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Abstract. The behavior of soils in the foundations of buildings and 

structures, as well as in ground structures and massifs, is formed under the 

influence of force (surface and volume) and physical (temperature, 

humidity, etc.) influences. However, if mathematical modeling of force 

impacts in ground environments can be considered a completely solvable 

task today, then we consider such a statement premature in relation to 

physical impacts. The peculiarity of physical impacts is that they can be 

both the cause of forced deformations and the cause of changes in soil 

properties. The ground environment with creep properties, which is under 

both force and physical influences, is considered. The systems of equations 

of mechanics of a deformable solid for a triaxial stress state and a 

differential equation of thermal conductivity are used. Within the 

framework of the model of a linearly deformable continuous isotropic 

body, mathematical modeling of physical impacts in ground media with 

creep properties was performed. In a quasi-elastic formulation, a solution is 

obtained for an unlimited soil massif with a flat surface under the action of 

a plane -parallel heat flow. In the absence of force influences in a quasi-

elastic medium for deformations from physical influences, we have the 

usual equations of elasticity theory. The solution obtained for an unlimited 

soil massif allows the calculation of stresses taking into account creep 

caused by temperature fluctuations on the surface in it. Keywords: 

mathematical modeling, physical impacts, forced deformations, non-

invariant soil environment, linear-hereditary creep, stress-strain state.  

1 Introduction  

The behavior of soils in the foundations of buildings and structures, as well as in ground 

structures and massifs, is formed under the influence of force (surface and volume) and 

physical (temperature, humidity, etc.) influences [1-4]. However, if mathematical modeling 

of force impacts in ground environments can be considered a completely solvable task 

today, then we consider such a statement premature in relation to physical impacts [5-7]. 

The peculiarity of physical impacts is that they can be both the cause of forced 

deformations and the cause of changes in soil properties [8, 9]. An example is structurally 

unstable frozen, permafrost, loess and swelling soils, which are characterized by the ability 

to sharply reduce the strength of structural bonds between particles under physical 
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influences: when heated – for some, humidification, which may be associated with heating 

– for others. Soils, especially in the presence of physical influences, do not have great 

stability of deformations under load, and with modern requirements for the accuracy of 

calculation results, it is impossible to ignore the pronounced property of soils to deform 

over time, i.e. creep [10-12]. 

2 Materials and methods 

We consider a ground environment with creep properties, which is under both force and 

physical influences. Taking the model of a linearly deformable solid isotropic body, we will 

write the system of equations for a triaxial stress state in the form of only the first line, 

bearing in mind that the other two lines can be obtained by a circular permutation of the 

indices x, y, z [13-16]. 

Let's write the differential equations of equilibrium in displacements are: 
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The conditions of continuity of deformations are:  
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Non - invariant in time the linear-hereditary creep equation is: 
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In the form solved with respect to stresses, they look like the folliwing: 
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The following notation is used in dependencies (1) - (4): 
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2 2 2
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 ;o x y z =  +  +    

в  - forced deformations; 

( ), ( ), ( ), ( )c o c oS S L L   - operators having the form: 
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ot  - the moment of the start of the download; 
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 = −   - the kernel of the creep equation; 

( , )cR t   - kernel resolvent ( , )cK t  ; 
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( , )oR t   - kernel resolvent ( , )oK t  ; 
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1 2 3( , ), ( , ), ( , )F t F t F t    - experimentally obtained dependencies and of the three 

functions, only two are independent, and the third is uniquely expressed through them by 

the formula  
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Between coefficients ( , )t   and ( , )t   there is a dependency  
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3 Research results 

In the case of a quasi-elastic medium, the first Poisson's ratio ( , )t  does not depend on 

the moment of application of the load  and ( )t =  =  , 

( , ) ( , ) ( , )c oK t K t K t =  =  . 

Then the differential equations of equilibrium (1) take the form: 
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and, going to the operator cL , the reverse cS : 
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Putting the force effects equal to zero, we have the usual equations of elasticity theory 

for deformations from physical influences in a quasi-elastic medium [17-19]. 
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For a quasi-elastic medium, the deformation equations (3) take the form: 
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where ( )L  - an operator having the form: 

0

( ) ( ) ( ) ( , )

t

t

L t K t d =  +      

We consider the problem for an unlimited soil mass with a flat surface, which we will 

consider an infinite half-space, which is under the action of forced deformations в caused 

by a plane -parallel heat flow. At the same time, the displacements u  and v  in the 

directions perpendicular to the heat flow, as well as deformations x and y , are equal to 

zero. Displacements w and deformations z depend only on the variable z . Volumetric 

forces are considered equal to zero. In the case of a quasi-elastic soil mass, only one 

equation remains from equations (6) 

2

2

1
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z вw

z z z
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= = 
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from where, integrating, we get 

1

1
z в C

+
 =  +

−
                                              (9) 

The constant C is determined by the beginning of the reference scale of forced 

deformations. Assuming that by 0в =  the deformation of the array is equal to zero, we 

get: 

1
0;

1
z вC

+
=  = 

−
 (10) 

To determine the stresses, it is necessary to solve equations (7), in which it is necessary 

to put: 

; 0x y x y =   =  =   and z , according to (10), equal to 
1

;
1

в

+


−
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From here, excluding в , we get: 
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The last equality means that 

0z =                                                       (13) 

This conclusion could also be reached directly by noting that the outer surface of the 

soil mass is free from normal stresses z ; from the equilibrium condition of any layer of 

finite thickness, these stresses should be zero everywhere. 

Given (13), we get from (11): 

( )
1

x в

E
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−
 (14) 

or in expanded form:

0

( ) ( ) ( , )
1

t

x x в

t

E
t K t d +     = − 

−  (15) 

In the right part, all values can be functions of time. 

Considering further the soil massif invariant in time, we determine the stresses 

x y =  from forced deformations в from equation (15), which receives water: 

( ) ( ) ( ) ( )
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t

x x в

E
t K t d t

−

 +   −   = − 
−                         (16) 

By replacing the independent variable  under the sign of the integral by the formulas: 

; ,t t = −  = −   

we get the law (16) in the following form: 

0
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Suppose that the effect of forced deformations в in a soil massif is caused by the 

temperature 0Т on its surface, which varies over time according to an arbitrary periodic 

law, represented as a series: 

sin( )o n n nT A t=  +             (18) 

The temperature field inside the soil mass is determined, in addition to the boundary 

conditions (18), by the differential equation of thermal conductivity [20]: 

2 2 2

2 2 2

1T T T T

t Rc x y z

    
= + + 

    
,                      (19) 

where R – thermal resistance of the array; 

c – its specific heat capacity. 

Since the temperature at the boundary of the soil mass does not depend on the 

coordinates x and y , then inside the array it will change only in depth z . Therefore, partial 

derivatives of x and y  will disappear in equation (19) and it will take the form: 

2

2

1T T

t Rc z

 
= 

 
 (20) 

Solution of equation (20) for the n -th term of the series (18) of surface temperature

0z =  

0 0 sin( )z n n nT T A t= = =  +                         (21) 

has the form: 

sin( )nz

n n n nT A e t z
−

=  − + ,                        (22) 

where 

2

n
n

Rc
 =   (23) 

Thus, the temperature field in the array is expressed by the formula 

sin( )nz

n n n nT A e t z
−

=  − +                                    (24) 

Then solving the problem according to the formula (17), in which ( ) ( )в t T t =   ( - 

is the coefficient of thermal expansion), for each member of the series (18) in the case of a 

steady temperature-stressed oscillatory process, we obtain: 
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 ( ) ( )sin ( ) ,n n nt z t z =   +                                    (25) 

where ( )n z - the amplitude of voltage fluctuations, and 
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( )n z  - the phase shift angle, and 
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( ), ( ), ( )n n nA B C   и ( )nD   they are called sine and cosine transformations of 

the kernel ( )K   and its resolvents ( )R  , and are expressed by formulas: 

0 0

( ) ( )sin ; ( ) ( )cos ;A K d B K d

 

 =     =      

0 0

( ) ( )sin ; ( ) ( )cos .C R d D R d

 

 =     =      

4 Conclusions and discussion  

Usually forced deformations can be considered a given function of time ( )в t , then the 

equations will have only one independent variable – time. It is easy to see that a time-

invariant medium whose forced deformations change according to a given law in time can 

be considered as a medium with variable properties. Therefore, the creep calculation 

methods described above can be applied to it, as well as to a non-invariant medium 

operating under constant or variable forced deformations. For an environment with 

unchanging properties, all dependencies must be time invariant. In this case, the 
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characteristics of the medium that depend on two variables t and  turn into functions of the 

difference between these two variables t −  , and the functions t  turn into constants. 

The solution of the problem obtained above can be used to calculate stresses taking into 

account creep in a soil massif from the action of forced deformations caused by temperature 

fluctuations on its surface. 
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