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Abstract. Power flow calculations play major role during the operational stage of any distribution networks 
for its control, as well as during the design stage. Moreover, the main purpose of any power flow calculations 
is to compute precise steady-state voltages of nodes, the real and reactive power flows on each branches, under 
the assumption of known loads. That is, one of the main results of the calculation is steady-state voltages of 
nodes. As a rule, iterative methods are used to calculate load flows in distribution networks. This places high 
demands on calculations in terms of speed and reliability of obtaining results in any operating conditions. 
Given this in the article presents models for node voltages estimation in distribution networks based on 
feedforward artificial neural networks. Their use makes it possible to increase the speed of the power flow 
calculations in distribution networks. We examined the effectiveness of the models on the example of real 
schemes of 6-10 kV open-loop distribution networks. 
 

1. Introduction  
As you know, Power Flow Analysis is the computational procedure required to determine the steady state operating 
parameters of a distribution network (DN) from the given line data and bus data [1]. The steady state operating 
parameters are the voltages on nodes, currents, active and reactive powers and losses on each branches. There are 
several iterative methods for power flow calculations, such as backward/forward, Gauss-Seidel, and Newton's method 
[2]. The power flow analysis commonly used in distribution networks includes backward/forward method. Calculation 
by iterative methods is associated with great mathematical and computational difficulties and they are ineffective for 
operational calculations, due to the large time spent. Therefore, finding the faster power flow calculation methods is 
an important task. The development of methods of computational mathematics and information technology makes it 
possible to improve the operational control of distribution networks. At present, it is promising to calculate power flow 
parameters based on artificial neural networks (ANN) [3,4,5]. 
Therefore, this article deals the problem of estimating the power flow parameters using a feedforward ANNs. 
Comparative evaluation of the results is also performed. Perceptron model (created by the fitnet function) and cascade 
network (created by the cascadeforwardnet function) are used for modeling. The modelling tool is MATLAB and its 
library Neural Network Toolbox. 
 

2. Methods 
2.1. Backward/forward method 
In most cases, when performing power flow calculations in distribution networks, the average loads (Eq.1, 2) are used 
as the base. The calculation of the average loads at the nodes is performed according to the power deliveries (WPj, WQj) 
for the billing period T: 
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 𝑃𝑃𝑗𝑗 =
𝑊𝑊𝑃𝑃𝑃𝑃
𝑇𝑇 , 𝑄𝑄𝑗𝑗 =

𝑊𝑊𝑄𝑄𝑄𝑄
𝑇𝑇  (1, 2) 

Average node loads Pj, Qj, and reference voltages UGU are used to calculate the power flow parameters in the 
distribution network. In this case, the calculation involves two computation processes at each iteration. 
The backward process (first stage) involves the power flow solutions starting from the branch of the end nodes moving 
toward the branch connected to the head node (Eq.3): 

 
 

𝑆̇𝑆𝑖𝑖𝑖𝑖 = ∑𝑆̇𝑆𝑗𝑗𝑗𝑗

𝑛𝑛𝑗𝑗

𝑘𝑘≠𝑖𝑖
+ 𝑆̇𝑆𝑗𝑗 + 𝑈𝑈𝑗𝑗2𝑌̇𝑌𝑠𝑠ℎ𝑗𝑗 +

1
2 𝑌̇𝑌𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈𝑖𝑖

2 + 𝑈𝑈𝑗𝑗2) + ∆𝑆̇𝑆𝑖𝑖𝑖𝑖    (3) 

 
where: nj is the number of branches connected to node j; Sj - load at node j; Ui, Uj - voltage modules at nodes i and 

j; Yshj - conductivity of the shunt at node j; Ycij-capacitive conductance of the i-j branch; ∆Sij - power losses in the i-j 
branch, are determined by the expression (Eq.4): 
 

 

∆𝑆̇𝑆𝑖𝑖𝑖𝑖 = ∆𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑗𝑗∆𝑄𝑄𝑖𝑖𝑖𝑖 =
(∑ 𝑆̇𝑆𝑗𝑗𝑗𝑗

𝑛𝑛𝑗𝑗
𝑘𝑘≠𝑖𝑖 + 𝑆̇𝑆𝑗𝑗 + 𝑈𝑈𝑗𝑗2𝑌̇𝑌𝑠𝑠ℎ𝑗𝑗 +

1
2 𝑌̇𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑈𝑈𝑗𝑗

2)
2

𝑈𝑈𝑗𝑗2
𝑍̇𝑍𝑖𝑖𝑖𝑖 

(4) 

 
In the forward process (second stage) calculates the voltage at each node starting from the reference node to the end 
nodes, i.e. from the beginning to the end of the network (Eq.5): 

 
 𝑈̇𝑈𝑗𝑗 = 𝑈𝑈𝑗𝑗′ + 𝑗𝑗𝑈𝑈𝑗𝑗′′ = [𝑈𝑈𝑖𝑖 −

𝑃𝑃𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖
𝑈𝑈𝑖𝑖

+ 𝑗𝑗
𝑃𝑃𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

𝑈𝑈𝑖𝑖
] ∙ 𝐾𝐾𝑖𝑖𝑖𝑖 (5) 

 
where, Kij = Uj⁄Ui if the branch is transformer and Kij = 1 if the branch is linear. 

The initial values of the node voltages are considered the same and equal to the nominal voltage of the network. 
After each iteration, the power flow convergence is tested. The stopping criteria are the convergence of voltage obtained 
by tracking the differences of voltage between two successive iterations. The algorithm stops when the conditions in 
(Eq.6) are met. 

 
 

𝑚𝑚𝑚𝑚𝑚𝑚√(𝑈𝑈𝑗𝑗
′(𝑘𝑘+1) − 𝑈𝑈𝑗𝑗

′(𝑘𝑘))
2
+ (𝑈𝑈𝑗𝑗

′′(𝑘𝑘+1) − 𝑈𝑈𝑗𝑗
′′(𝑘𝑘))

2
≤ 𝜀𝜀, (6) 

 
where k is the iteration number; ε = 0.001 is the specified accuracy of calculating the voltage mode; 𝑗𝑗 = 1,2… , 𝑛𝑛, 

- the number of DN nodes. 
If condition (6) is not satisfied, then proceed to calculations (3) ÷ (5) of the next iteration.  
The results of power flow calculations are the voltage of the nodes Ui, the powers of the branches Pij, Qij and the head 
node PGU, QGU, the power losses in the branches ∆Pij, ∆Qij, and total power losses in the network ∆Psum, ∆Qsum. 

 
2.2. Method based on ANN 
To estimate the node voltages Ui we can represent the ANN model as an approximating function (Eq.7): 

 
𝑈𝑈𝑖𝑖 = √𝑈𝑈𝑖𝑖′

2 + 𝑈𝑈𝑖𝑖′′
2 = 𝐹𝐹(𝑈𝑈𝐺𝐺𝐺𝐺, 𝑃𝑃𝑗𝑗, 𝑄𝑄𝑗𝑗), (7) 

where i = 1,2, ..., n - DN nodes, j - load nodes; Pj, Qj - average loads; UGU- head node voltage; Ui - DN node 
voltages. 
To estimate of the DN steady-state node voltages and a comparative analysis of the results of calculations are 
considered feedforward ANN. 
In a feedforward ANN with one or more hidden layers, the information moves in only one direction from the input 
through the hidden layers to the output and do not form a cycle. In this case, two types of feedforward ANN are 
considered: a perceptron and a cascadeforward network. The perceptron is the simplest type of ANN. Unlike the 
perceptron, cascadeforward network have connections from each next layer to all previous layers. 
The construction of both types of neural networks involves the following steps: 

1. Generation of statistical data and breakdown into training, testing and chacking samples. 

2. Selecting the ANN architecture.  
3. Training ANN on training sample. 
4. Evaluation of ANN adequacy on test sample. 

Next, the best ANN model from the considered ones is selected. The choice of the best ANN is performed according 
to the cheking sample data. 
 
3. Results and Discussions 
3.1. Generation of statistical data and breakdown into samples 
We generate statistical data by simulating loads in the presence of a DN scheme. In this setting, the simulation algorithm 
consists of the following two stages: 
- Simulation of loads by the Monte Carlo method [6] (obtaining a cross section for the implementation of random 
processes describing the load for each half hour of the design period-month); 
- Power flow calculation of the DN by backward/forward method for a given moment. 
To implement this algorithm, we have selected a number of 6-10 kV distribution network schemes. As an example, 
consider a 10 kV DN with 10 nodes and 4 loads (Figure1). 

 
Fig. 1. Operational schema of the 10 kV distribution network 

 
We simulate loads by changing the following parameters in the specified ranges: 

Head node voltage UGU = 9.5 ÷ 10.5 kV; 

Load factor of transformers kz = 0.1 ÷ 0.8; 

Head node power factor cosφ = 0.7 ÷ 0.9; 

Further, according to the received loads and head node voltage, we perform the power flow calculation by a 
backward/forward method. In total, we perform 1488 calculations (for each half hour during the month). 
Based on the simulation data and the calculation results, a sample was formed consisting of 1488 pairs of “inputs-
outputs” (I / O) statistical data. The inputs are the head node voltage, the active and reactive power of the loads (UGU, 
P6, Q6, P7, Q7, P8, Q8, P9, and Q9), and the outputs are the node voltages (U1-U9), i.e. the approximation function has 
the following form (Eq.8): 
 

[𝑈𝑈1
𝑘𝑘, 𝑈𝑈2

𝑘𝑘, … , 𝑈𝑈9
𝑘𝑘 ] = 𝐹𝐹(𝑈𝑈𝐺𝐺𝐺𝐺

𝑘𝑘 , 𝑃𝑃6
𝑘𝑘, 𝑄𝑄6

𝑘𝑘, 𝑃𝑃7
𝑘𝑘, 𝑄𝑄7

𝑘𝑘, 𝑃𝑃8
𝑘𝑘, 𝑄𝑄8

𝑘𝑘, 𝑃𝑃9
𝑘𝑘, 𝑄𝑄9

𝑘𝑘),                                      (8) 
where k is the ordinal number of statistical data. 
The resulting database is divided into training and test samples. We use a training set for adjusting synaptic coefficients, 
which includes 1042 pairs, i.e. 70% of the I/O data. The test sample includes 446 pairs or 30% of the I/O data that are 
not involved in the training process and serves to check the quality of training for each ANN. 
In addition, we form a checking sample, which we use to select the best model from the generated ones. This sample 
includes 366 I/O data pairs (for each half hour during the week) by modelling loads by changing the following 
parameters in the specified ranges: 

Head node voltage UGU = 9.5 ÷ 10.5 kV; 
Load factor of transformers kz = 0.8 ÷ 0.85; 
Head node power factor cosφ = 0.9 ÷ 0.99. 

As can be seen from the above, the training and test samples refer to one general sample, and the checking sample 
differs from them and belongs to another. 
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Average node loads Pj, Qj, and reference voltages UGU are used to calculate the power flow parameters in the 
distribution network. In this case, the calculation involves two computation processes at each iteration. 
The backward process (first stage) involves the power flow solutions starting from the branch of the end nodes moving 
toward the branch connected to the head node (Eq.3): 

 
 

𝑆̇𝑆𝑖𝑖𝑖𝑖 = ∑𝑆̇𝑆𝑗𝑗𝑗𝑗

𝑛𝑛𝑗𝑗

𝑘𝑘≠𝑖𝑖
+ 𝑆̇𝑆𝑗𝑗 + 𝑈𝑈𝑗𝑗2𝑌̇𝑌𝑠𝑠ℎ𝑗𝑗 +

1
2 𝑌̇𝑌𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈𝑖𝑖

2 + 𝑈𝑈𝑗𝑗2) + ∆𝑆̇𝑆𝑖𝑖𝑖𝑖    (3) 
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j; Yshj - conductivity of the shunt at node j; Ycij-capacitive conductance of the i-j branch; ∆Sij - power losses in the i-j 
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In the forward process (second stage) calculates the voltage at each node starting from the reference node to the end 
nodes, i.e. from the beginning to the end of the network (Eq.5): 
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where, Kij = Uj⁄Ui if the branch is transformer and Kij = 1 if the branch is linear. 

The initial values of the node voltages are considered the same and equal to the nominal voltage of the network. 
After each iteration, the power flow convergence is tested. The stopping criteria are the convergence of voltage obtained 
by tracking the differences of voltage between two successive iterations. The algorithm stops when the conditions in 
(Eq.6) are met. 
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where k is the iteration number; ε = 0.001 is the specified accuracy of calculating the voltage mode; 𝑗𝑗 = 1,2… , 𝑛𝑛, 

- the number of DN nodes. 
If condition (6) is not satisfied, then proceed to calculations (3) ÷ (5) of the next iteration.  
The results of power flow calculations are the voltage of the nodes Ui, the powers of the branches Pij, Qij and the head 
node PGU, QGU, the power losses in the branches ∆Pij, ∆Qij, and total power losses in the network ∆Psum, ∆Qsum. 

 
2.2. Method based on ANN 
To estimate the node voltages Ui we can represent the ANN model as an approximating function (Eq.7): 
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where i = 1,2, ..., n - DN nodes, j - load nodes; Pj, Qj - average loads; UGU- head node voltage; Ui - DN node 
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To estimate of the DN steady-state node voltages and a comparative analysis of the results of calculations are 
considered feedforward ANN. 
In a feedforward ANN with one or more hidden layers, the information moves in only one direction from the input 
through the hidden layers to the output and do not form a cycle. In this case, two types of feedforward ANN are 
considered: a perceptron and a cascadeforward network. The perceptron is the simplest type of ANN. Unlike the 
perceptron, cascadeforward network have connections from each next layer to all previous layers. 
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1. Generation of statistical data and breakdown into training, testing and chacking samples. 
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3. Training ANN on training sample. 
4. Evaluation of ANN adequacy on test sample. 

Next, the best ANN model from the considered ones is selected. The choice of the best ANN is performed according 
to the cheking sample data. 
 
3. Results and Discussions 
3.1. Generation of statistical data and breakdown into samples 
We generate statistical data by simulating loads in the presence of a DN scheme. In this setting, the simulation algorithm 
consists of the following two stages: 
- Simulation of loads by the Monte Carlo method [6] (obtaining a cross section for the implementation of random 
processes describing the load for each half hour of the design period-month); 
- Power flow calculation of the DN by backward/forward method for a given moment. 
To implement this algorithm, we have selected a number of 6-10 kV distribution network schemes. As an example, 
consider a 10 kV DN with 10 nodes and 4 loads (Figure1). 

 
Fig. 1. Operational schema of the 10 kV distribution network 

 
We simulate loads by changing the following parameters in the specified ranges: 

Head node voltage UGU = 9.5 ÷ 10.5 kV; 

Load factor of transformers kz = 0.1 ÷ 0.8; 

Head node power factor cosφ = 0.7 ÷ 0.9; 

Further, according to the received loads and head node voltage, we perform the power flow calculation by a 
backward/forward method. In total, we perform 1488 calculations (for each half hour during the month). 
Based on the simulation data and the calculation results, a sample was formed consisting of 1488 pairs of “inputs-
outputs” (I / O) statistical data. The inputs are the head node voltage, the active and reactive power of the loads (UGU, 
P6, Q6, P7, Q7, P8, Q8, P9, and Q9), and the outputs are the node voltages (U1-U9), i.e. the approximation function has 
the following form (Eq.8): 
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where k is the ordinal number of statistical data. 
The resulting database is divided into training and test samples. We use a training set for adjusting synaptic coefficients, 
which includes 1042 pairs, i.e. 70% of the I/O data. The test sample includes 446 pairs or 30% of the I/O data that are 
not involved in the training process and serves to check the quality of training for each ANN. 
In addition, we form a checking sample, which we use to select the best model from the generated ones. This sample 
includes 366 I/O data pairs (for each half hour during the week) by modelling loads by changing the following 
parameters in the specified ranges: 

Head node voltage UGU = 9.5 ÷ 10.5 kV; 
Load factor of transformers kz = 0.8 ÷ 0.85; 
Head node power factor cosφ = 0.9 ÷ 0.99. 

As can be seen from the above, the training and test samples refer to one general sample, and the checking sample 
differs from them and belongs to another. 
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3.2. Selecting the architecture and training of artificial neural networks  
When designing ANN models, one of the problems is the choice of its architecture. To solve this problem, there are no 
clear rules either for the choice of the number of hidden layers, or for the choice of the number of neurons in the layers. 
The choice of network architecture is based on the experience of the researcher. At the same time, there are a number 
of general recommendations for choosing the number of layers based on the Kolmogorov-Arnold-Hecht-Nielsen 
theorem [7, 8 and 9]: 

- If a function is defined on a finite set of points, then a three-layer perceptron is able to approximate it. 
- If a function is continuous and defined on a compact region, then a three-layer perceptron is able to approximate 

it. 
- The rest of the functions that can be trained in neural networks can be approximated by a four-layer perceptron. 

Thus, theoretically, at most four layers are required, i.e., with two hidden layers. But at the same time, one hidden layer 
is enough to solve most technical problems. 
An overview of methods for choosing the number of neurons in the hidden layer is given in [10]. These methods can 
be divided into analytical [11,12] and constructive [13,14]. Analytical methods require the existence of some 
mathematical formulas to estimate the number of neurons in the hidden layer. For example, in [11], the formula Nhid ≥ 
2n + 1 is presented, where n is the number of inputs of ANN. In constructive methods, the number of neurons in the 
layers is determined in two ways: reduction and augmentation.  
In the reduction algorithm, the number of neurons in the hidden layer is excessive. Then they decrease by excluding 
the least significant neurons. In the augmentation algorithms, there is one neuron in the hidden layer, and then they are 
sequentially increased. This method is more appropriate for choosing the number of neurons in the hidden layer.  
The number of neurons in the output layer depends on the amount of output data and we set it as a vector. 
After choosing the network architecture, we carry out training of the neural network, i.e. adjust the weights and 
threshold. In particular, when using a feedforward ANN, this is the backpropagation (BP) algorithm. There are also 
variations of this algorithm, e.g., fast-propagation algorithm, etc. [15]. There are also second-order algorithms, such as 
the conjugate gradient method and the method Levenberg-Marquardt, which are significantly faster. It is advisable to 
choose the Levenberg-Marquardt algorithm as a teaching method. Only with a significant increase in the number of 
ANN links is the conjugate gradient method used [16]. 

 
3.3. Evaluation of ANN adequacy 
Based on these steps in the MATLAB environment, we have developed a program. Using the program, we built an 
ANN model with one hidden layer. We determine the optimal number of neurons in the models by the augmentation 
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where, n - the number of DN nodes except head one; Vi - actual voltage value; Vm,i - the voltage obtained by the 
ANN model; trD = 1042, testD = 446, chD = 366 - the amount of I/O data on the training, test and checking samples, 
respectively. 
Next, a total value is calculated (Eq.12): 
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Fig. 3. Optimal number of neurons in the cascade network 

So, when using a perceptron, a single-layer ANN with 22 neurons gives the best results (Figure 2). Similar calculations 
were performed for a cascade forward network where the best results are obtained by a single-layer ANN with 17 
neurons (Figure 3). 
The results of calculating the TMaxAE for the perceptron are presented in Table 1 and for cascade forward network are 
presented in Table 2.  

Table 1. The total maximum absolute error for perceptron 
NodeName unit Train Test Check 

U1 kV 0.0000748 0.0000646 0.0081936 

U2 kV 0.0000661 0.0000584 0.0110546 

U3 kV 0.0000824 0.0000725 0.0126292 

U4 kV 0.0000929 0.0000633 0.0137931 

U5 kV 0.0000951 0.0000619 0.0144105 

U6 kV 0.0000673 0.0000904 0.0011722 

U7 kV 0.0000328 0.0000273 0.0012054 

U8 kV 0.0000637 0.0000501 0.0011716 

U9 kV 0.0000393 0.0000355 0.0012139 

TMaxAE kV 0.0006145 0.0005240 0.0648440 
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3.2. Selecting the architecture and training of artificial neural networks  
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choose the Levenberg-Marquardt algorithm as a teaching method. Only with a significant increase in the number of 
ANN links is the conjugate gradient method used [16]. 
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Fig. 4. The results of the assessments on the control sample 

In Table 1. the TMaxAE on the training sample is 0.0006 kV, on the test sample 0.0005 kV and on the control sample 
0.0648 kV. The total value for all samples is 0.0659 kV. 
In Table 2, the TMaxAE on the training sample is 0.0004 kV, on the test sample 0.0006 kV and on the control sample 
0.0657 kV. The total value for all samples is 0.0667 kV. 
As can be seen from the results, the single-layer ANN with 22 neurons is the best model for estimating DN node 
voltages.  
As an example, Figure 4 shows the results of node 1voltage estimates on the checking sample. 

Table 2. The total maximum absolute error for cascade forward network 
NodeName unit Train Test Check 

U1 kV 0.0000392 0.0000481 0.0082227 

U2 kV 0.0000335 0.0000328 0.0112106 

U3 kV 0.0000366 0.0000388 0.0128244 

U4 kV 0.0000391 0.0000705 0.0139288 

U5 kV 0.0000589 0.0001661 0.0144178 

U6 kV 0.0000599 0.0000625 0.0011670 

U7 kV 0.0000600 0.0000633 0.0013812 

U8 kV 0.0000452 0.0000461 0.0012715 

U9 kV 0.0000628 0.0000537 0.0013023 

TMaxAE kV 0.0004354 0.0005818 0.0657263 
 
Next, we will perform a comparative analysis of the simulation results. To do this, we compare the values of the node 
voltages according to the ANN models with the results obtained using the backward/forward method. To perform 
calculations, we use the following initial data (Table 3).  

Table 3. Input data for Backward/forward and method ANN model  

Input Ugu P6 Q6 P7 Q7 P8 Q8 P9 Q9 

units kV MWt MVar MWt MVar MWt MVar MWt MVar 

Value 10.462 0.08 0.128 0.081 0.124 0.026 0.041 0.026 0.04 
 
The results of the comparative analysis (Table 4) show that the error does not exceed 0.5%. This indicates the possibility 
of using the obtained ANN for assessing the voltage of nodes in the presented distribution network. 

Table 4. The results of the comparative assessment 

Output unit Target ANN Error Error.% 

U1 kV 10.355 10.362 -0.007 0.063 

U2 kV 10.322 10.331 -0.010 0.093 

U3 kV 10.303 10.314 -0.011 0.108 

U4 kV 10.290 10.302 -0.012 0.117 

U5 kV 10.283 10.296 -0.013 0.124 

U6 kV 0.401 0.402 -0.001 0.322 

U7 kV 0.400 0.401 -0.001 0.190 

U8 kV 0.400 0.401 -0.001 0.211 

U9 kV 0.400 0.401 -0.001 0.218 
 
4. Conclusions 
Feedforward artificial neural networks are an alternative (but not a replacement) to traditional methods for on-line 
determination of the power flow parameters of an open-loop distribution network. 
The use of an already trained ANN for calculating the parameters of the steady-state mode requires insignificant 
computational and time resources in comparison with classical methods, which is very important in operational 
calculations. 
To assess power flow parameters, we obtain the best results when using a single-layer perceptron with 22 neurons. For 
this ANN, the total maximum absolute error: on the training sample 0.0006 kV, on the test sample 0.0005 kV and on 
the control sample 0.0648 kV. The total value for all samples is 0.0659 kV. 
The results of the comparative analysis show that the error does not exceed 0.5%. This indicates the possibility of using 
the obtained ANN for assessing the voltage of nodes in the presented distribution network. 
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