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Abstract. The importance of degree of soil saturation in geotechnical problems resulted in inclusion of 
unsaturated soil mechanics in various applications for several decades. However, in spite of recent progress 
in remotely sensed soil moisture measurement, geotechnical community has not yet taken advantage of these 
advances in analysis of unsaturated soils. NASA launched its Soil Moisture Active Passive (SMAP) satellite 
in 2015 with the aim of providing surface and root zone soil moisture content over the global land surface 
at 3-day average intervals. SMAP, as a widely validated and near-real-time database, offers a rich soil 
moisture database at a global scale that can be used in studies considering unsaturated soil behaviour. A 
study of the relationship between soil water content and seismic ground response is presented in this paper 
using SMAP, which includes the tracking of the variations in Earth's surface soil moisture caused by 
earthquakes. 

1 Introduction 

The relationships between earthquake impacts and soil 
moisture have received more attention in recent years. 
Geotechnical systems are affected by water saturation in 
terms of their seismic response [1, 2], as well as the 
interactions between soil and structure [3, 4]. Degree of 
soil saturation affects the probability of ground failures 
[5]. Furthermore, seismic compression, damage to 
infrastructure, and ground deformation can occur as a 
result of soil moisture changes caused by earthquakes 
[6]. It has been shown that there is a clear correlation 
between soil moisture and seismic response, but the 
formulation associated with this correlation and the 
extent of the impacts are not well-investigated. More 
specifically, much more research is needed to 
understand such correlation on a global scale in 
comparison with the work that has been done using 
numerical and experimental techniques. This goal could 
be achieved with the help of remote sensing techniques 
and satellite data. 

Soil moisture can be measured through a variety of 
remote sensing and in-situ measurement methods [7, 8]. 
Prior earthquake engineering studies, however, used 
historical climate data, topography, and hydrological 
models to consider soil water saturation [5]. A wide 
range of alternative parameters were considered that 
include the annual average of water table depth, 
historical average of precipitation, distance from the 
nearest coast to the river, and the compound topographic 
and aridity index [5]. Global scale implementations 
cannot be conducted with in-situ soil moisture 
observations since they are not available in all countries 
and regions. In addition, collecting in-situ data is a time-
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consuming and complex process, even on a local scale. 
Therefore, a well-calibrated remotely sensed platform is 
required to collect soil moisture data from earthquake-
hit areas around the world in order to study the 
relationships between soil moisture and seismic 
response. 

National Aeronautics and Space Administration 
(NASA) launched the Soil Moisture Active Passive 
(SMAP) satellite in 2015 as part of its Earth-observing 
program. Using an L-band radiometer, SMAP measures 
Earth's brightness temperature. A near-global coverage 
of soil moisture content is provided by SMAP team 
based on intensity temperature measurements on the 
land surface in approximately the top 5 cm of the soil 
layer [9]. Revisiting each region of the Earth every 2-3 
days, SMAP records surface soil water content with 
greater precision and finer spatial resolution than 
previous satellites, such as the Tropical Rainfall 
Measuring Mission (TRMM) and the Advanced 
Microwave Scanning Radiometer-2 (AMSR) [10]. 
Ground-based observations and other satellite products 
have been widely used to validate SMAP microwave 
observations since April 2015 [11]. SMAP's scientific 
datasets can be used for a variety of applications, such 
as predicting weather and climate [12], improving food 
security [13], and detecting natural disasters [14]. The 
SMAP data allows geotechnical researchers to advance 
their knowledge by obtaining datasets for soil moisture 
content, which plays an important role in soil behaviour. 
In order to understand how soil moisture interacts with 
geotechnical phenomena, researchers can make use of 
the SMAP database.  

The aim of this study is to briefly present a 
straightforward method to quantify surface soil moisture 
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variations before and after earthquakes using SMAP. 
Interested readers are referred to [15, 16] for more 
detailed analysis. The integration of soil moisture 
variation with seismic data, shear wave velocity over the 
top 30 m layer (VS30) [17], and fine fraction [18] is also 
discussed. 

2 Data processing 

2.1 Study regions 

To evaluate seismic-induced soil moisture variations, a 
number of earthquakes with a moment magnitude 
greater than 6.0 that have happened within SMAP's 
lifetime (April 2015 through the present) and that have 
rich seismic data were selected. Each earthquake is 
listed in Table 1 with the name, magnitude, date, and 
pre- and post-event SMAP data available. An example 
of focus zone with a Modified Mercalli Intensity (MMI) 
of 5 or greater is shown in Fig. 1 using United States 
Geological Survey data [19]. 

Table 1. Target study earthquakes. 

Study Region Earthquake name MW Date 

Croatia Petrinja 6.4 Dec. 29, 2020 

Greece Samos 7 Oct. 30, 2020 

Turkey Elazig 6.7 Jan. 24, 2020 

Indonesia Palu 7.5 Sep. 28, 2018 

Mexico Puebla 7.1 Sep. 19, 2017 

New Zealand Kaikoura 7.8 Nov. 13, 2016 

Italy Accumoli 6.2 Aug. 24, 2016 

Ecuador Muisne 7.8 April, 16, 2016 

Taiwan Meinong 6.4 Feb. 5, 2016 

Chile Illapel 8.3 Sep. 16, 2015 

Nepal Gorkha 7.8 Apr. 25, 2015 

 

 
Fig. 1. Example focus zone for Samos, Greece, 2020, and 
Meinong Taiwan 2016 earthquakes. 

2.2 Database 

To understand earthquake-induced changes in near-
surface moisture, SMAP soil moisture observation data 
was used as the primary source of information. 
However, the effects of climatic variables, such as 
precipitation and evaporation, must be removed. This 
objective was achieved using a separate independent 

dataset. Data products used in this study are summarized 
in Table 2 in terms of spatial and temporal resolution. 

Table 1. Summary of remote sensing-derived data products. 

Platform 
Spatial 

resolution 
Temporal 
resolution 

Unit 

SMAP 9 km 1-3 days cm3/cm3 

GLDAS 25 km 3-hourly cm3/cm3 

 
For this study, the passive surface soil moisture data 

provided by SMAP radiometer was utilized (SMAP 
2021). 6:00 AM and 6:00 PM local solar time (LST) soil 
moisture records are included in the dataset. For the 
purposes of this study, only SMAP surface soil moisture 
retrievals from 6:00 AM were used [18]. NASA 
developed the Global Land Data Assimilation (GLDAS) 
model, which represents global land surface conditions. 
GLDAS estimates soil moisture and evaporation near-
real-time using satellite and ground-based 
meteorological data [20]. Kim et al. [21] and Wu et al. 
[22] found that GLDAS and SMAP had similar spatial 
patterns and were consistent with in situ measurements 
of soil moisture. Both soil moisture datasets are 
typically within 0.04 cm3 cm3⁄  of accuracy.  

Because GLDAS does not measure perishable 
changes in soil moisture for example the ones caused by 
earthquakes, it can be used together with SMAP to 
isolate earthquake-induced moisture changes from 
atmospheric changes. To this end, similar to SMAP data 
collection process, GLDAS data were downloaded for 
pre-event and post-event dates and times listed in Table 
1. Changes in soil moisture were calculated for both 
SMAP and GLDAS products as follows, 

 
∆SM = SMPost − SMPre   (1) 

 
The soil moisture before and after an event is 

represented by SMPre and SMPost. Compared to SMAP 
data, GLDAS datasets have a coarser grid size. To 
ensure consistency, SMAP was resampled to match 
GLDAS' spatial resolution. In order to accomplish this 
objective, the average method was used to resample 
[23]. As a result, SMAP's spatial resolution was changed 
from 9 km× 9 km to 25 km× 25 km. The difference 
between the two data products, ∆SMSMAP and ∆SMGLDAS, 
was used then to identify grids where earthquakes 
caused an increase in soil moisture. In each grid, 
moisture difference indicators (MDI) were calculated 
using equation (2). The process of calculating MDI for 
seismic regions is shown in Fig. 2. 

 
MDI = ∆SMSMAP − ∆SMGLDAS   (2) 

 
A correlation between MDI and shear wave velocity 

over the top 30 m layer [17] and fine fraction dataset is 
investigated in this study. With digital elevation models 
readily available, topographic slope and terrain proxy 
methods are commonly used to approximate VS30 first-
order [17]. Estimation of fine content of surface soil is 
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also one of the variables that SMAP provides globally 
[18]. 

 
 

 

 
Fig. 2. The procedure of estimating moisture difference 
indicators (MDI). 
 

3 Results 

Based on MDI measurements, these results demonstrate 
that SMAP can detect earthquake-induced soil moisture 
increases. Samos Island, Greece, was hit by a magnitude 
M7.0 earthquake offshore its northern coast. In this 
region, rainfall was close to zero throughout the SMAP 
event window, which implies that the earthquake 
increased soil moisture over all grids that showed 
positive MDI in Fig. 3. The Geotechnical Extreme Event 
Reconnaissance (GEER) report for this region marked a 
liquified area and some local tsunami inundations. 
Moreover, both MDI and ∆SMSMAP showed negative 
values in some areas with high liquefaction probability 
[24] but no liquefaction features was recorded in the 
GEER report [25]. 

The Meinong earthquake struck southern Taiwan on 
6 February 2016. The MDI map (Fig. 4) shows the 
increase in soil moisture after this earthquake. This 
increase can be attributed to the earthquake impacts due 
to the absence of precipitation in its SMAP event 
window. It was reported by the GEER field 
reconnaissance report [26] that surface manifestations 
of liquefaction were widespread in the surveyed regions, 
all of which had MDI greater than 0. Having grids with 
both positive values of MDI and high liquefaction 
probability reported by USGS increase the possibility of 
liquefaction occurrence in those regions that GEER 
teams did not inspect. 

 
Fig. 3. MDI map integrated with seismic records for Samos, 
Greece 2020 earthquake. 

 
Fig. 4. MDI map integrated with seismic records for Meinong, 
Taiwan 2016 earthquake. 

MDI and soil properties are expected to have a 
strong relationship. A proxy for soil density derived 
from topographic slope (i.e., i.e., the maximum gradient 
of elevation at each point [17] is the shear wave velocity 
over the first 30m below the ground surface (VS30) on a 
global scale at 1 km× 1 km resolution. In general, 
steeper slopes should be composed of harder rocks, 
resulting in faster VS30 velocities, while flatter slopes are 
expected to be composed of sediments, resulting in 
slower VS30 velocities. 

In this study, all grids in target earthquakes were 
categorized based on their VS30 ranges after resampling 
the maps to 25 km by 25 km grids. Four different ranges 
of MDI (i.e., MDI<0, 0<MDI<0.04, 0.04<MDI<0.08, 
and 0.08<MDI) were defined, and the share of each of 
them in grids with three different ranges of VS30 as well 
as fine fraction was calculated. Fig. 5 depicts a 
meaningful relationship between VS30 and MDI for the 
database in this paper. In general, higher values of VS30 
lead to a larger share of grids with negative MDI and a 
smaller share of grids with positive MDI. In other words, 
stiffer soils are less likely to experience earthquake-
induced soil moisture increase. Fig. 6 also shows that 
fine content of the soil impacts the MDI. Grids with 
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higher fine fraction have more chance to experience 
negative MDI. It means that areas with fine-grained soils 
are expected to have less or no increase in soil moisture. 

 

 
Fig. 5. Observed ratio of grids with positive MDI as a function 
of VS30. 

 
 

 
Fig. 6. Observed ratio of grids with positive MDI as a function 
of fine fraction. 

4 Conclusion and future research 

SMAP data and GLDAS models for soil moisture 
monitoring were used to analyze remotely sensed soil 
moisture variations produced by eleven strong 
earthquakes. It is possible to extend the findings to other 
seismic events since the target earthquakes are spatially 
and temporally widely distributed. Despite the limited 
spatial and temporal resolution of microwave remote 
sensing data, this study demonstrates the capability of 
SMAP to detect an increase in soil moisture following 
earthquakes. Hydrological conditions play a significant 
role in seismic-induced changes in soil moisture. Thus, 
more research is needed to characterize these effects. 
These moisture changes are highly dependent on a 
variety of factors, such as the groundwater level, the 

geology of the region, the topography, and the initial soil 
moisture conditions, which could determine whether the 
surface soil moisture increased, and if so to what extent, 
after an earthquake. Moreover, there are opportunities to 
use SMAP as potent tool to investigate the role of soil 
moisture in different geotechnical problems. As a 
comprehensive dataset to exploit interactions between 
land surface soil moisture and seismic events, SMAP 
may also benefit the earthquake community as a 
comprehensive dataset to evaluate the relationship 
between the MDI and seismic records as well as other 
soil properties. The method presented in this study can 
also be used by geotechnical reconnaissance teams to 
identify regions where soil moisture levels increased 
following earthquakes, which can then be prioritized 
during field surveys in conjunction with the USGS 
ground failure model results. 
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