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Abstract. Material point method (MPM) is an effective numerical method for large-deformation analysis
under unsaturated conditions. In the previous studies, water retention ability and permeability function were
assumed to be independent of soil deformation. Besides, most studies used a single set of material points,
so some processes (e.g., the infiltration of free water into unsaturated soil) cannot be modelled. Thereby, a
two-point MPM approach has been extended from saturated to unsaturated soils. The required information
of solid and liquid phases is carried by two individual sets of material points, with the assumption of zero
pore air pressure. GIMP is applied for space discretisation. In the modelling of hydraulic behaviour, the
porosity-dependency of the water retention curve and permeability function are incorporated. A centrifuge
test about rainfall-induced unsaturated soil slope failure is simulated to investigate the influence of the
porosity-dependent water retention curve and permeability function. Parametric studies demonstrate soil
parameters for water retention behaviour and shear strength play significant roles in the slope failure

mechanisms.

1 Introduction

Many  geotechnical  problems involve large
deformations, which cannot be easily reproduced by
using the finite element method (FEM) because of mesh
distortion. Some mesh-free numerical methods such as
the material point method (MPM) offer an effective
solution. The MPM approach is an improved particle-in-
cell (PIC) method where the Lagrangian (Lagrangian
point masses) and Eulerian (Eulerian background mesh)
descriptions are both applied [1].

So far, the MPM has been applied to model a number
of problems. Most of the previous studies focused on
saturated soils, which is a two-phase material
comprising solid particles and liquid waters, with two
distinct schemes (i.e., representing saturated soils using
one set or two sets of material points).

For two-phase one-point scheme, a single set of
Lagrangian material points is used to represent the solid
(i.e., soil particles) and liquid phases (i.e., pore water).
Zhang et al. [2] proposed a coupling MPM based on the
u® — p! form governing equations to solve dynamic
responses of fully saturated soils, where u° is the
displacement of solid phase and p' is the liquid pressure.
Alonso and Zabala [3] simulated Aznalcollar dam
failure by a u®—p' formulation. In the u’—p'
formulation, two mesh size-related step criteria should
be satisfied because of the different primary unknowns
for the solid and liquid phases [4]. For a small-size mesh,
the second compression wave cannot be captured
accurately because the p'-dependendt time step is too
short [5]. Therefore, Jassim et al. [6] developed a two-
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phase one-point MPM with the u® — u! formulation,
where u! is the displacement of the liquid phase.

Two-phase one-point MPM formulation is
computationally efficient. However, it is not applicable
to many engineering problems, like rainfall-induced
ponding and internal erosion. Besides, it is unsuitable
for problems with a high relative acceleration between
the liquid and solid [7]. Hence some researchers have
adopted the two-phase two-point scheme. Abe et al. [8]
proposed a two-phase two-point MPM to simulate a
river levee embankment failure example by u® — p!
formulation. Bandara and Soga [9] extended u® — u!
formulation [6] to two-phase two-point material point
method, in which the relative acceleration between
liquid and solid was considered. Based on the work of
Bandara & Soga [9], Liu et al. [10] developed a three
dimensional two-phase two-point MPM code, and the
generalized interpolation material point method (GIMP)
was used for spatial discretization.

In recent years, the MPM was also applied to
simulate unsaturated soils. Similar to the modelling of
saturated soils, several schemes have been proposed for
unsaturated soils. Higo et al. [11] proposed an MPM-
FDM coupled numerical method for the saturated and
unsaturated soils, and the u® —p' form governing
equations was applied. Yerro et al. [12] followed the
research of u® — u' formulation [6], developed a one-
point three-phase MPM approach for unsaturated soils
simulation. The momentum balance of solid, liquid and
gas were all adapted to govern the motion of them.
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Alternatively, some researchers [13-15] neglected the
gas density and gas pressure, analysed the failure and
post-failure process of unsaturated soil slope by the
simplified one-point two-phase MPM, which is in u® —
u' formulation. For the simulation of dynamic
interaction of free water and soils, Feng et al. [16]
proposed a hydro-mechanically coupled two-phase two-
point MPM for saturated and unsaturated soils.

This study extends the research of Zhan et al., [17],
modelled the unsaturated landslide by a two-phase two-
point MPM approach. The proposed MPM formulation
is suitable for solving large deformation problems
involving saturated and unsaturated soils. Gas density
and pressure are not considered. The generalised
interpolation material point method (GIMP) is adopted
for space discretisation to minimise the numerical
oscillations during computation. The governing
equations and stabilization technique are introduced in
the following sections. A centrifuge test about rainfall-
induced slopes instability is simulated to highlight the
influence of porosity change on the water retention
curve and permeability function. Furthermore,
parametric studies about the effect of soil water
retention and shear strength parameters on the slope
failure mechanisms are discussed as well.

For the symbol convention, for example, in a%, the
superscript & can be s and [, representing the solid and
water phases, respectively, and the variable without « is
for the mixture; k means the time step k; the bold a
means tensor; the dot is the time derivative. Regarding
the sign convention, the tension in the solid phase and
compression in the liquid phase are positive.

2 Governing equations

Unsaturated soil is a three-phase material comprising
solid particles, liquid and gas. A comprehensive model
should incorporate governing equations for all phases.
However, the modelling of most geotechnical problems
can be simplified, where the air in unsaturated soil is
connected to the atmosphere and its pressure is
maintained at zero. With this simplification, a two-phase
two-point MPM approach is proposed for analyzing the
hydro-mechanical geotechnical problems involving
unsaturated soils.

In addition, the governing equations are based on the
following assumptions: (i) soil particles are
incompressible; (ii) the transfer of water vapor is
negligible; (iii) the temperature is constant and uniform.

2.1 Momentum balance equations

The relative motion of liquid and solid phases can be
considered in the two-phase two-point MPM. Two
momentum balance equations are used to calculate the
acceleration of liquid and solid phases.
For the liquid phase, the momentum balance is as
follows:
p'vt = Fy —Vp' +p'g (D
where p! is the density of the liquid phase, ¥ is the
acceleration of the liquid phase, g is the gravitational

acceleration, and FY is the drag force imposed by the
solid-fluid interaction.

The drag force is governed by Darcy’s law when a
laminar and steady flow in a low-velocity regime is
simulated:

Fl =~ 00 (o) @)
where n is the porosity, S, is the degree of saturation,
v! is the velocity of the liquid phase, v° is the velocity
of the solid phase, k is the permeability.

The solid-fluid mixture needs to meet both linear and
angular momentum balances. Since the tensor of total
stress 0 is symmetric, the angular momentum is always
fulfilled. The linear momentum balance is described by

(1 —n)pv* + nS,pv' = div (6) + (1 — n)p g+

nS,plg  (3)
where p® is the density of the solid phase (i.e., soil
particles), ¥° is the acceleration of the solid phase.

From the above momentum balance equations for
the liquid and solid-fluid mixture, the velocity of liquid
and solid phases can be obtained.

2.2 Mass balance equations

The mass balance of the solid phase is given by
PP =m]+divlp*—nw]=0 &
By assuming that soil particles are incompressible
(aait ~ 0 and Vp° = 0), Eq. (4) is reduced to Eq. (5):
Z—’: = (1-n)divw®) — v57n (5)
Similarly, the mass balance of the liquid phase is
given by the following equation:
a ;
- S:pY) +div(nS,p'v") = 0 (6)
The gradient of the water density is negligible
(Vp' =~ 0) for water is only weakly compressible. In
L
addition, —lai = il, where K'! is the compressibility of
plapl K
the liquid phase. The following equation can be
therefore derived based on Eq 7):

n( + asr) ov! +5,. 24 nS, div(v') + v'vnS, =

apt) ot T at
0 ()
Substituting Eq (5) into Eq. (7), it is obtained that:

n (— + 6Sr) = S [(1 n) div(v®) —v’vn +

apl
ndiv(v') + vt Vnsr] (8)

Eq. (8) can update the pore water pressure under both
saturated and unsaturated conditions.

2.3 Constitutive equations for the mechanical
behaviour

The Bishop's stress is applied in this study:

o' =0+ xp'é )
where ¢” is the Bishop's stress tensor, y is the Bishop
parameter, and it is simplified as S,., & is the Kronecker
delta function. In the fully saturated condition, the
Bishop’s stress reduces to Terzaghi’s effective stress.

Using Bishop’s stress, the Drucker—Prager model
with strain hardening/softening is used to model the
behaviour of saturated and unsaturated soils. Details of
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this method were reported by Bandara and Soga [9]. It
should be pointed out that only the shear strength
evolution can be simulated using the Drucker—Prager
model in combination with Bishop's stress, while other
affects such as collapse upon wetting cannot be
simulated due to the lack of a loading collapse surface.
However the results are justified due to the physical
problem simulated (slope failure) which is primarily
related to shear strength reduction due to water
saturation and pore pressure build up.

Apart from the stress state variables and the
incorporation of strain hardening/softening, all other
mathematical formulations from the Drucker—Prager
model can be equally applied here. Since details of the
Drucker—Prager model are widely reported in the
literature, they are not repeated here. In the extended
Drucker—Prager model, the stress-strain relation is given
by

do* = D°Pde (10)
where € is the strain, and D¢P is the stiffness tensor.

2.4 The Constitutive equations for the hydraulic
behaviour

Soil water retention curve (SWRC) is important in
modelling unsaturated soil behaviour [18]. The current
study adopts the SWRC model of Tarantino [19], which
is developed from van Genuchten's [20] model by
incorporating the influence of void ratio. The
relationship between the effective degree of saturation
(Sefr) and pore water pressure is described as follows:

1 14
Sr—Sres __ seP\1-1
Seff:?res_ 1+(QE) l (lla)
where .
e = n (llb)
b==22 (11c)

where S, is the residual degree of saturation, s is the
matric suction, a and A are model parameters related to
the pore size distribution of soil, e is the void ratio, b is
a parameter describing void ratio effects on the water
retention behaviour.

On the other hand, the water permeability k of
unsaturated soil is modelled by the following equation:

k = ksatky (12)

where kg, is the saturated permeability, k, is the
relative permeability for describing the influence of
unsaturation on water permeability. The method of
Mualem [21] is used to determine the relationship
between k, and the effective degree of saturation:

1\ A?
Kk, = [Serr [1 — (1 — 52) l (13)

In addition, kg,; varies with porosity [22]:

n3
ksar = Cm (14)
where C is a soil parameter. Egs. (11) to (14) suggest
that the SWRC, relative permeability and saturated
permeability are affected by porosity.

3 Numerical implementation

Detail about space discretisation of momentum balance
equations, time discretisation and computational
procedures are reported by Zhan et al. [17], so they are
not repeated in this paper. This section focuses more on
stabilization technique for proposed MPM formulation.

The generalised interpolation material point method
(GIMP) [23] is applied in this study for space
discretisation. In GIMP, a smooth weight function is
adapted instead of an unsmooth shape function.
Therefore, GIMP shows a better capability of
minimising numerical oscillations than the standard
MPM.

Besides, multiple criteria for the critical time step
should be considered to achieve a stable solution for the
multi-phase MPM formulations [24]. To achieve a
convergent solution, the critical computational time step
is derived by taking the smaller value of the
permeability-dependent criterion [25] and the Courant-
Friedrichs-Levy (CFL) condition [26].

4 MPM simulation of rainfall-induced
failure of an unsaturated sand slope

The detail of verification of MPM formulation has been
reported by Zhan et al. [17]. This paper follows a
simulation of Zhan et al. [17], which is a centrifuge
model test reported by Wang et al. [27], to investigate
the soil parameters of water retention behavior and shear
strength effect on slope failure mechanisms.

Fig. 1 shows the geometry of soil slope in the MPM
model, consistent with the test condition of Wang et al.
[27]. The slope height equals 200 mm, and the slope
angle is 45°. The test and numerical simulations were
finished at 30-g, so the slope height is 6 m at the
prototype scale. The cell size equals 10 mm X
10 mm X 10 mm, and there are eight material points for
each phase in one cell.

Regarding the boundary conditions, the ground
surface is permeable and free to move. The heavy
rainfall condition is simulated by maintaining zero
suction at the ground surface after an equilibrium state
is achieved at the prescribed g-level ((initial water
content wy = 11.5% ). The lateral boundaries are
impermeable and fixed for horizontal displacement. The
bottom boundary is impermeable, and no displacement
is allowed in any direction.
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Fig. 1. Geometry and boundary conditions of the model used in GIMP (the displacement in Zone ABCD was measured during the

test).

4.1 Influence of water retention and shear
strength parameters

The soil used to simulation is classified as well-graded
silty sand with loose ( n =048, kg =2.77 X
1073 m/s) and dense (n = 0.34, kgq; = 2 X 107> m/s)
compaction state. The triaxial tests of Wang et al. [27]
are used to calibrate shear strength and water retention
parameters. Constant shear strength parameters of the
soil are ¢ = 31.8° and ¢ = 0 kPa for the loose state and
¢ = 38.1° and ¢ = 15 kPa for the dense state. For
water retention parameters, a = 1.2, 1 = 0.89 and
Sres = 0 for the loose state, while a = 1.76, 1 = 0.66
and S,..; = 0 for the dense state. In addition, there is a
volumetric contraction for the silty sand at a loose state,
while a dilatancy is observed at a dense state. Therefore,
a negative dilation angle (1)P¢%* = —5°) and a positive
dilation angle (YP®* = 5°) are applied to simulate
strain-hardening and strain-softening for loose and
dense sand, with yP¢* = 0.01 and ¥ = 0.2. And
other typical parameters shown in Table 1 are adapted
for both loose and dense sand.

Table 1. Material characteristics for centrifuge model test

Water bulk modulus, K! 2.2 GPa
Solid density, p* 2670 kg/m3
Water density, p' 1000 kg/m3

Solid Young’s modulus, E 10 MPa
Poisson's ratio, v 0.33

For parametric studies, Fig. 2 (b) and (d) show the
results of displacement at four different times: t; =
10s, t, =20s, t3=30s, t, =40s of loose and

dense soil. Large displacement mainly occurs at the
upper part of the slope (i.e., Zone ABCD in Fig. 1, and
the maximum displacement is located at the slope crest.
In this section, the porosity dependency of hydraulic
properties is not considered, a constant void ratio is used
for Eq. (11) and (14). For silty sand with loose state, the
displacement is smaller compared with dense state.
According to SWRC, dense sand has a higher water
retention ability, so a higher equilibrium suction is
predicted at a same degree of saturation, which means a
higher value of Bishop’s effective stress and lower
relative permeability. Dense sand also has a higher shear
strength. In addition, dense sand has a smaller amount
of rainfall infiltration because of a smaller value of
permeability.

4.2 Influence of porosity dependency SWRC
and permeability function

Fig. 2 (a) and (b) are displacement contours of loose and
dense sand involving influence of porosity on Eq. (11)
and (14). The reason of difference between Fig. 2 (a) and
(b) has been reported by Zhan et al. [17]. And as it is
shown in Fig. 2 (c) and (d), when the porosity
dependency of SWRC and permeability function is
considered, the displacement is larger. It is mainly
because the dense sand shows dilatancy behaviour [22]
during the process of slope deformation. When the
porosity dependent SWRC are considered through Eq.
(14), the soil is expected to have a lower water retention
ability. Consequently, a lower equilibrium suction is
predicted at a given degree of saturation, leading to
higher relative permeability and lower strength.
Moreover, there is an increase in saturated permeability
when porosity effects are included in Eq. (14), resulting
in a larger amount of rainfall infiltration and, therefore,
there is a larger slope displacement.
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Fig. 2. MPM results of pre-failure soil displacement (unit: mm) in Zone ABCD when the unsaturated sand slope is
subjected to rainfall (a) loose sand considering porosity effects on SWRC and permeability function; (b) loose sand with
constant SWRC and permeability function for loose sand; (c) dense sand MPM considering porosity effects on SWRC
and permeability function; and (b) dense sand with constant SWRC and permeability function for dense sand.

Fig. 3 shows the post-failure of dense soil
displacement. The slope failure occurs at t = 60 s with
a maximum displacement value of 40 mm. The top part
of the slope continues moving down from t = 70 s to
t = 100 s, and the average depth of the sliding Zone is

t=60s

about 0.7 m at the prototype scale. There is a loss of
suction because of rainfall-infiltration, according to Eq.
(9), the Bishop’s stress decreases and slope failure
occurs. The post-failure of loose soil displacement can
be referred to Zhan et al. [17].

0 20 40 B0 80 100 120 140 180 180 200 220

Fig. 3. Post-failure soil displacement (unit: mm) at four different times calculated using MPM.

5 Summary and Conclusions

In this study, a two-phase two-point MPM formulation
is developed for the coupled hydro-mechanical
behaviour of saturated and unsaturated soils. The
proposed MPM formulation has newly incorporated the
influence of porosity on the water retention ability and
permeability function. For spatial discretisation, GIMP
is applied for minimum numerical oscillations.

The rainfall-induced failure of unsaturated soil slope
was simulated to evaluate the new code for analysing

large deformation problems involving unsaturated soils.
Parametric studies demonstrate soil water retention and
shear strength parameters play significant roles on the
slope failure mechanisms. Besides, for dense sand, when
the influence of porosity on SWRC and permeability
function is not considered, the displacement is
underestimated.
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