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Abstract. In ray tracing methods, the key point is to choose the direction 
for the rays. If many rays are needed not everywhere, but only in some parts 
of the scene, it is reasonable to increase the selection in these places. As a 

result, computing resources are not wasted where there is no such need. That 
is, you need to make selections by significance. In this paper, the 
visualization of functionally defined scenes is considered. A method of 
multiple sampling by significance is proposed. The method uses weight 
functions for multiple sampling by significance. The weighting functions 
minimize the variance of the multiple sample estimation by significance. 
Weights can be negative, which reduces the variance. In addition, weights 
allow you to have additional flexibility when developing a sampling method 
that accelerates calculations. As a result, acceptable weights were obtained 

when modeling light transfer. The variance was reduced by using weights in 
the sample. The dependence of the mean square error on the number of 
samples is given. Highly realistic functionally defined scenes are visualized. 
The method is implemented using CPU and GPU. Diagrams of the method's 
performance are given. Keywords: ray tracing, functionally defined scene, 
weighing functions, environment sampling, multiple sampling by 
significance 

1 Introduction 

The following methods of sampling by significance are known. The environment sample 

includes ambient lighting and a light dome. Multiple significance sampling is used for both 
light and materials with a balance between them. Extended multiple sampling by significance 

is used for realistic rendering of materials such as leather, marble, wax, etc. The Monte Carlo 

method is often used to simulate light transport [1, 2]. However, the Monte Carlo method is 

characterized by slow convergence. To reduce the variance, methods of sampling by 

significance were proposed, as well as their extension-multiple sampling by significance [3, 

4]. Multiple significance sampling is used in bidirectional path sampling methods [5, 6], 

adaptive path sampling methods [7], modern path tracing methods for light transport [8], etc. 

For the effectiveness of multiple sampling by significance, weight functions are used. The 

weight functions, known as the balance heuristic, give a smaller variance [9]. Alternative 

weights have also been proposed to address the disadvantages of the balance heuristic 
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variance. The application of different weighing methods depends on the specific task. 

Multiple significance sampling is used to mix bidirectional reflection distribution function 

and sampling methods. Multiple significance sampling is also used to select light transport 

paths [10]. The optimal target densities for the local direction of the path are described in 

[11]. In Monte Carlo Markov chain methods, multiple importance sampling is used to 

combine the contribution of the chains [12]. The distribution of samples based on the 

bidirectional distribution function of scattering, light, and photon maps is described in [13]. 

The method of the bi-directional reflection distribution function with oriented light sampling, 

which selects light sources based on importance values, is described in [14]. 

Standard methods of direct assessment of illumination consist in the random selection of 

light in accordance with the distribution of light. The light is selected in proportion to its 
actual contribution to the integral. However, this cannot be calculated analytically. Despite 

the fact that the light selection method may be close to ideal, an error in the estimation can 

significantly increase the variance or lead to bias. 

In this paper, we propose weighting functions that minimize the variance of the estimation 

of a multiple sample of importance. Weights can be negative; this allows you to reduce the 

variance. The paper describes the weights of a multiple sample of importance. The o method 

is implemented, which provides significant acceleration. In the proposed method, the number 

of samples is set. 

2 Method Description 

Functionally defined surface is a composition of the basic function plus perturbations [15, 
16]: 
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where q is the perturbing function. 

Multiple selection is determined by significance (an object with multiple selections) [3]: 
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where ijv  is the j-th sample from in  the samples, i are the weight functions, m are the 

number of methods, id  is the density. 

The weight functions must satisfy the following conditions: 
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where ip is the probability, iv  is the sample. 

The strategy of the balance and power heuristics is described by the formula [10]: 
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Using the balance and power heuristics, you can combine sampling methods. However, 

the overall efficiency decreases, because the combinations may be suboptimal. 

If we consider models with multiple samples that allow negative weights, we can improve 

the variance. 

We define a symmetric matrix m × m with elements given by 
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The contribution vector is defined by: 
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The matrix is independent of the integrand f. It consists of the inner products between the 
probability densities (probability distribution functions) normalized by the coefficient

1

1
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final one 
ijv

dvvfF )(  . Since the dot product cnn m ),...,( 1  is equal to the integral F. 

We write the initial estimate of ⟨F ⟩ in the form: 
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Where R a set of estimators is
iE , iE are the expected values, R,...,1 is a set of random 

variables. 

You can reduce the variance if
iE  it correlates with ⟨F ⟩. Vector

T

R ),...( 1  


is 

selected accordingly. 
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The variance is minimized to solve the system    . Where
iR   is the 

covariance matrix R × R.
T

R ),...( 1  


is the covariance vector. 

The elements of the covariance vector are defined by: 

   FECovEECov iiRiiR ,,,                                 (11) 

Let the weighing function be expressed in the form (3) 
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We obtain an optimal estimate of the multiple optimal sample by the significance of ⟨F⟩o 

in the form: 
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Using the vector cv


, we obtain the optimal control variation (13), with minimizing its 

variance. The variance is equal to the variance of the balance heuristic estimate. 

The more the form of the function and the integrand coincide, the smaller the variance. 

Because of the optimal weights compared to the balance heuristic. The variance ⟨F⟩ becomes 

zero when the integrand can be written as a linear combination of sample files. The variance 

of the optimal estimate is less than or equal to the heuristic variance of the balance. The 

balance heuristic is optimal when the elements of the vector cv


 are proportional to the number 

of samples from the individual sampling methods. This is used to improve the variance over 

the balance heuristic. 

Since the inner products forming the matrix of the method and the contribution vector do 

not have a closed-form solution, the multiple-sample significance estimate with optimal 
weights cannot be determined directly. The elements of the method matrix and the 

contribution vector are given by integrals. These integrals are first evaluated, using multiple 

significance sampling with a balance heuristic. The vector cv


 is given by a linear system. It 

is then cv


 evaluated using the least squares minimization method. The resulting multiple-

sample significance score will be true for any value cv


. 

You can apply various options for approximating the optimal estimate of ⟨F ⟩o. For 

example, you can estimate cv


 from the initial batch of samples. Then fix it and use it to 

estimate the optimal weights for all subsequent samples. However, this approach is not 

optimal, since the assumed ones cv


will not evolve over time. A more effective method is to 

gradually implement an approximate estimate. 
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The calculation is performed in iterations. At each iteration, we display samples in  from 

each sampling method midi ,...,1,   . Then we calculate the vector cv


 based on the 

estimates from the previous iterations. We include the vector in formula (13) to calculate the 

integral estimate for the current samples and accumulate it. For the first iteration, we set the 

vector cv


 to zero. The form and parameters of the optimal estimate (13) are obtained by 

directly minimizing the variance of the multiple-sample estimate by significance. 

Figure 1 shows the basic steps of calculations. First, a beam is emitted from the camera 

or light source, the beam is tracked. If there is no intersection, then the process ends and the 

algorithm proceeds to the next selection. Otherwise, the algorithm processes the surface 

radiation, if any. Then, if an assessment of the next event is required, a new shadow ray is 

emitted to the light source. At the end, either the algorithm generates a continuation beam, or 

the process terminates. 

When rendering objects, materials are presented with an appropriate bidirectional 

scattering distribution function. This function is used in combination with the visualization 
equation to calculate the light scattering on the surface. The algorithm uses multiple sampling 

by importance. It is also possible to query the sampling probability for a given direction. 

Light sources are located separately from the surfaces of objects. Light sources may not 

have a specific area and may be processed in different ways. This applies, for example, to 

point light sources. The selection, determination of the position and direction of the light 

source is carried out. Shaders generate materials with a combination of texture, bidirectional 

scattering distribution function and light sources. 

Intersection

Surface radiation

Shadow ray 

emission

Shadow Tracing

Ray

End

Next Sample

No

 

Fig. 1. Rendering algorithm. 
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3 Results 

The method was tested using two approaches. The uncorrelated version uses two independent 

sets of samples to estimate the method matrix and the contribution vector. The correlated 

version uses a single set of samples to estimate the method matrix and contribution vector. 

The behavior of the function in the uncorrelated case is very different, since both 

estimates perform much worse than in the correlated case. The correlation between the 

estimates of the method matrix and the contribution vector improves the performance of both 

estimators. 

Both the shape and the mixing parameters cv


 for the estimate are obtained by directly 

minimizing the variance of the multiple-sample estimate by significance. It also provides an 

optimal solution. 

The method can be used for alternative strategies for approximating the optimal matrix 

of the method, the contribution vector, and cv


. 

Evaluating and solving a linear system leads to computational overhead. The 

computational overhead increases linearly with the number of combined methods. On the 

other hand, the overhead in our tests was almost negligible, especially for the direct estimator. 

However, they increase as the number of sampling methods increases. 

The scenes are rendered on a machine with a Core i7-4790K processor (4 cores, 8 threads) 

and GPU GTX 980. Direct estimates are implemented; calculations are performed pixel by 

pixel. The algorithm is started, and the output data is stored in a pixel. One sample is taken 

for each iteration. 

Figure 2, on the left, shows the results in a scene illuminated by multiple light sources of 

a small area. Images using optimal weights were rendered using the same number of samples 

per pixel (thirty samples). 

A single large light from above illuminates the stage (Figure 2, right). The images were 
rendered using direct estimation, the number of samples per pixel (forty samples). The 

combination with a uniform area reduces the dispersion mainly on the table; the combination 

with optimal weights improves the result on surfaces that are not parallel to the light (for 

example, on the sidewalls of the table). 

 

Fig. 2. Left: a scene with multiple light sources; right: the scene is rendered with an increase in the 

number of samples per pixel (forty samples). 
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The behavior of optimal weights for a combination of light-domain sampling methods 

and a bidirectional scattering distribution function is investigated. The illumination from 

individual light sources is evaluated separately. By combining the illumination area and 

sampling the bidirectional scattering distribution function, we add the contributions together. 

Figure 3 shows a graph of the dependence of the root-mean-square error on the number 

of iterations, built on a logarithmic scale. 

 

Fig. 3. Dependence of the mean square error on the number of samples. 

The root-mean-square error is a metric that is used to evaluate the effectiveness of the 

model. To calculate it, the number of detected errors is squared and the average value is 

calculated. 

Table 1 shows Speed Up, Improvement and Overhead. 

Speed Up and Improvement are the relations of the root-mean-square error. Overhead is 

a relative increase in rendering time with the same total number of samples. 

Table 1. Method performance statistics. 

Scenes Speed Up Improvement Overhead 

Fig. 2 Left 8.9 9.5 9.7% 

Fig. 2 Right 9.4 10.03 5.8% 

Figure 4 shows the average distribution of scene calculation time on Core i7-4790K. The 

time is measured with tracking of the camera, secondary and shadow rays with shading. In 
addition, the generation, sorting and compaction of beams are taken into account. The 

ordinate axis shows the time in milliseconds. 
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Fig. 4. Average scene calculation time on Core i7-4790K. 

Figure 5 shows the performance of the Core i7-4790K GPU and GTX 980. The ordinate 

axis shows the number of MRays/s. 

 

Fig. 5. Performance of Core i7-4790K GPU and GTX 980 in MRays/s. 

Table 2. Shows a comparison of performance in MSamples/s for CPU and GPU for 

different scenes. 

Table 2. Performance in MSamples/s. 

Scenes CPU GPU 

Fig 2 Left 9.7 41.3 

Fig 2 Right 6.5 29.5 
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4 Conclusion 

The method of multiple significance sampling is presented. The paper also uses negative 

weight functions, which expands the class of effective combinational strategies. 

Weights are relevant for a sample where the balance heuristic is inefficient. The 

dispersion properties of the optimal weights give additional positive qualities. The proposed 

method is aimed at improving the effectiveness of combined assessments. 
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