Since {𝑦(𝑚)} is a positive sequence such that lim𝑚→∞  𝑦(𝑚) = 𝑏 ≥ 0. Now we 

have to prove that 𝑏 = 0. Assume that 𝑏 > 0. From equation (1) 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) = −𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) ≤ 0. 

 

Summing the aforementioned inequality from 𝑚1 to 𝑚 − 1, we carry 

 

𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽 ≤ −𝑏𝛾 ∑  

𝑚−1

𝑠=𝑚1

 𝜁(𝑠),

Δ(𝜈(𝑚)Δ𝑦(𝑚)) ≤ −𝑏
𝛾
𝛽 (

1

𝜙(𝑚)
∑  

𝑚−1

𝑠=𝑚1

 𝜁(𝑠))

1
𝛽

.

 

 

Again Summing the last inequality, we have 

 

(𝜈(𝑚)Δ𝑦(𝑚)) ≤ −𝑏
𝛾
𝛽 (∑  

𝑚−1

𝑠=𝑚1

 
1

𝜙(𝑠)
∑  

𝑠−1

𝑢=𝑠1

 𝜁(𝑢))

1
𝛽

. 

 

Again summing from 𝑚1 to ∞, we obtain 

 

𝑦(𝑚) ≤ −𝑏
𝛾
𝛽 ∑  

∞

𝑠=𝑚1

1

𝜈(𝑠)
[∑  

𝑠−1

𝑢=𝑠1

 
1

𝜙(𝑢)
∑  

𝑢−1

𝑣=𝑢1

 𝜁(𝑣)]

1
𝛽

. 

 

Using the condition (H4) in the aforementioned inequality, it becomes 𝑦(𝑚) ≤ −∞ 

which is a contradiction. Hence lim𝑚→∞  𝑦(𝑚) = 𝑏 = 0. The proof is completed. 

Corollary 2.3. Let lim𝑚→∞  𝜔(𝑚) = 0, 𝛾 ≤ 𝛽 and the condition (H1) to (H4) hold. If 

 

lim inf
𝑚→∞

 ∑  𝑚−1
𝑢=𝜌(𝑚) 𝜁(𝑢) (∑  

𝜌(𝑢)−1
𝑠=𝑚0

 
𝐴(𝑠,𝑠0)

𝜈(𝑠)
)
𝛾

= ∞,  (7) 

 

then (1.1) has oscillatory solution or tends to zero. 

Theorem 2.4. Let 𝑦(𝑚) = 𝑥(𝑚) − 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)) here 𝜆 ≤ 1 and (H1) - (H5) hold. 

Moreover, suppose that there exist 𝜃 ∈ (0,1) and a positive sequence 𝜓(𝑚) ∋ ℎ(𝑚) ≤
𝜓(𝑚) < 𝑚 with lim𝑚→∞  𝜓(𝑚) = ∞ and there exists a constant 𝜃 ∈ (0,1). If 
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Δ𝑋(𝑚) + 𝜁(𝑚)( ∑  

𝑚−1

𝑠=𝑚5

 
𝐴(𝑠,𝑚4)

𝜈(𝑠)
)

𝛾

𝑋
𝛾
𝛽(𝜌(𝑚)) = 0 

 

And 

 

Δ𝑊(𝑚) ≤ 𝜃
𝛾
𝜆Γ(𝑚)

ℎ
𝛾
𝜆(𝑚)

𝜈
𝛾
𝜆(𝑚)

𝐴(ℎ(𝑚), 𝜓(𝑚))
𝛾
𝜆 [𝑊

𝛾
𝜆𝛽(𝜓(𝑚))] = 0, 

 

Where 

 

Γ(𝑚) =
𝜁(𝑚)

𝜔
𝛾
𝜆(𝑣−1(𝜌(𝑚)))

 

 

are oscillatory, then the solution of (1) is oscillatory or approaches to zero.  

Proof. Let {𝑥(𝑚)} is a nonoscillatory solution of (1). We may assume that 𝑥(𝑚) > 0, 

then there exists 𝑚1 ≥ 𝑚0 such that 𝑥(𝑚) > 0, 𝑥(𝜌(𝑚)) > 0 and 𝑥(𝑣(𝑚)) > 0∀𝑚 ≥ 𝑚1. 

From (1.1), we have 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) = −𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) ≤ 0,   𝑚 ≥ 𝑚1               (8) 

 

since (𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) is nonincreasing and of one sign. From the Proof of 

Theorem 2.2, Δ(𝜈(𝑚)Δ𝑦(𝑚)) > 0 for all 𝑚 ≥ 𝑚2. The next four cases will be examined 

now. 

 
 I 𝑦(𝑚) > 0, Δ𝑦(𝑚) > 0,

 II 𝑦(𝑚)  > 0, Δ𝑦(𝑚) < 0,
 III 𝑦(𝑚)  < 0, Δ𝑦(𝑚) > 0,

 IV 𝑦(𝑚)  < 0, Δ𝑦(𝑚) < 0.

 

 

Case I: Here 𝑦(𝑚) = 𝑥(𝑚) − 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)). Since 𝑥(𝑚) ≥ 𝑦(𝑚). Thus 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) = −𝜁(𝑚)𝑥𝛾(𝜌(𝑚)) ≤ −𝜁(𝑚)𝑦𝛾(𝜌(𝑚))      (9) 

 

Since Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))𝛽) ≤ 0 for all and so, we have Δ(𝜈(𝑚)Δ𝑦(𝑚))0, 

Δ𝑦(𝑚) > 0 for all 𝑚 ≥ 𝑚4. It follows that 

 

𝜈(𝑚)Δ𝑦(𝑚) = 𝜈(𝑚4)Δ𝑦(𝑚4) + ∑
(𝜙(𝑠)(Δ(𝜈(𝑠)Δ𝑦(𝑠)))𝛽)

1
𝛽

𝜙
1
𝛽(𝑠)

𝑚−1

𝑠=𝑚4

  

 

≥ 𝜙
1

𝛽(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))∑𝑠=𝑚4
𝑚−1  

1

𝜙
1
𝛽(𝑠)

. 

 

Using the condition (H3) 

 

𝜈(𝑚)Δ𝑦(𝑚) ≥ 𝐴(𝑚,𝑚4)𝜙
1

𝛽(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))                (10) 

 

Summing the previously noted inequality to 𝑚5 to 𝑚 − 1, we get 
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𝑦(𝑚)  ≥ ∑  𝑚−1
𝑠=𝑚5  

𝐴(𝑠,𝑚4)

𝜈(𝑠)
𝜙
1

𝛽(𝑠)(Δ(𝜈(𝑠)Δ𝑦(𝑠)))

 ≥ ∑  𝑚−1
𝑠=𝑚5  

𝐴(𝑠,𝑚4)

𝜈(𝑠)
[𝜙

1

𝛽(𝑚)(Δ(𝜈(𝑚)Δ𝑦(𝑚)))] .
  (11) 

 

Combining (9) and (11), we obtain 

 

Δ𝑋(𝑚) + 𝜁(𝑚) (∑  𝑚−1
𝑠=𝑚5  

𝐴(𝑠,𝑚4)

𝜈(𝑠)
)
𝛾

𝑋
𝛾

𝛽(𝜌(𝑚)) ≤ 0, 

 

where 𝑋(𝑚) = 𝜙(𝑚)Δ(𝜈(𝑚)Δ𝑦(𝑚))𝛽. Hence by Lemma 1 the corresponding equation 

 

Δ𝑋(𝑚) + 𝜁(𝑚) (∑  𝑚−1
𝑠=𝑚5  

𝐴(𝑠,𝑚4)

𝜈(𝑠)
)
𝛾

𝑋
𝛾

𝛽(𝜌(𝑚)) = 0, 

 

has a positive as well, which is contradiction. 

Case II: By Case II of Theorem 2.2, the solution of (1.1) tends to zero. 

Case III: Assume that 𝑧(𝑚) = −𝑦(𝑚). Obviously, Δ𝑧(𝑚) = −Δ𝑦(𝑚) < 0 and 

Δ(𝜈(𝑚)Δ𝑧(𝑚)) < 0. This impossible due to Δ(𝜈(𝑚)Δ𝑧(𝑚)) > 0 

Case IV: If we put 𝑧(𝑚) = −𝑦(𝑚), then 

 

𝑧(𝑚) = −[𝑥(𝑚) − 𝜔(𝑚)𝑥𝜆(𝑣(𝑚))] ≤ 𝜔(𝑚)𝑥𝜆(𝑣(𝑚)) 

or 

𝑥(𝑣(𝑚)) ≥ (
𝑧(𝑚)

𝜔(𝑚)
)

1

𝜆
, 

Hence 

 

𝑥(𝑚) ≥ (
𝑧(𝑣−1(𝑚))

𝜔(𝑣−1(𝑚))
)

1

𝜆
. 

 

Therefore equation (1) becomes, 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑧(𝑚)))𝛽)  = 𝜁(𝑚)𝑥𝛾(𝜌(𝑚))

 ≥
𝜁(𝑚)

𝜔
𝛾
𝜆(𝑣−1(𝜌(𝑚)))

𝑧
𝛾

𝜆(𝑣−1(𝜌(𝑚)))

 ≥ Γ(𝑚)𝑧
𝛾

𝜆(ℎ(𝑚)).

              (12) 

 

Now for 𝑚2 ≤ 𝑝 ≤ 𝑞. We see that there exists a constant 𝜃 ∈ (0,1) such that 

 
𝑧(ℎ(𝑚)) ≥ 𝜃ℎ(𝑚)Δ𝑧(ℎ(𝑚)).                                        (13) 

 

Substituting (13) in (12), we get 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑧(𝑚)))𝛽) ≥ Γ(𝑚)𝜃
𝛾

𝜆ℎ
𝛾

𝜆(𝑚) [
𝜈(ℎ(𝑚))Δ𝑧(ℎ(𝑚))

𝜈(ℎ(𝑚))
]

𝛾

𝜆
,

Δ(𝜙(𝑚)(Δ(𝑉(𝑚)))𝛽) ≥ Γ(𝑚)𝜃
𝛾

𝜆ℎ
𝛾

𝜆
(𝑚) [

𝑉(ℎ(𝑚))

𝜈(ℎ(𝑚))
]

𝛾

𝜆
,

 (14) 

 

where 𝑉(𝑚) = 𝜈(𝑚)Δ𝑧(𝑚). 
For 𝑝 ≥ 𝑞 ≥ 𝑚2, we see that 
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𝑉(𝑝) − 𝑉(𝑞)  = −∑  

𝑞−1

𝑠=𝑝

 𝜙
1
𝛽(𝑠)𝜙

1
𝛽(𝑠)Δ𝑉(𝑠),

 ≥ 𝐴(𝑝, 𝑞) [−𝜙
1
𝛽(𝑞)Δ(𝜈(𝑞)Δ𝑧(𝑞))] .

 

 

Setting 𝑝 = ℎ(𝑚) and 𝑞 = 𝜓(𝑚) above inequality becomes 

 

𝜈(ℎ(𝑚))Δ𝑧(ℎ(𝑚)) ≥ 𝐴(ℎ(𝑚), 𝜓(𝑚)) [−𝜙
1

𝛽(𝜓(𝑚))(Δ(𝜈(𝜓(𝑚))Δ𝑧(𝜓(𝑚))))]. (15) 

 

Combining (2.14) and (2.15), we get 

 

Δ(𝜙(𝑚)(Δ(𝜈(𝑚)Δ𝑧(𝑚)))𝛽) ≥

𝜃
𝛾

𝜆Γ(𝑚)
ℎ
𝛾
𝜆(𝑚)

𝜈
𝛾
𝜆(𝑚)

𝐴(ℎ(𝑚), 𝜓(𝑚))
𝛾

𝜆 [−𝜙
1

𝛽(𝜓(𝑚))(Δ(𝜈(𝜓(𝑚))Δ𝑧(𝜓(𝑚))))]

𝛾

𝜆

. 

 

Thus, 

 

Δ𝑊(𝑚) ≤ −𝜃
𝛾

𝜆Γ(𝑚)
ℎ
𝛾
𝜆(𝑚)

𝜈
𝛾
𝜆(𝑚)

𝐴(ℎ(𝑚), 𝜓(𝑚))
𝛾

𝜆 [𝑊
𝛾

𝜆𝛽(𝜓(𝑚))], 

 

where 𝑊(𝑚) = −𝜙(𝑚)Δ(𝜈(𝑚)Δ𝑧(𝑚))𝛽. Since the equivalent equation likewise has a 

positive solution according to Lemma 1, this is in contradiction. Hence the evidence.  

Corollary 2.5. Let 𝜆 ≤ 1 and (H1) to (H5) hold. Moreover, assume that the positive 

sequence 𝜓(𝑚) such that ℎ(𝑚) ≤ 𝜓(𝑚) ≤ 𝑚 with lim𝑚→∞  𝜓(𝑚) = ∞ and there exists a 

constant 

𝜃 ∈ (0,1).  If 
 

lim inf
𝑚→∞

  ∑  

𝑚−1

𝑢=𝜌(𝑚)

𝜁(𝑢)( ∑  

𝜌(𝑢)

𝑠=𝑚0

 
𝐴(𝑠,𝑚3)

𝜈(𝑠)
)

𝛾

= ∞ 

 

And 

 

lim inf
𝑡→∞

 ∑  𝑚−1
𝑢=𝜓(𝑚) 𝜁(𝑢)Γ(𝑢)

ℎ
𝛾
𝜆(𝑢)

𝜈
𝛾
𝜆(𝑢)

𝐴(ℎ(𝑢), 𝜓(𝑢))
𝛾

𝜆 = ∞, 

 

then (1) has oscillatory solution or tends to zero. 

3.3  Examples 

Example 3.1. Take the nonlinear equation 

 

Δ(
1

𝑚+2
(Δ𝑚2Δ(𝑥(𝑚) +

1

𝑚+1
𝑥
1

5 (
𝑚3

2
)))

4

) + 𝑥4 (
𝑚3

2
) ,   𝑚 ≥ 1,     (16) 

 

where 𝜙(𝑚) =
1

𝑚+2
, 𝜈(𝑚) = 𝑚2, 𝜔(𝑚) =

1

𝑚+1
, 𝑣(𝑚) = 𝜌(𝑚) =

𝑚3

2
, 𝜁(𝑚) = 1, 𝛽 =

𝛾 = 4, and 𝜆 =
1

5
. So clearly it satisfies the conditions (H1) and (H2). Now we have to 

check these values satisfy the conditons (H3), (H4) and corollary 2.3. Therefore, 
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lim
𝑚→∞

 𝜔(𝑚) =
1

𝑚 + 1
= 0

𝐴(𝑚, 1) = ∑  

𝑚−1

𝑠=1

 
1

𝜙
1
𝛽(𝑠)

= ∑  

𝑚−1

𝑠=1

 
1

(
1

𝑠 + 2
)

1
4

lim
𝑚→∞

 𝐴(𝑚, 1) =∑  

∞

𝑠=1

 
1

(
1

𝑠 + 2
)

1
4

= ∞

 

 

and 

lim inf
𝑚→∞

  ∑  

𝑚−1

𝑢=
𝑚3

2 (

 
 
∑  

𝑢3

2
−1

𝑠=1

  (𝑠2)
1
4

)

 
 
= ∞ 

 

Hence, every solution of (3.1) is oscillatory or tends to zero because all the conditions 

and Corollary 2.3 are satisfied. 

Example 3.2. Take the nonlinear equation 

 

Δ(
1

𝑚+2
(Δ𝑚2Δ (𝑥(𝑚) −

1

𝑚+1
𝑥
1

5 (
𝑚3

2
)))

4

)+ 𝑥4 (
𝑚3

4
) ,  𝑚 ≥ 1     (17) 

 

where 𝜙(𝑚) =
1

𝑚+2
, 𝜈(𝑚) = 𝑚2, 𝜔(𝑚) =

1

𝑚+1
, 𝑣(𝑚) =

𝑚3

2
, 𝜌(𝑚) =

𝑚3

4
, 𝜁(𝑚) = 1, 𝛽 =

𝛾 = 4, and 𝜆 =
1

5
. So ℎ(𝑚) =

𝑚3

2
 and we take 𝜓(𝑚) =

3𝑚3

4
. Now 

 

lim inf
𝑚→∞

  ∑  

𝑚−1

𝑢=
𝑚3

2 (

 
 
∑  

𝑢3

2
−1

𝑠=1

  (𝑠2)
1
4

)

 
 
= ∞ 

and 

 

lim inf
𝑡→∞

  ∑  

𝑚−1

𝑢=
3𝑚2

4

1

(
1

𝑚 + 15
) (
8
𝑚3
)

(𝑚3)20

(2𝑚2)20
∑  

𝑚3

2
−1

𝑠=
3𝑚3

4

1

1
(𝑠 + 2)4

= ∞ 

 

Therefore every solution of (3.2) is oscillatory or tends to zero. 

4 Conclusion 

For the oscillatory behavior of solutions to a nonlinear equation with a neutral term, we 

have established some new criteria in this paper. The established findings are brand-new 

and add to earlier findings in the literature. 
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