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Abstract. The Barcelona Basic Model (BBM) developed by Alonso et al. [1] is the first and the most 

widely used elasto-plastic model for unsaturated soils. The BBM successfully explained many key features 

of unsaturated soils and received extensive acceptance. However, there is lack of a well-established 

method for selecting parameter values for the BBM from laboratory tests, although a variety of methods 

have been recently developed for calibrating model parameters for the BBM. Concerns still exist on the 

correctness and robustness of such parameter value selection procedures. The above statements were 

evidenced by a recent benchmark exercise on selection of parameter values for the BBM organized within 

a "Marie Curie" Research Training Network on "Mechanics of Unsaturated Soils for Engineering" 

(MUSE)[2]. Experienced constitutive modelers in unsaturated soils from 7 prestigious teams were 

provided with the same experimental results on an unsaturated soil to calibrate the parameter values in the 

BBM. Theoretically, the calibrated parameters from different teams are expected to be the same or at least 

very close. However, the selected parameter values by the 7 teams are surprisingly widely different. This 

paper first discussed the limitations in the existing methods to calibrate the parameter values in the BBM. 

A novel approach was then proposed to calibrate the parameter values for the BBM. The approach takes 

advantage of the close-form solution of the BBM, which is derived based upon a newly proposed 

Modified State Surface Approach to study the unsaturated soils [3-6]. The same experimental data, used in 

the MUSE benchmark exercise, were reanalysed using the proposed approach to calibrate parameters for 

the BBM. The results were compared with those in the MUSE benchmark exercise from which the 

simplicity, effectiveness, and robustness of the proposed method were evaluated. 

1 Introduction 

The Barcelona Basic Model (BBM), first proposed by 

Alonso et al. [1] in 1990, has received extensive 

acceptance and been successfully applied to explain 

various key features of unsaturated soils' behaviour. It 

has also been implemented into Finite Element 

software to analyse boundary value problems related to 

earthworks [7], railways and climate [8,9], field tests 

[10], and disposal of nuclear waste underground [11]. 

However, dissemination and use of the BBM outside 

the unsaturated soils research context have been very 

limited. Possible contributory factors in this included, 

but not limited to, (1) the experimental difficulties 

associated with performing suction-controlled tests that 

are needed for calibrating the model parameters, and 

(2) uncertainty in how best to select BBM model 

parameter values from laboratory test data and 

concerns on the robustness of such parameter value 

selection procedure [12]. While some advances have 

been introduced to the former topic to characterize 

unsaturated soil behaviour in a faster and more 

accurate way [13-15], little progress was made in the 

latter one. Despite the fact that a great number of 

efforts have been recently dedicated to calibrating 

model parameters for the BBM [2, 12-17], concerns 

still exist on the correctness and robustness of such 

calibration procedures. The above statements were 

evidenced by a recent benchmark exercise on selection 

of parameter values for the BBM organized within a 

"Marie Curie" Research Training Network on 

"Mechanics of Unsaturated Soils for Engineering" 

(MUSE). 7 teams of experienced constitutive modelers 

provided with the same experimental results on an 

unsaturated soil to calibrate the parameter value for the 

BBM. Theoretically, the calibrated parameters were 

expected to be the same or very close, yet the selected 

values proved to be surprisingly scattered [2]. 

In this paper, a critical review was first performed 

for the existing methods to calibrate the BBM model 

parameter values in which the limitations of these 

methods were presented. It is found that all the current 

methods were built upon the incremental forms of 

elasto-plastic theory in which the original BBM was 

proposed. The limitations of incremental forms in 

providing an overall best fit to the BBM were 

explained and discussed. 

Based on the discussions, a novel approach was 

proposed to calibrate the model parameters for any 

constitutive model including the BBM. The proposed 

method is based upon the Modified State Surface 

Approach (MSSA), which is proposed by Zhang and 
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Lytton [3-6] to investigate elasto-plastic behaviour for 

unsaturated soils. Using the MSSA, the closed-form 

surface equations were derived for the BBM, which 

can help to establish the objective function for the 

BBM model calibration. Later, the Broydon–Fletcher-

Goldfarb–Shanno (BFGS) search algorithm, which is a 

quasi-Newton method, used to minimize the objective 

function by searching for the best set of model 

parameters [23]. The derived closed-form objective 

functions using the MSSA along with the BFGS 

method, was then implemented to calibrate the 

parameter values in the BBM. The same test results 

used in the MUSE benchmark exercise were used to 

calibrate the model parameters for the BBM [2, 24]. 

The results were compared with those in the MUSE 

benchmark exercise from which the simplicity, 

effectiveness, and robustness of the proposed method 

were evaluated. 

2 BBM: An Overview  

The BBM was developed by Alonso et al. [1] using 

mean net stress p, deviator stress q and matric suction s 

as stress state variables, where p is the excess of mean 

total stress over pore air pressure and s is the difference 

between pore air pressure and pore water pressure. It is 

an extension of the Modified Cam Clay model for 

saturated soils [25] into unsaturated soils. In the elastic 

zone, the following equation was proposed for the 

variation of specific volume due to small changes of 

the net normal tress p and suction (Please see the list of 

symbols for definitions).  

               
( )

e s
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= +
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The elastic strain induced by changes in q is 

computed using Eq. (2): 
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A loading collapse (LC) and suction increase (SI) 

yield curves were proposed to separate the elastic and 

plastic zones as follows under isotropic conditions: 
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where,  
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It is worth noting that the SI yield curve was mostly 

abandoned in the later refinement of the BBM [4]. As a 

result, any features related to the SI yield curve is not 

discussed in this paper for simplicity purposes.  

The BBM was then extended into triaxial stress 

states by assuming the yield curve at constant suction s 

is an ellipse in the p-q plane, similar to the Modified 

Cam Clay model [2], as follows: 

                       
2 2

0( )( ) 0sq M p p p p− − − =  (6) 

where ps=ks and represents the soil cohesion increase 

with suction, and it was assumed to be a linear 

relationship. The yield surface can also be expressed as 

the following function by combining Eqs. (3) and (6): 
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The BBM assumed purely volumetric hardening. The 

plastic deformation of the specific volume is solely 

dependent on the degree of expansion of the yield 

curve and it is independent of the actual stress path 

employed to produce the expansion (Wheeler and 

Karube 1996) as follows: 
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 (8) 

Under continuous shearing, the BBM assumed that 

the soil will ultimately attain a critical state and the soil 

will fail if the following condition is met: 

                 ( )q M p ks= +  (9) 

A non-associated flow rule was used to calculate 

the deviatoric plastic strains as follows:   
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In the original BBM, it was suggested that  is 

chosen in such a way that the flow rule predicts zero 

lateral strain for stress states corresponding to Jaky’s 

K0 values [26] ( ) ( )0 1 sin ' 6 2 / 6K M M= − = − +  . 

Alonso et al. [1] derived the following expression for 

 
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Zhang et al. [15] argued that K0 for unsaturated 

soils cannot be a constant and derived the close-from 

solution for the K0 for unsaturated soils. Consequently 

Eq. (11) should not be used. Instead, it is proposed that 

 be used as an additional constant for the “modified” 

BBM. 

The BBM used the following equations to calculate 

the total volumetric and shear strain increments: 

                                       
e p

v v vd d d  = +  (12) 

                                       
e p

q q qd d d  = +  (13) 

Where   stands for strain, the superscripts “e” and 

“p” represent elastic and plastic strains respectively, 

while the subscripts “v” and “q” stand for volumetric 

and deviator strains, respectively. 
01

v

dv
d

e
 =

+
  

It is worth mentioning that Eqs. (1) through (11) are 

all formulated in incremental forms and are sufficient 

for the definition of the BBM. 

Under isotropic conditions, the BBM was also 

presented an integrated form. For isotropic 

compression tests at constant suction, s, the BBM 

adopted the following equations to predict soil 

behaviour at virgin states: 
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p
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( ) and ( )N s s  in Eq. (14) are dependent upon the 

suction, s, where  

                        ( )( ) 0 ln at

s
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s p
N s N

p


 +
= −  

 
 (15) 

3 Existing Methods for BBM Parameter 
Calibration and Limitations 

In constitutive modelling, the process of calibrating 

model parameters is based on experimental tests that 

encompass the range of stress states for the specific 

boundary value problem being examined [18-20]. The 

ultimate objective of the calibration is to determine the 

most appropriate parameters that can accurately predict 

the soil's response to the available experimental data. It 

is recommended to have redundant data points during 

the calibration process, especially when dealing with 

highly nonlinear soil behaviour, in order to obtain the 

most accurate representation of the soil's behaviour. As 

a result, calibration of a model inevitably requires 

statistical analysis. The calibration of an elasto-plastic 

model is a mathematical process that involves 

minimizing the error between experimental results and 

numerical predictions through the adjustment of model 

parameters. Physical constraints may apply to the 

model parameters in certain situations, thereby making 

the calibration process a constrained optimization 

problem. 

The optimization procedure consists of two main 

steps, Firstly, the formulation of an objective function 

denoted as F(X), which measures the difference 

between the theoretical and experimental results. It is 

essential to include the stress/strain behaviour at every 

point in each test to obtain an accurate representation 

of the soil's overall behaviour. Secondly, the selection 

of an optimization strategy enabling the search for the 

minimum of the objective function. 

3.1 Existing methods for BBM parameter 
calibration  

The BBM has 10 parameter values: , s, β, λ(0), r, 

pc, N(0), G, k, and M. 

In the original BBM [1], a sequential method was 

used to calibrate the model parameters: 

(1). From isotropic normal compression test, find 

the λ(s) at different suction levels λ(s1), λ(s2), and λ(s3) 

and initial yield loci from isotropic normal 

compression tests,  

(2). Best-fit Eq. (5) using λ(s1), λ(s2), and λ(s3) and 

least squares regression in order to find λ(0), β, and r.  

(3). Use the yield loci from isotropic normal 

compression tests at different suction levels to fit Eq. 

(3) to obtain pc.  

(4). Use several shear strengths tests at different 

suction levels to fit Eq. (9) to obtain M and k. 

The method is straightforward. Several objection 

functions were clearly defined, and standard 

optimization techniques can be used to obtain the best 

fit. However, as pointed out by Gallipoli et al. [12], in 

the BBM, different aspects of soil behaviour are each 

affected by more than one of these parameters while, at 

the same time, a single parameter controls more than 

one aspect of soil behaviour.  This makes it difficult to 

associate each parameter with a single aspect of 

material behaviour. Because of this, iterative 

approaches have often been needed in which some 

parameters are initially fixed by matching one 

particular aspect of soil behaviour but are subsequently 

adjusted to improve prediction of other experimental 

features. Such iterative approaches involve a 

substantial degree of personal judgement, often leading 

to the selection of widely different parameter values 

from the same experimental data. 

Gallipolli et al. [12] proposed an improved 

sequential method especially designed for calibration 

the 5 model parameters in the BBM, β, λ(0), r, pc, and 

N(0) under isotropic conditions. Degrees of freedom in 

the BBM are progressively eliminated in a specific 

order, so that the corresponding parameter values are 

selected one at a time without having to make 

assumptions about the values of remaining parameters. 

The proposed calibration method is simpler and less 

subjective than conventional procedures. Due to the 

limited need for personal judgment, the proposed 

procedure makes it possible for a relatively 

inexperienced user to select parameter values from a 

set of suction-controlled laboratory tests in a relatively 

robust and objective fashion. 

Instead of using the sequential method, some 

researchers have opted for global optimization methods 

to calibrate model parameters for constitutive models 

that involve numerous parameters [18, 19], just like the 

BBM. These methods involve minimizing an objective 

function that measures the difference between model 

predictions and laboratory data and are theoretically 

more rigorous than the sequential approach. However, 

if the methods are to be used for BBM model 

calibration, they require an in-depth understanding of 

every detail in the BBM to establish the objective 

function from multiple individual constitutive relations, 

such as Eqs. (1) through (13) in Section 2. 

Additionally, data preprocessing requires substantial 

personal judgment, and the use of advanced numerical 

methods in engineering optimizations is necessary to 

solve the complex objective function. These methods 

often operate as "black boxes," hiding the physical 

meaning of individual parameters and requiring 

significant computational effort. Even experienced 

users may find it challenging to use these programs, as 

they need to be customized specifically for calibrating 

model parameters in the BBM [13]. 

These challenges have been recognized by many 

researchers. A benchmarking exercise on calibration 

the model parameters for the BBM was organized 

within a “Marie Curie” Research Training Network on 

“Mechanics of Unsaturated Soils for Engineering 

which was funded by the European Commission from 

2004 until 2008 [27]. Researchers from 7 prestigious 

universities took part in the benchmarking exercise: the 

University of Glasgow (GU), UK; the University of 
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Durham (DU), UK; the Università degli Studi di 

Trento(UNITN), Italy, the École Nationale des Ponts et 

Chaussées(ENPC), France; the Università degli Studi 

di Napoli Federico II(UNINA), Italy; the Universität 

Innsbruck(UNINN), Austria; and the University of 

Strathclyde(USTRAT), UK. The first 5 of these were 

members of the MUSE Network and the last 2 were 

external participants. The exercise was coordinated 

from the University of Glasgow (GU). D’Onza et al. 

[2] elaborated these efforts in great detail. In practice, 6 

of the 7 teams except UNINN used a sequential 

approach to isolate specific features of behaviour to 

determine the values of different individual model 

constants, but then employed some degree of iteration 

or compromise. Different teams also chose to place 

greater or lesser emphasis on aspects of behaviour or 

on individual tests. Different from the other 

universities, UNINN performed a formal global 

optimization process using inverse analysis. This 

involved simultaneous optimization of the values of 

most of the 10 soil constants under isotropic conditions 

and the initial value of the hardening parameter, by 

attempting to minimize suitable objective functions 

describing the differences between model simulations 

and experimental results. Exceptions were G, M and k, 

which were determined by the UNINN team in a more 

conventional fashion. Theoretically, the calibrated 

parameters from different teams are expected to be the 

same or at least very close. However, the selected 

parameter values by the 7 teams are surprisingly 

widely different, which is presented in Table 1. For 

example, pc varies from 10-4 to 1017, with a difference 

of 107.  

 

Table 1 BBM parameter values determined by 7 teams  

 

3.2 A simple example: plane fitting 

Before discussing the limitation of existing 

methods for the BBM calibration and possible 

solutions, let us have an exercise on fitting a simple 

plane to demonstrate how a model calibration is 

performed with different approaches. Assume that we 

have a set of four points of A, B, C, and D in the three-

dimensional (3D) space as shown in Fig. 1 and wants 

to best-fit them with a plane.  As shown in Fig. 1, 

points A and B are in the xOz plane with x-, y-, and z- 

coordinates of (1,0,2) and (2,0,1) respectively, while 

points C and D are in the yOz plane with coordinated 

of (0, 0.5,1.5) and (0,1,0.5) respectively. Alternatively, 

the four points can be viewed as a group of test results 

and the plane can be viewed as a model for the test 

results with an expression as follows: 
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Fig. 1. Calibration model parameters for a Plane  

              z ax by c= + +  (16) 

The model can also be written in terms of an 

incremental form as follows: 

              dz adx bdy= +  (17) 

Where 

              
z

a
x


=


 (18) 

              
z

b
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
=


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Four approaches can potentially be used to calibrate 

the model parameters a, b, and c in Eq. (15) as follows: 

(1) a sequential approach based upon the 

incremental form as represented by Eqs. (18) and (19),  

(2) a global optimization approach based upon the 

incremental form as represented by Eq. (17), and  

(3) a global optimization approach based upon the 

closed form solution as represented by Eq. (16).  

The details of the three different calibration 

approaches are described as follows.  

For approach (1), one can use the results of points 

A and B in the xOz plane to find the value of the model 

parameter a. The objective function is: 

( ) ( ) ( )( )

( ) ( )( )

2

1

2

1

         

n

mi pi
i

n

i i
i

F X dz dz

dz a dx

=

=

= −

= −





 (20) 

Since points A and B lie on a line of z=3.00-1.00x 

and there are only two points, the slope of the line is 

              / 1.00z x a  = = −  (21) 
Similarly, one can use the results of points C and D 

in the yOz plane to find the value of the model 

parameter b. Since points C and D lie on a line of 

z=2.500-2.00y, the slope of the line is 

              / 2.00z y b  = = −  (22) 

Table 2 shows a summary of the results obtained 

from three different approaches. The R-squares 

(coefficient of determination) for the two fitting 

processes are 1.00 since only two points are used to fit 

a line in both cases. c obtained from the two 

regressions were 3.00 and 2.50, respectively. One 

inconsistency can be noticed here that two different 

values for the parameter c are calibrated. When the two 
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c values are used, the predicted z values both have 

overall R-squares of 0.60, which are significantly 

lower than the 1.00 of R-squares obtained from the two 

individual optimizations.   
 

Table 2. Calibrated model parameters using different 

approach. 

 
 

For approach 2, the objective function to best fit Eq. 

(16) by using the four points is as follows: 
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Where (dz)mi and (dz)pi is the measured and predicted 

results of dz for a point relative to the initial condition, 

respectively.  

In order to perform the global optimization, one test 

point must be selected as the initial values for 

calculating dx, dy, and dz to perform the least square 

optimization to obtain the parameters a and b. It is 

worth noting that for different initial conditions, the 

results obtained will be different. For example, as 

shown in Table 2, if point A is selected as an initial 

point (option 1), a and b obtained from the 

optimization process using Eq. (23) are -0.9167 and -

2.5000, respectively. The R-square for the fitting is 

0.9167. The corresponding c is 2.9167 based upon 

point A. The overall coefficient of correlation is 

0.9667. If points B, or C, or D is used as the initial 

conditions, the R-squares for the global optimization 

change from 0.9444 to 0.9762, and the overall R-

squares vary from 0.9667 to 0.9778. In other words, 

the results depend upon the selection of the initial 

conditions. 

Of course, the easiest and most accurate way is to use 

the coordinates of the four points and the closed-form 

as represented in Eq. (15) to perform a standard least-

square analysis (approach 3). The object function for 

the fitting assignment can be derived as follows: 
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Where zmi and zpi is the measured and predicted results 

of z based upon the model parameters a, b, and c at the 

different values of x and y, respectively. Without 

providing more details, the results of the optimization 

are a=-0.8500, b=-2.3000, and c= 2.7500 with a plane 

has the following expression: 

              2.7500 0.8500 2.3000z x y= − −  (24) 

The overall coefficient of correlation for the fitting is 

0.9800, which is the highest value in all three 

approaches as shown in Table 1. Obviously, approach 

(3) is the correct and simplest approach for the 

calibration process. 

The above example is simple, but it clearly 

demonstrates the limitations in the first two 

approaches. Approach (1), a sequential method, used 

partial results to perform calibrations for part of the 

model. Two independent optimization processes are 

performed to get the model parameters, and results are 

then combined for the whole model. It can be seen 

from the above example that each optimization has 

high R-square and best-fit locally, but the results do not 

represent the overall best-fit for the whole model. 

There is an inconsistency with the values of c as well. 

Approach (2) is a global optimization process to best 

fit the whole model based upon the incremental 

formulation. Application of incremental formulation 

requires specifying an initial point, and the results are 

highly dependent on the selection of the initial points. 

This is attributed to the fact that this approach 

implicitly assumes that the initial condition is perfectly 

on the plane. However, as can be seen from Eq. (24) 

and Fig. 1, none of the four points is exactly fallen on 

the plane. The calibration results using approach (2) 

can assure 100% fit of the initial point and a best fit of 

the derivatives of Eq. (16) relative to the initial point. 

However, unless the initial point is exactly fallen on 

the plane, approach (2) cannot obtain the best fit of the 

model represented by Eq. (1). Approach (3) is the most 

rigorous way and can get the overall best-fit for all 

results, although the R-square is lower than those in 

some of the partial fittings. 

In order to make the approach (2) work, a 

“modified” global optimization approach (4) based 

upon the incremental form as represented by Eq. (17) 

can be used to obtain the correct results. Instead of 

using a test point as initial condition, an additional 

parameter of predicted z value zp0 at the initial 

conditions of x and y must be introduced into the 

calibration process. The corresponding objective 

function can be written as follows: 

              

( ) ( ) ( )( )

( ) ( ) ( )( )
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2

0
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n

mi pi
i

n

i p i i
i

F X dz dz
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=

= −
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 (25) 

For example, when point A is used as an initial 

condition, only the independent variables x and y 

values of (1,0) of pint A are used as initial conditions, 

while the dependent variable z is considered as an 

unknown value for optimization. The results obtained 

are the same as those in Approach (3). It is worth 

noting that calibration based upon Eq. (25) can obtain 

correct a and b values no matter if the initial point is on 

the plane. The downside is that when the results are 

used to make predictions, one must start from the same 

initial x and y values used in the calibration to assure 

the equivalent c value is correct and obtain the correct 

prediction results. This is easy to do for this simple 

plan-fitting but will become quite difficult to achieve 

when dealing with a much more complicated model 

like the BBM with many tests (initial conditions) as 

well as elasto-plastic behaviour involved. More 

discussions can be provided in later sections in this 

regard. 
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3.3 Limitations in the MUSE Benchmark 
Exercise 

From the above discussions, when examining the 

MUSE benchmark exercise [2], it is found that the 

following limitations exist in the existing methods:  

1. All the researchers used the sequential approach 

including the UNINN team in the MUSE benchmark 

exercise. Although each of the optimization represents 

best fits for specific features, the combined results do 

not represent an overall best fit of the whole model. 

2. All the researchers used the incremental 

formulations when calibrating the BBM. To calculate 

the increments, all calculations must start from certain 

initial conditions which are implicitly assumed to be 

perfect with no errors, which is problematic. Since 

many tests are used to calibrate the BBM parameters, 

many of such initial points are used. 

3. In all the calibrations, it is assumed that all the 

tested soil specimens have the same stress histories. 

This is evidenced by the fact that only one 

preconsolidation stress was reported by each team for 

all the tests. As can be seen in the later sections, the 

tested soil specimens most likely have different stress 

histories. Existing methods also require the 

preconsolidation stresses are determined accurately, 

which is difficult to achieve using the Casagrande 

method [36] (Please see Zhang et al. [28] for more 

discussion).  

4 Modified State Surface Approach 

The exercise on the plane-fitting clearly demonstrated 

the benefits of model calibration based upon the 

analytical solution of the model (plane). It also 

demonstrated that if the incremental formulation is 

used, one cannot easily perform a correct model 

calibration, no matter if a sequential method or global 

optimization method is used and what point is used as 

the initial condition. Because of these shortcomings, 

the use of simple analytical methods should remain the 

preferred option for selecting the values of a 

constitutive model.  

Zhang and Lytton [3-4] developed the MSSA to 

explain the elastoplastic behaviour of unsaturated soils 

under isotropic stress conditions. The closed-form 

surface equations for the BBM was derived based upon 

the principle of the MSSA. Afterward, the close-form 

solutions for the BBM under triaxial loading conditions 

was also derived [6]. Zhang & Lytton [5] extended the 

MSSA for the coupled hydro-mechanical behaviour of 

unsaturated soils. Riad & Zhang [17, 29] further 

extended the MSSA to include the coupled hydro-

mechanical hysteresis for unsaturated soils. In this 

paper, only the relationships for volume changes in soil 

structure are discussed. In the following section, the 

principles of the MSSA are introduced, and then the 

method is utilized for derive the close form solutions 

for the BBM for the model calibration purposes. 

4.1 Principle of the MSSA 

The principle of the MSSA can be illustrated by 

Fig. 2 [3]. Fig. 2 shows the stress paths for three 

isotropic loading-unloading-reloading tests. At an 

arbitrary constant suction s = s2, the soil specimen 

initially resides at point D with an initial yield curve of 

LY1. The preconsolidation stress is p0* at s = 0 kPa, 

and the yield stress at s = s2 is represented by point E 

in Fig. 2b. The soil is then loaded from D to E and 

subsequently to V, unloaded from V to D', and finally 

reloaded to F in Fig. 2b. This figure presents a typical 

soil response in the v-lnp plane, neglecting hysteresis. 

The process yields the following observations: 

1. The virgin loading curve EVF's shape and 

position remain constant in the v-lnp plane, regardless 

of stress path or history. Plastic loading merely 

expands the curve's range, such as the initial EVF 

curve becoming VF after loading from D to E to V. 

2. In the v-lnp plane, the unloading-reloading curve 

retains its shape and position during elastic loading or 

unloading (e.g., D to E, V to D', or D' to V). For plastic 

loading, the curve's shape and slope remain constant, 

but its position shifts downward in parallel with the 

original curve. The elastic zone's range expands due to 

the increase in preconsolidation stress from p0* to p1*. 

3. The yield point is the intersection of the 

unloading-reloading curve and the virgin loading curve 

for s=s2, e.g. points, E, V, and F.  

Figs. 2a and 2b illustrate compression tests 

conducted at two additional arbitrary suction levels of 

s1 and s3, such as stress paths ABC and GHI, along 

with their results. Similarly, in the elasto-plastic zone, 

the shapes and positions of the virgin curves at 

different suction levels such as BC, EF, and HI as 

shown in Fig. 2b will always be the same if they are 

plotted in the v-p-s space as shown in Fig. 2c. 

Continuously conducting tests at varying suction levels 

results in a fixed "plastic (virgin) loading surface" in 

the v-p-s space, such as BEHUXYZWB in Fig. 2c, 

which is unique. The uniqueness of the state boundary 

surface is a fundamental assumption in the constitutive 

modelling of elastoplastic soil behaviour, and 

experimental evidence has validated the uniqueness of 

the state boundary surface for unsaturated soils [30]. 

The plastic surface BEHUXYZWB in Fig. 2c is the 

shape of the state boundary surface for isotropic 

conditions. In the meantime, as long as the stress path 

is in the elastic zone, the soil behaviour is stress path 

independent and soil responses can be represented by a 

unique surface.  In the v-p-s space, the following 

assertions can be made for the elastic and plastic 

surfaces: 

1) The shape and position of the plastic surface are 

always the same for the soil in the v-p-s space. Virgin 

loading only changes the range of the plastic surface. 

2) During an elastic loading or unloading process, 

the shape and position of the unloading-reloading 

elastic surface and the plastic surface remain 

unchanged in the v-p-s space. The specific volume of 

any isotropic elastic loading or unloading stress path 

must fall on the elastic surface in the v-p-s space. 

During a plastic loading process, the shape of the 
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unloading-reloading elastic surface remains unchanged 

( and s are constants for an assumed planar elastic 

surface), but its position will shift. Specifically, the 

unloading-reloading elastic surface will move 

downward in parallel with the original unloading-

reloading elastic surface. For example, the unloading 

stress path V to D’ will fall on the new elastic surface 

A’WVUG’D’. The volume change of any isotropic 

plastic loading stress path must fall on the plastic 

surface in the v-p-s space. 

 

 

 

Fig. 2. Principle of the MSSA. (a) Conventional 

interpretation of tests to determine parameters for the BBM 

[1]; (b) Volume change upon loading at different suctions 

from suction-controlled compression tests; (c) Three-

dimensional representation of volume change of the soil. 

 

3) The yield curve is the intersection of the 

unloading-reloading elastic surface and the plastic 

surface. 

The MSSA was extended to the triaxial stress states 

in the v-p-q-s space (which also considers deviator 

stress, q) as follows [6, 15]: 

1) There is a unique state boundary surface in the 

elastoplastic region which is always unchanged in the 

v-p-q-s space. 

2) The elastic surface is movable, but only moves 

when there is plastic loading. The elastic surface is 

fixed when there is elastic loading or unloading. 

3) All the soil responses will fall on either the elastic 

or plastic surface. 

4) The intersection between the elastic and plastic 

hypersurface is the yield surface; and 

5) The plastic hypersurface ends when the soil fails, 

which is at the critical state. 

4.2 Analytical solution of the BBM 

Using the MSSA, Zhang and Lytton [3] derived the 

closed-form expressions for the BBM under isotropic 

stress conditions. Fig. 3 shows the elastic and plastic 

surfaces used in the BBM. They include an elastic 

surface AFIH and the plastic surface which is made up 

of two parts: a plastic collapsible surface FIJG 

(corresponding to the LC yield curve) and a plastic 

expansive surface HIJC (corresponding to the SI 

curve). The elastic surface AFIH as shown in Fig. 2c 

has the following expression:  

              ( )1 ln lne

s ate C p s p = − − +  (24) 

The plastic collapsible surface FIJG can be expressed 

as: 

              ( )2 ln lnat

s c

at

s p p
e C s

p p
 

 +  
= − −   

  
 (25) 

The plastic expansive surface HIJC has the following 

expression: 

              ( )3 ln lns ate C p s p = − − +  (26) 

where, ( ) ( ) ( ) ( )0 1 exps r s r  = − − +   ; r = 

parameter controlling the slope of the virgin 

compression line,   = parameter controlling the slope 

of the virgin compression line for s0, (0) = slope of 

the virgin compression line associated with the mean 

net stress at saturation (s=0); pc = reference stress, , C2 

= N(0) in the BBM and is a constant, s = slope of the 

virgin compression line associated with soil suction, pat 

= atmospheric pressure, = slope of the unloading-

reloading line associated to the mean net stress, s = 

slope of the unloading-reloading line associated with 

soil suction, and C1 and C3 = are constants. The 

superscripts “e” represents the elastic change in the 

specific volume.   

Zhang [6] also derived the close-form solution for 

the BBM under a triaxial stress states for the plastic 

collapsible surface as follows: 

( )( )
( )

2

2

2

ln ln

   ln ln

at

sc

at

c

s pp
e C

pp

q
s p p

M p ks

 

 

 +
= − −  

 

  
− − + −   +   

 (27) 

where q =1-3 deviatoric stress, k = parameter that 

relates cohesion and suction, and M = slope of 

theoretical critical state line. Under triaxial stress 

states, the elastic and plastic expansive surfaces ae the 

same as Eqs. (24) and (26) respectively.  
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Fig.3. State Boundary Surface for the BBM (Modified from 

[1]). 

4.3 Relationship between the close-form 
solution and the incremental formulation 

Fig. 3 shows the shapes of surfaces AFIH, FIJG, 

and FIJG as defined by Eqs. (24) through (26) for the 

BBM model within the framework of the MSSA 

respectively. Partial derivatives of the surfaces with 

respect net normal stress p and suction are also shown 

in Fig. 3. These partial derivatives are consistent with 

the original BBM [1] as discussed in section 2. In other 

words, Eqs. (24) through (26) provide integrated close-

form solutions for the BBM under isotropic conditions, 

while Alonso et al. [1] mostly used an incremental 

formulation to develop the BBM in which partial 

derivatives were first proposed to represent specific 

features of unsaturated soil behaviour along some 

special stress path, and then the partial derivatives were 

assembled to the whole model of BBM according to 

critical state soil mechanics theory to represent soil 

behaviour under all possible stress paths. It is worth 

noting that use of incremental formulation to develop a 

constitutive model is a well-established approach for 

researchers from the birth of elasto-plastic theory. 

However, it results in great challenges for model 

parameter calibration as discussed in section 3 for 

plane fitting, yield curve determination as discussed in 

Zhang et al. [28], and laboratory testing as shown in 

Zhang [31].   

Zhang and Lytton [3] used the MSSA to 

successfully replicate all the examples in the Alonso et 

al. [1], indicating that the MSSA is consistent with the 

existing theories of elasto-plasticity for unsaturated 

soils. In addition, the MSSA clearly explains the 

relationship between different components of a critical 

state constitutive model. Especially, the advantage of 

having the uniqueness of the state boundary surface 

can be fully taken to significantly simplify the 

calibration process. This, combined with the close-

form solutions, makes the calibration of the BBM 

model parameters much easier and more 

straightforward.  

5 Use of the MSSA to Calibrate the 
BBM Parameters: Formulation of 
Objective Function 

The exercise involving plane-fitting highlighted the 

challenges of calibrating models based on incremental 

formulation. The task becomes even more arduous for 

complex models like the BBM, which comprises over a 

dozen constitutive relations for different features of 

unsaturated soils. Obtaining accurate model parameters 

using incremental formulation becomes an 

overwhelming challenge in such cases. 

In contrast, calibration of models through an 

integrated close-form solution simplifies the calibration 

process significantly. Close-form solutions for the 

BBM were obtained through the MSSA approach [3, 

6]. Using these solutions for BBM model calibration is 

much more straightforward and less confusing. The 

following sections discuss how to establish objective 

functions for BBM model calibration in different 

scenarios. In the following calibration process, it is 

assumed that the elastic and elasto-plastic behaviours 

of the unsaturated soil is independent of each other. 

Consequently, two optimization processes were 

performed for model parameter calibrations, one is for 

the elastic zone, and the other is for the elasto-platsic 

zone.  In case that the elastic and elasto-plastic 

behaviours are not independent of each other, then only 

one optimization is needed and all test results should 

be included in one single calibration process.  

In general, calibration of the BBM parameters is a 

process to find a suitable combination of model 

parameters of 

( ) ( )1     0  0       
T

c

sX C G N r p M k     =    (28) 

Which can minimize the differences between the 

measured results from all the tests and the predicted 

results by the BBM using the model parameters as 

selected for Eq. (28) as follows:  

( ) ( ) ( ) ( )( )
22

1

n

i mi pi s smi pi
i

F X w v v  
=

 = − + −
  

  (29) 

Where n represents number of tests performed on the 

unsaturated soils, wij = weighted factor, vmi= measured 

specific volume, vpi= predicted specific volume, ( )s mi


= measured deviatoric strain, and ( )s pi
 =predicted 

deviatoric strains. 

It is worth noting the preconsolidation pressure is 

implicitly included in Eq. (28). According to the 

MSSA, yield curve/surface is the intercept of the 

elastic surface and plastic surface. The 

preconsolidation pressure is the value of yield stress 

when s=q=0. When C1 and N(0) are determined, the 

preconsolidation stress can be determined as follows 

[3]: 

( ) ( )

( )
1*

0

0 ln( ) ln
exp

0

c

s atc
N C p p

p p
 

 

 − + +
=  

−    

 (30) 

In addition, as shown in the later sections, the 

preconsolidation stress for each test are different and 

can be changed due to the applied load and wetting 

processes.  
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For loading conditions different from triaxial 

shearing conditions, the objection functions are special 

cases of Eq. (32) and have simpler expressions, as 

discussed in the following discussions.  

5.1 Objective function for elastic zone 

Relatively less attention was paid to the calibration of 

the model parameters in the elastic zone. The elastic 

parameters  s, and G are considered to be generally 

of minor importance because of the elastic strains are 

typically significantly smaller than plastic strain. C1 in 

Eq. (24) was not calculated since it does not appear in 

the original incremental formulation of the BBM. In 

comparison, calibration of the  and s for the BBM is 

nearly the same as the plane-fitting as shown in Fig. 1. 

The only difference is that specific volume is assumed 

to be linearly proportional to the net mean stress and 

suction in the semi-logarithmic scale. The objective 

function for the elastic behaviour for both isotropic and 

triaxial stress conditions can be formulated as follows: 

( ) ( )

( ) 

2

, ,

1 1

2

, 1,

1 1

ln ln

n k

ij m ij p ij

i j

m n

ij m ij i ij s ij at

i j

F X w v v

w v C p s p 

= =

= =

= −

 = − − − +
 





(31) 

where 
1 1, 2...k,    

T

sX C   =   , n represents number of 

tests performed on the unsaturated soils, and k is the 

number of data points for each test in the elastic zone, 

and wij = weighted factor. 

Different from the plane-fitting case in which there 

is a unique C, the C1 in Eq. (24) under most situations 

varies for each test and is dependent on the stress 

history of the soil according to the MSSA. This will be 

discussed in the Sections 6 and 8 with greater details. 

5.2 Objective function for elasto-plastic zone 

Isotropic loading conditions is a special case of triaxial 

shearing with q=0. In addition, there is no deviatoric 

strain under isotropic loading. Consequently, X in Eq. 

(28) becomes ( ) ( )0  0     
T

cX N r p  =   , and the 

objection function as defined by Eq. (29) can be 

simplified into:   

( ) ( )
2

1

n

i mi pi

i

F X w v v
=

= −   (32) 

Consequently, the predicted specific volume vpi can 

will be calculated using Eq. (25): 

( ) ( )0 ln lni at i

pi s i c

at

s p p
v N s

p p
 

 +  
= − −   

  
 (33) 

When a soil is subjected to triaxial shearing 

conditions, there are both volume change and 

deviatoric strains. As discussed previously, a non-

associated flow rule was used to calculate the 

deviatoric strain using Eq. (10), where  is chosen 

according to Eq. (11). Consequently, all the model 

parameters in the original BBM can be calibrated using 

Eq. (32) with the following:  

( )

( ) ( ) ( )( )
( )

2

2

0 ln ln

0 1 exp ln ln

i i at

pi sc

at

ci

i i

i i

p s p
v N

pp

q
r s r p p

M p ks

 

  

   +
= − −   

   

  
− − − + − + −        +  

 (34) 

and ( ) ( ) 0  0      
T

cX N r p M k  =    If  in Eq. (10) is 

taken as an additional model parameter as suggested by 

Zhang et al. [15], then the predicted results based upon 

the calibrated BBM parameter values must be able to 

match both the volumetric and deviatoric strains 

simultaneously. Consequently, the object function for 

the triaxial shearing conditions should be Eq. (29), and 

( ) ( ) 0  0       
T

cX N r p M k   =   , where the 

predicted deviatoric strain ( )s pi
  can be calculated 

using Eqs. (10) (dilatancy rule) and (13). Under this 

situation, the deviatoric strain must be calculated using 

small increments in p, q, and s due to lack of a close 

form solution for total deviatoric strains. However, the 

objective functions can be still clearly defined and the 

components can be easily calculated for the model 

calibration purposes.  

5.3 Objective function for K0 loading 

The oedometer test is a widely accepted method for 

studying unsaturated soil behaviour, owing to the 

simplicity of the experimental setup. In an oedometer 

test, the lateral stress remains constant at zero 

throughout the experiment. The condition is a special 

case of the triaxial loading conditions, which is called, 

K0 loading. However, under most cases K0 is 

unknown. As a result, Hence, the results obtained from 

oedometer tests are primarily utilized to validate the 

calibrated model parameters instead of being directly 

used for model calibration.  

Zhang et al. [15] derived an explicit expression to 

calculate the lateral stress for K0 loading conditions as 

follows. In the elastic zone,  

( ) ( )3 1

1 2

1 1

s

a a

at

p
d u d u ds

s p

 
 

  

−
− = − −

− + −
 (35) 

In the elasto-plastic zone, 

( )

( ) ( )

( )

1

3

22

3 3

2
2

3 3

s
a

at

a

EA
D EB d u EC ds

p s p
d u

EA
D EB

p







    
− − + − − −   

+    
− =

 
+ + − 

 

 (36) 

It is noteworthy that the expression for K0 was derived 

within the critical state framework without any 

presumptions regarding the soil behaviours. It was 

formulated based on the zero lateral strain condition 

that is well satisfied during the oedometer test. 

Moreover, Zhang et al. [15] developed an optimization 

approach for objective and straightforward 

identification of material parameters in the elasto-

plastic models for unsaturated soils. In the elasto-

plastic phase, the objective function for Ko-loading is 

to minimize the errors given by Eq. (29) along the 

stress path represented by Eq. (36) as follows: 
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( ) ( )

( )

( ) ( ) ( )
( )

2

1

2

2
1

2

0

ˆ

0 ln

0 1 exp ln ln ln

n

i i i

i

i at

s
n

at

i i

i ci

i i

i i
K

F X w v v

s p
N

p
w v

q
r s r p p

M p ks



 

=

=

= −

   +
− −   

   
= −  

    − − + + −         +    





(36) 

 

It is worth noting that p, q, and in Eq. (36) should 

exactly follow the stress path as defined by Eq. (36) for 

K0 conditions. The close-form solution for K0 

conditions allows for the direct computation of mean 

net stress and deviatoric stress from the applied vertical 

stress and direct use of results from oedometer tests for 

constitutive modelling purposes. It can simplify the 

equipment needed for unsaturated soil characterization 

and significantly reduce the testing time. The time 

needed for a suction-controlled oedometer test is about 

1/10 of the suction-controlled triaxial tests due to much 

shorter drainage path. 
Zhang et al. [15] gave an example to use the results 

from suction controlled oedometer tests to calibrate the 

model parameters in the BBM. Zhang et al. [16] used 

results from constant water content oedometer tests 

with suction measurements to calibrate the model 

parameters in the BBM. Each constant water content 

oedometer test only takes 4-6 hours, which is much 

less than 1-3 months that is required for the suction 

controlled triaxial test.  

As discussed in Zhang et al. [15], one caution is 

that the oedometer test is a non-failure test. As a result, 

the model parameters related to shear strength (M and 

k in the BBM) using the oedometer test results is only 

an extrapolation and could be unreliable. It is 

recommended that other failure tests are used together 

with the oedometer tests to get a more reliable results 

for the shear strength. Riad and Zhang [17] combined 

constant water content oedometer and direct shear tests 

to calibrate the model parameters in the BBM.  

5.4 Objective function when there are multiple 
test types 

Sections 5.1 through 5.3 discuss the objection 

functions for different testing conditions. In reality, 

many tests are performed to characterize unsaturated 

soil under different stress paths for specific features 

such as wetting, drying, constant suction isotropic 

compression and triaxial shearing, and constant water 

content isotropic compression and triaxial sharing. 

These test results need to be combined to calibrate the 

BBM model parameters. For example, in the MUSE 

benchmark exercise, three types of tests are performed, 

isotropic compression, K0 compression, and triaxial 

shearing.  

Any other tests can be used to characterize 

unsaturated soil for constitutive modelling. For 

example, Zhang [31] demonstrated use of constant 

water content isotropic compression tests to obtain 

model parameters for the BBM. Zhang et al. [16] used 

constant water content oedometer tests to characterize 

unsaturated Fairbanks silts to calibrate the BBM model 

parameters. Riad and Zhang [17] combined constant 

water content oedometer and direct shear test results to 

calibrate the model parameters in the BBM.  

6 Dealing with Different Stress 
Histories 

To make the test results simple to analyse, most 

researchers required use of “identical” soil specimens 

with the same stress histories to perform tests for 

constitutive modelling purposes [30, 32,33]. However, 

this can be challenging to achieve because unsaturated 

soil behaviour is notoriously complex, as changes in 

soil volume and water content can be caused by both 

stress and suction. Furthermore, unsaturated soil can 

yield as a result of loading, wetting, drying, or a 

combination of these processes.  

In addition, to develop a constitutive model for 

simulating unsaturated soil behaviours, numerous 

laboratory tests are necessary to investigate unsaturated 

soil behaviour under different stress paths. The 

resulting data can then be combined to develop a 

constitutive model capable of predicting soil responses 

under any arbitrary stress path. In many cases, altering 

the initial stress conditions is necessary to perform tests 

with specific stress paths, which has the potential to 

modify the stress history. 

Existing methods for calibrating model parameters 

for the BBM, as discussed in section 3.1, implicitly 

assume that all soil specimens have identical stress 

histories. For instance, in Fig. 2, performing three 

constant suction isotropic compression tests using 

specimens with identical stress histories results in the 

initial yield points H, E, and B falling on the same 

yield curve, which is used to fit Eq. (3) to obtain pc in 

the BBM. Achieving identical stress histories for soil 

specimens requires thoughtful specimen preparation, 

instrumentation for suction measurements, and lengthy 

equilibrium time. However, it is only theoretically 

possible, as loading, drying, and wetting can cause soil 

to yield and the positions of yield curves to change. For 

soil specimens with different stress histories, their 

positions of yield curves will differ, which can lead to 

misleading results when using existing methods. In 

Fig. 4, three soil specimens with different stress 

histories are used for isotropic loading tests under 

constant suctions s1, s2, and s3. The corresponding v-ln 

p curves are ABC, D'VF, and G'XI, respectively, and 

are similar to those in Fig. 2. Using the existing 

method, curve BVX, composed of three yield points B, 

V, and X, is considered as the yield curve, but it is 

incorrect because these yield points belong to three 

different yield curves LC1, LC2, and LC3, respectively. 

In contrast, when the three specimens have identical 

stress histories, the v-ln p curves are ABC, DEF, and 

GHI, respectively, and have the same yield curve BEH 

(LC1). However, there are many other possibilities for 

the relative positions of the yield curves, and the use of 

existing methods can result in yield curves with 

significantly different shapes from either BVX or BEH. 
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(a) Stress paths to determine the shape of LC yield curve 
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(b) Volume changes upon loading at different suctions 
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(c) Three-dimensional representation of volume change of 

the soil 

Fig. 4 Test Results for Soil Specimens with Different Stress 

Histories [28]. 

 

When the soil specimens have different stress 

histories, the test results cannot be used to calibrate the 

BBM model parameters using existing methods. 

However, this limitation can be easily overcome by 

using the MSSA as demonstrated by Zhang et al. [18] 

and Zhang and Xiao [13]. Fig. 4c shows 3D plot of 

results in Fig. 4b. It can be seen that AB, D’V, and 

G’X in Fig.4c do not belong to the same elastic surface 

and BVX is not a yield curve because these three yield 

points B, V, and X actually belong to three different 

yield curves LC1, LC2, and LC3, respectively. 

However, BC, VF, and XI must fall on the same fixed 

plastic surface in the v-p-s space as discussed 

previously, which can be used to best fit Eq. (25) to 

determine model parameters in the BBM. According to 

the MSSA, the yield curve is the intercept between the 

elastic and elasto-plastic surfaces, by letting Eq. (24) 

equal to Eq. (25), the yield curve can be obtained.   

Thu et al. [33] conducted isotropic suction-

controlled compression tests and constant confining 

stress drying-wetting tests to determine the BBM LC 

and SI yield curves using conventional data 

interpretation methods, as shown in Fig. 5. The MSSA, 

and Eqs. 24 and (25) were used by Zhang and Lytton 

[3,4] to reanalysed the Thu et al. [33] data, producing 

the yield curves shown in Fig. 5. As shown in Fig. 5, 

the results are vastly different, mainly because the 

existing methods assume all the soil specimens have 

the same stress history. However, as discussed in 

Zhang et al. [28], in order to reach the desired 

confining stress to run constant confining stress drying-

wetting tests, one had changed the stress histories of 

the soil specimens even if all the soil specimens had 

the same initial stress histories. Fig. 5 shows that the 

LC yield curves obtained from the conventional 

method and the MSSA are vastly different, indicating 

limitation of the conventional approach. 

AB, D’V, and G’X in Fig.4c do not belong to the 

same elastic surface. When these test results are used to 

calibrate the model parameters in the elastic zone, 

different C1s should be used as proposed in Eq. (31) in 

section 5.1. 

 
Fig. 5. Comparison between yield curves obtained from 

different methods, from [28] 

 

7 Use of the MSSA to Calibrate the 
BBM Parameters: Optimization 
Strategy 

Theoretically, the optimization problem is to find a 

suitable combination of model parameters to minimize 
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the errors (differences between the measured and 

predicted results) as defined by the objective function. 

The optimization can be achieved by a wide range of 

algorithms [18, 21]. The optimization methods can be 

divided into two groups: (a) direct search methods in 

which the search strategy is based only on the values of 

the objective function, similar to the Rosenbrock's [60] 

and the Simplex methods used by Mattsson et al. [19], 

and (b) gradient methods, which also require 

computations of the derivatives of the objective 

functions. In general, the gradient methods are 

expected to be more powerful than those using only 

values of the objective function. On the other hand, the 

gradient methods are more complex to implement 

because of the requirements of having an objective 

function, which always differentiable and which 

possesses continuous derivatives over the considered 

domain. The close-rom solutions for the BBM were 

derived based upon the MSSA as shown in section 4.2. 

These close-form solutions are second-order 

differentiable. Zhang and Xiao [13] derived the partial 

derivatives for the BBM under isotropic conditions. 

Similar derivatives can be performed easily for triaxial 

stress states using Eq. (27). 

In general, the objective function, F(X), is a highly 

non-linear function and may possess many local 

minima. However, the goal of the research is to find a 

point where F(X) assumes its least value, or the global 

minimum, inside the considered domain. To achieve 

the global minimum, a possible strategy could be to run 

the search algorithm as many times as possible, each 

time from a different initial condition. Thus, the more 

runs to cover possible initial conditions, the higher the 

chance that the global minimum may be found. 

Another strategy would be to implement a global 

search algorithm that aims at finding arguments 

corresponding to the global minimum. In order to find 

the global minimum of the problem, a combination of 

quasi-Newton's method and the MSSA objective 

function (Eqs. 29-33) have been employed in the 

developed optimization strategy. According to Chong 

and Zak [34], the Newton method is one of the more 

successful algorithms for local optimization. If it 

converges, it has at least a quadratic order of 

convergence, but if the initial point is not sufficiently 

close to the solution, the algorithm may not be an 

adequate one. In this research, a quasi-Newton 

algorithm, proposed by Ni and Yuan [23], has been 

used for solving the optimization problem at the local 

level. The quasi-Newton method combines the 

advantages of the gradient method with those of the 

Newton approach. The method uses gradients of the 

objective functions which yield inverted Hessian 

matrices, indicating the precision of the obtained 

parameters. The other advantage of the quasi-Newton 

method is that there is no need for a resolution of the 

system of linear functions. To obtain the direction of 

decrease of the objective function, the quasi-Newton 

method and gradient method were used to treat inactive 

and active variables, respectively.  

Zhang and Xiao [13] provided a detailed 

description of the optimization algorithm. Besides, 

comparisons between Newton's method and quasi-

Newton's method (BFGS) are also discussed in detail. 

In a summary, in this research, an objective function 

that is formulated using the surface approach (MSSA) 

along with the quasi-Newton's search method is used. 

Advantageously, the surface approach, which provides 

an overall best fit to the BBM, is combined with such a 

powerful search algorithm. The quasi-Newton's method 

is popular for engineering optimization and 

programmed into routine office software such as 

Microsoft Excel® and MatLab®. Consequently, it can 

be easily accessed and used by ordinary engineers.  

8 Re-analyse the MUSE Benchmark 
Exercise Data using the MSSA 

The procedures described in the previous sections 

are applied here to demonstrate their simplicity and 

objectivity for the calibration of model parameters in 

the BBM. The same experimental data, used in the 

MUSE benchmark exercise, were reanalysed using the 

proposed approach to calibrate parameters for the 

BBM. 

8.1 Soil properties 

The results were taken from the experimental 

testing program reported in the Ph.D. thesis of Barrera 

Bucio [24]. The soil samples were collected from 

natural soils during excavation for the construction of 

the Rector Gabriel Ferrate Library on the UPC Campus 

in Barcelona, Spain [2]. Grain size distribution analysis 

indicated that the soil consisted of 44.5% silt, 39.4% 

sand, and 16.1% clay which are mainly Illite. The 

plastic and liquid limits of the soils are 16% and 32%, 

respectively, and the specific gravity of the soil 

particles was 2.71. The soil samples were statically 

compacted by applying all-around pressure of 600 kPa 

at a water content around 11%, which was 

approximately 3% dry of optimum. The total suction 

after compaction was measured as 800 kPa. The 

samples were then subjected to an initial equalization 

stage under a matric suction of 800 kPa and low mean 

net stress values. Additional details about the sample 

preparation and initial conditions are illustrated in 

D'Onza et al. [2]. 

8.2 Stress paths and test results 

The experimental data used in the MUSE 

benchmark exercise consisted of six suction-controlled 

triaxial tests, two isotropic compression tests, and one 

oedometer test. The matric suction was controlled by 

means of the axis-translation technique. Fig. 6 presents 

the stress paths with the identification numbers and the 

experimental results for isotropic and oedometer tests. 

Figs. 6 and 7 show the stress paths and experimental 

results for the suction controlled triaxial experiments, 

respectively. 

Test SAT-1 (Fig. 6a) was an isotropic experiment 

that consisted of saturating the sample initially by 

flushing through it (represented by AB in Fig. 6a). 

Subsequently, the sample was subjected to isotropic 
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loading (BC) until it reached a mean effective stress of 

1300 kPa. This was followed by isotropic unloading 

(CD). Fig. 6d presents the SAT-1 experimental results 

in e-s-logp space.  

 
(a) Saturated isotropic test SAT-01 

 
(b) Suction-controlled isotropic test TISO-01 

 
(c) Suction-controlled oedometer test EDO-1 

 
(d) Isotropic and oedometer test results. 

Fig. 6 Stress paths and test results for isotropic and 

oedometer tests. 

 

Test TISO-1 (Fig. 6b) was a multiple stage suction-

controlled isotropic test. Initially, the sample 

underwent isotropic loading (AB) from 0 to 0.6 MPa at 

a constant suction of 0.8 MPa (AB: s=0.8MPa, p=0→
0.6 MPa). It was followed by a wetting/drying stage 

under constant net normal stress of 0.6 MPa (BCD, s= 

0.8 MPa →0.01 MPa →0.15 MPa, p=0.6MPa). After 

that an loading/unloading test stage was performed at a 

constant suction of 0.15 MPa (DEF: s=0.15MPa, p=0.6 

MPa→1.4 MPa→ 0.6 MPa). Finally, a wetting stage at 

a mean net stress of 0.6 MPa (FG, s=0.15 MPa→0.02 

MPa), and an isotropic loading/unloading stage were 

performed at a constant suction of 0.02 MPa (GHI, 

s=0.02 MPa, p=0.6 MPa → 2.0 MPa → 0.02 MPa). Fig. 

6d presents the TISO-1 experimental results on e-s-

logp space. 

Test EDO-1 (Fig. 6c) was a suction-controlled 

oedometer test involving vertical loading  at a constant 

suction of 0.8 MPa (BC: s=0.8MPa, v-ua= 0→0.6 

MPa), wetting/drying under constant vertical stress of 

0.6 MPa (CDE, s=0.8 MPa→0.01 MPa →0.3 MPa, v-

ua= 0.6 MPa), loading/unloading at a constant suction 

of 0.3 MPa(EFG: s=0.3MPa, v-ua= 0.6 MPa→1.6 MPa  

→0.6 MPa), wetting under constant vertical stress of 

0.6 MPa(GH: s=0.3 MPa→0.05 MPa, v-ua= 0.6 MPa), 

and loading/unloading at a constant suction of 0.05 

MPa(HIJ, v-ua= 0.6 MPa→2.4 MPa → 0.02 MPa). The 

experimental results for this test are presented in Fig. 

6d in e-s-log (v-ua) space. 

Tests IS-OC-03, IS-NC-06, and IS-NC-12 (Figs. 

7a, 7b, and 7c) were suction-controlled triaxial tests in 

which the mean net stress increased (AB) to 0.3, 0.6 or 

1.2 MPa respectively, at a constant suction of 0.8 MPa. 

The samples were then sheared to failure (BCDE) at 

constant suction and constant radial net stress, an 

unloading-reloading cycle was included during 

shearing for each test. The axial strains versus the 

applied deviatoric stresses for these tests are presented 

in Fig. 8. 

Test IS-OC-06 (Fig. 7d) was a suction-controlled 

triaxial test in which isotropic loading and unloading 

were involved  at a constant suction of 0.8 MPa(ABC, 

s=0.8MPa, p=0 →1.8 MPa →0.6 MPa). The sample 

was then sheared to failure under the same constant 

suction and constant radial net stress, with the 

inclusion of an unload-reload cycle during 

shearing(CDEF s=0.8MPa, p=0.6 +q/3 MPa, q=0 →
0.8 MPa →0 MPa →failure). The test results are 

presented in Fig. 8 in aq −  plane. 

Test IWS-OC-01 (Fig. 7e) was a suction-controlled 

triaxial test in which involved isotropic loading at 

constant suction of 0.8 MPa(AB, s=0.8MPa, p=0 →  

0.6 MPa ), wetting/drying at a constant mean net stress 

of 0.6 MPa (BCD, s= 0.8 MPa →0.01 MPa →0.8 

MPa, p= p=0.6 MPa), and shearing to failure under 

constant suction of 0.8 MPa and constant radial stress. 

Two unloading-reloading cycles were included during 

shearing. The test results are presented in Fig. 8 in  

aq −  plane. 

Test IWS-NC-02 (Fig. 7f) was a suction-

controlled triaxial test in which involved 
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isotropic loading at constant suction of 0.8 

MPa(AB, s= 0.8 MPa, p=0 →  0.6 MPa ), wetting 

at a constant mean net stress of 0.6 MPa(BC, 

s= 0.8 MPa →  0.02 MPa), and shearing to failure 

(at a constant 0.02 MPa suction) with the 

inclusion of an unloading-reloading cycle 

during shearing. The test results are presented 

in Fig. 8 in 
aq −  plane. Both wetting/drying 

or loading/unloading cycles are changing the 

stress history and yield stress of a sample of 

unsaturated soil. It is clear from Fig. 8 that the 

unsaturated soil shear strength is significantly 

affected by the samples' stress history as well 

as the suction value at failure. 

 

 
(a) Test IS-OC-03 

 
(b) Test IS-NC-06 

 
(c) Test IS-NC-12 

 
(d) Test IS-OC-06 

 
(e) Test IWS-OC-01 

 
(f) Test IWS-NC-02 

Fig. 7 Stress paths for suction-controlled triaxial tests. 

 

As previously mentioned, a recent benchmark 

exercise was organized within a "Marie Curie" 

Research Training Network on "Mechanics of 

Unsaturated Soils for Engineering" (MUSE) to 

calibrate parameters for the BBM. In this exercise, 

experienced constitutive modelers from 7 prestigious 

teams in unsaturated soils were provided with the same 

experimental results on an unsaturated soil to calibrate 

the parameter value for the BBM. The results of this 

calibration assignment as well as comparisons between 

the predictions using calibrated parameters from 

different universities, were published in D'Onza et al. 

(2015). The calibrated parameters showed high scatter, 

which indicates the difficulty of calibrating parameters 

for the BBM.  
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Fig. 8 Suction-controlled triaxial tests results. 

 

8.3 Calibration of model parameters in the 
elastic zone 

The elastic parameters are calibrated considering 

results in the elastic zones for all tests. The proposed 

objective function (Eq. 28) is used for this purpose. 

Normally there are multiple loading-unloading and 

wetting-drying cycles in one test. As a result, multiple 

C1 values in Eq. (24) might be used for one test to 

consider the change in stress histories. Using the SAT-

01 test as an example, based upon the experimental 

results, the soil exhibits collapsible soil behaviour. As a 

result, AB in SAT-01 should be in the elastic zone. 

from B to C, part of the test results is in the elastic zone 

and part is in the elasto-plastic zone as demonstrated 

by the sharp changes in the slope of the test results in 

Fig. 6d. The yield stress can be approximately 

determined by the Casagrande method [36] between B 

and C. From C to D, it is an unloading process, and all 

the test results should be in a new elastic zone. 

Consequently, two different C1 values are needed when 

the calibration is performed.    

The calibrated parameters were =0.0082 and 

s=0.0057. These values are in fact close to the values 

obtained by other universities as shown in table 1. With 

these values, the experimental results were matched 

with high accuracy, R-squared of 99.7% is reached. 

Comparisons between experimental results and 

predictions are not presented in this section due to its 

straightforwardness and limited space. These 

parameters are kept fixed for the following calibration 

assignments. 

8.4 Calibration of model parameters in the 
elastoplastic zone 

Zhang and Xiao [13] demonstrated the procedures 

to calibrate the model parameters in the BBM under 

isotropic conditions based upon the close-form solution 

of Eq. (25) according to the MSSA. Zhang et al. 

[15,16] explain the procedure to calibrate the model 

parameters in the BBM using suction-controlled and 

constant water content oedometer test results. In this 

paper, to simplify the explanation, only the calibration 

for the triaxial shearing test conditions is discussed. 

However, all different types of the tests used in the 

MUSE exercise are used to calibrate the model 

parameters in the later discussions.  

For the triaxial shearing condition, using Test IS-

NC-06 as an example, the calibration procedures are as 

follows:  

1. Assume some initial values for 

( )(0)  0               
T

cX N r p M k   =   . Zhang et al. 

(2016) discussed how to select the initial values for the 

parameters.  

2. Select a yield stress based upon the test results in 

Fig. 8 for Test IS-NC-06. If the exact initial yield point 

is uncertain, one can always take a larger value to 

make sure the selected point is on the virgin surface. 

For example, at point C when there is unloading, there 

is irrecoverable axial strain as shown in Fig. 8. 

Consequently, when the deviatoric stress is reloaded to 

0.8 MPa to point C, the results for q>0.8MPa are on the 

plastic surface.  

2. prepare the test results from Test IS-NC-06 with 

q>0.8MPa, each data point has five entries, pi, qi, si, 

vmi, and (ms)i.  

4. calculate the specific volume at each of the test 

point based upon its stress state of pi, qi, si, and Eq. 27 

to obtain vpi  using the model parameter values assumed 

in the step 1 

5. calculate difference in the ( )
2

mi piv v−  

6. for a small increases in the pi, qi, si at the next 

test point pi+1, qi+1, si+1 calculate the obtain vpi+1; and 

the deviatoric strain (s)p, i+1 according to conventional 

incremental formulation (Eq. 13) using the model 

parameter values assumed in the step 1.  

7. calculate difference in the ( ) ( )( )
2

, 1 , 1s sm i p i
 

+ +
− , 

8. repeat the calculations from steps 4-7 for all test 

points,  

9. sum the results from steps 5 and 7 for all test 

points, ( )
2

mi piv v− + ( ) ( )( )
2

, 1 , 1s sm i p i
 

+ +
−  

10. repeat steps 1-9 for other tests.  

11. 10. Sum all the squares of the difference 

between the predicted values and measured values to 

form an object function, 

( ) ( ) ( ) ( )( )
22

1

n

i mi pi s smi pi
i

F X w v v  
=

 = − + −
  

 , the weight 

factor wi can be taken as 1 for all test points or different 

values  based upon the confidence level of the test 

results.   

12. Use the Solver in Microsoft Excel to search 

minimum of the sum of the squares of the difference 

between the measured and predicted results (Eq. 29) by 

changing ( ) ( ) 0  0       
T

cX N r p M k   =     under 

the constraints. The stop criterion is set to be that the 

variations between the current and previous iterations 

for each of the model parameters are less than 0.001. 

Record the final 

( )(0)  0               
T

cX N r p M k   =    and the sum 

of all the squares of the difference between the 

predicted and measured values. 
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13. Go back to step 1 to repeat steps 1 through 12 

by assuming other possible initial values for 

( )(0)  0               
T

cX N r p M k   =   . Record the 

final sum of all the squares of the difference between 

the predicted and measured values. 

14. select the set of final 

( )(0)  0               
T

cX N r p M k   =   which can 

give the minimum final sum of all the squares of the 

difference between the predicted and measured values.  

8.5 Results and discussions 

8.5.1 Coefficient of determination  

Table 3 shows the calibrated parameters from this 

research (indicated as MST) as well as the parameters 

calibrated by other universities. The coefficient of 

determination is also computed. As can be seen in 

Table 3, the coefficient of determination obtained from 

this study (97%) is the highest compared with all the 

other universities. A higher the coefficient of 

determination represents a better fitting of the 

experimental results. For example, predictions based 

upon the parameters provided by UNINN has a R2 of 

93.04%, generating a better fitting of the test results 

compared with results from other teams.  

 

Table 3. Calibrated parameters, standard deviations, and R-

squared from different universities 

 
 

8.5.2 LC yield curve  

As shown in Table 1, all universities in the MUSE 

exercise provided one preconsolidation pressure *

0p  for 

as their calibration results. This implies that all of them 

assumed that the specimens used in the all the tests 

have the same stress history. Fig. 9 summarized the 

predicted LC yield curves from all universities. 

Fig. 9 also shows the results for the initial LC yield 

curves obtained by the MST team using the method as 

proposed in Zhang et al. (2010). The location of the LC 

yield curve is obtained by finding the intercept of the 

movable elastic surface (Eq. 24) and fixed plastic 

surface (Eq. 25). C1 in Eq. (24) can be obtained from 

the initial specific volume of the soil specimen. Once 

C1 is known, by letting Eq. (24) equal to Eq. (25) to 

eliminate the void ratio, the LC yield curve can be 

found. The preconsolidation pressure can be further 

calculated by letting s=0. It is found that none of the 

soil specimens used in the 9 tests have the same initial 

stress history. It is worth noting that the 

preconsolidation pressure estimated by the MST team 

ranges between 0.09 MPa and 0.16 MPa, which was 

not highly scattered. This indicates that the quality of 

the tests was relatively well-controlled to have the 

same stress histories. However, none of them are the 

same, indicating that it is impossible to implement the 

conventional approach to obtain the correct initial 

shape of the LC yield curve. This also explains why the 

initial yield curves obtained by the 7 universities in the 

MUSE exercise are significantly different. The 

conventional approach to determine the LC yield curve 

has requirements: (1) all the soil specimens have 

identical stress history, and (2) the yield point can be 

accurately determined by the Casagrande Method [36]. 

In practice, none the requirement can be easily met. 

Accordingly, it is impossible to obtain correct BBM 

model parameters using the conventional approach as it 

requires all the soil specimens have the same stress 

histories. In contrast, the MSSA allows use of 

“imperfect” results from soil specimen with different 

stress histories to obtain the correct yield curve. This 

flexibility can significantly reduce the efforts for 

producing “identical” soil specimens and simplifies the 

analysis process.  

 
 

Fig. 9 Initial LC yield curves obtained by different groups.  

 

8.5.3 Comparison between predicted and measured 

results 

The model predictions compared to the 

experimental results are shown in Figs. 10 through 18.  

Fig. 10 shows the experimental results and 

predictions based on calibrated parameters from 

different universities for suction-controlled triaxial test 

IS-OC-03 and the corresponding stress path is shown 

in Fig.7a.  
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(a) q-a 

 
(b) v-a 

Fig. 10 Comparisons between measured and predicted results 

for IS-OC-03 
 

The experimental results from the shearing stage 

are shown in Fig. 10a (in the q-a plane) and Fig. 10b 

(in the v-a plane), together with the corresponding 

model predictions. The shear unloading-reloading 

cycle was omitted from the model predictions for 

clarity (this will be done hereafter for all triaxial tests). 

The dilative behaviour of the soil sample can be clearly 

seen from Fig. 10b in which the volume of the sample 

increased as the axial strain increased. The BBM does 

not consider the soil dilation in its theoretical 

formulation. Consequently, the model cannot predict 

this kind of dilative behaviour. Fig. 12a shows 

predictions from all the seven universities as well as 

predictions from MST. Obviously, most of the 

predictions matched the failure strength fairly well. 

However, most universities under-predicted the axial 

strain before reaching the failure stage except 

USTRAT. In general, predictions from MST matched 

the general trend very well for both pre-failure and at 

failure stages in Fig. 10a. Fig. 10b indicated that all 7 

universities in the MUSE exercise over-predicted the 

volumetric strain corresponding to axial strain 

evolution in the early loading stages. Overall, 

predictions from MST better match the measured 

behaviour in both Figs. 10a and 10b. 

Fig. 11 shows the experimental results and 

predictions based on calibrated parameters from 

different universities for suction-controlled triaxial test 

IS-NC-06 and the corresponding stress path is shown 

in Fig.7b. Only the experimental results from the 

shearing stage are shown in Fig. 11a (in the 
aq −  

plane) and Fig.11b (in the 
v a −  plane), together with 

the corresponding model predictions. Fig. 13a shows 

all 7 universities in the MUSE exercise underpredicts 

axial strain, while the MST team slightly over predicts 

the axial strain, while matching the general trend very 

well through the whole stress range. Fig. 11b showed 

that all 7 universities in the MUSE exercise 

overpredicts volumetric strains, while the MST results 

can match the test results very well at low axial strain 

ranges. At high axial strain level, none  of the 

prediction can predict the dilative behaviour of the soil, 

mainly due to the limitations inherent in the BBM.  

 

 
(a) q-a 

 
(b) ) v-a 

Fig. 11 Comparisons between measured and predicted results 

for IS-NC-06. 

 

Fig. 12 shows the experimental results and 

predictions based on calibrated parameters from 

different universities for suction-controlled triaxial test 

IS-NC-12 and the corresponding stress path is shown 

in Fig.7c. Experimental data of the initial isotropic 

loading stage (at a suction of 0.8 MPa) are shown in 

Fig. 12a (in the lnv p−  plane), together with the 

corresponding model predictions. Most of the 

universities (UNITN, ENPC, GU, UNINA, UNINN) 

provided a satisfactory match to the experimental 

results. However, DU and USTRAT universities under 

predicted the yield stress and over predicted the soil 

plastic compression after yielding. In contrast, MST 

team, generally, provides a satisfactory match to the 

experimental results in terms of yield stress and plastic 

compression. 

The experimental results from the shearing stage 

are shown in Fig. 12b (in the 
aq −  plane) and Fig. 12c 

(in the 
v a −  plane), together with the corresponding 

model predictions. Most of the universities (except 

UNINN) provided a non-satisfactory match for the soil 

shear behaviour before failure. On the contrary, both 

MST and UNINN teams produced similar results 

which match the experimental results very well. 
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(a) v-lnp curve during the isotropic loading 

 
(b) q-a  

 
(c) ) v-a 

Fig. 12 Comparisons between measured and predicted results 

for IS-NC-12. 

 

Fig. 13 shows the experimental results and 

predictions based on calibrated parameters from 

different universities for suction-controlled triaxial test 

IS-OC-06 and the corresponding stress path is shown 

in Fig.7d. The soil sample was consolidated under 

isotropic stress of 1.6 MPa then unloaded to a stress of 

0.6 MPa before shearing to failure.  
 

 
(a) v-lnp curve during the isotropic loading 

 
(b) q-a 

 
(c) ) v-a 

Fig. 13 Comparisons between measured and predicted results 

for IS-OC-06. 

 

Fig. 13a shows the experimental data of the initial 

isotropic loading-unloading stage (at suction of 0.8 

MPa) in the lnv p−  plane as well as the corresponding 

model predictions. Most of the universities (UNITN, 

ENPC, GU, UNINA, UNINN) provided a satisfactory 

match to the experimental results. However, DU and 

USTRAT universities underpredicted the yield stress 

and overpredicted the soil plastic compression after 

yielding. MST satisfactorily predicted the yield stress 

and the slope of the virgin compression line. However, 

the specific volume is slightly underpredicted.  

Figs. 13b and 13c show the experimental results 

from the shearing stage in the 
aq −  and 

v a −  planes 

respectively, as well as the corresponding model 

predictions. As shown in Fig. 13b, the MST team 

provides a very satisfactory results over the whole 

testing range in terms of 
aq −  relationship, while all 

other groups overpredict the axial strain at low 

deviatoric stress range, while underpredict axial strain 

at high deviatoric stress range. In terms of 
v a −  

relationship, all research teams over predict the 

volumetric strains and cannot handle the dilative 

behaviour at high axial strain range. However, the 

predictions made by the MST mtach the experimental 

results better compared with other research group.   

Fig. 14 shows the experimental results and 

predictions based on calibrated parameters from 

different universities for suction-controlled triaxial test 

IWS-OC-01 and the associated stress path is shown in 

Fig. 7e.  
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(a) v-lnp curve during the isotropic loading 

 
(b) v-s curve during the isotropic loading 

 
(c) q-a 

 
(d) ) v-a 

Fig. 14 Comparisons between measured and predicted results 

for IWS-OC-01 
 

Figs. 14a and 14b shows the test results under 

isotropic loading and wetting-drying stages in the v-lnp 

and v-s planes, respectively. The corresponding model 

predictions from different groups are also shown. In 

terms of v-lnp, predictions from most of the 

universities (except USTRAT) provided reasonable 

matches to the experimental results. USTRAT team 

underestimated the yield stress of this soil, which in 

turn led to over predicting the plastic compression. On 

the other hand, although DU, ENPC, UNINN, and 

USTRAT produced predictions matched well with the 

v-lnp experimental data, they were not able to, 

simultaneously, provide a satisfactory match for the 

results on the specific volume changes with suction. 

This kind of miss-match can be attributed to a non-

appropriate estimation for the LC yield curve shape as 

discussed previously.  

Figs. 14c and 14d show the experimental results 

from the shearing stage in the 
aq −  and 

v a −  planes 

respectively, as well as the corresponding model 

predictions.  As shown in Fig. 14c, the MST 

predictions can match the experimental results at the 

initial and final shearing stages very well, but largely 

deviated from the test results before and after the initial 

yielding. Predictions from the 7 universities in the 

MUSE exercise overall fit the experimental data better. 

In terms of v a − , the MST predictions can fit the 

experimental data very well at the early stage of 

shearing but fail to predict the dilative behaviour at 

high deviatoric stress. The MST predictions of v a −  

relationship for this test is clearly better than those 

from other research groups.  

Experimental results and predictions for the 

suction-controlled triaxial test IWS-NC-02, using 

calibrated parameters from various universities, are 

illustrated in Fig. 15. The corresponding stress path can 

be seen in Fig. 7f. 

The test results for isotropic loading and wetting-

drying stages are presented in Figs. 15a and 15b, 

respectively, depicted in the v-lnp and v-s planes. The 

corresponding model predictions from various groups 

are also included. Among all the predictions, the MST 

team's predictions match the experimental results very 

well in both the v-lnp and v-s planes, making them the 

most accurate. Like Figs. 14a and 14b, most other 

universities predicted the v-lnp relationship well in Fig. 

15a, except for USTRAT and DU. Additionally, most 

universities provided good predictions for the v-s 

relationship in Fig. 15b, except for USTRAT and 

ENPC. As a result, only four out of the seven 

universities were able to reasonably match the 

experimental results in both the v-lnp and v-s planes. 

Fig. 15c (in the q-a plane) and Fig. 15d (in the v-a 

plane) display the experimental results from the 

shearing stage, along with corresponding model 

predictions. However, the experimental results 

appeared unusual due to the q-a curve's concave 

shape, which was not observed in any of the other 

triaxial shearing tests. It is evident from Fig. 15c that 

all the universities underestimated soil strength and 

overestimated soil stiffness at the initial loading stages. 

Despite the curve's concave shape, MST was able to 

provide an overall good match with the experimental 

results for all loading stages. In terms of v-a 

relationship as shown in Fig. 15d, none of the groups 

could replicate this dilative response behaviour. 

However, MST's predictions were the closest to the 

experimental results for the early stages (i.e., 

contractive response). 
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(a) v-lnp curve during the isotropic loading  

 
(b) v-s curve during the isotropic loading 

 
(c) q-a 

 
(d) ) v-a 

Fig. 15 Comparisons between measured and predicted results 

for IWS-NC-02 

 

Fig. 16 shows the experimental results in lnv p−

plane for stress path BCD in SAT-01 as shown in Fig. 

6a. The soil was subject to a loading-unloading cycle 

under saturated conditions (BCD: s=0MPa, 

p=0.01MPa→1.3 MPa→ 0.01MPa). Fig. 16 also shows 

the predicted results for the same stress based on 

calibrated parameters from different universities as 

shown in Table 3.  

 
Fig. 16 Comparisons between measured and predicted results 

for suction controlled isotropic test (SAT-01). 

 

Inspection of Fig. 16 showed that the slope of the 

normal compression line, ( )0 , as well as the 

swelling slope,  , were reasonably estimated by all 

the groups. There were, however, significant variations 

in the predictions of the yield stress and, consequently, 

the extension of the elastic zone and the location of the 

normal compression line. Obviously, both UNITN and 

ENPC teams overestimated the yielding stress and 

consequently provided large expansion for the elastic 

and less plastic volume changes. In contrast, UNINN 

team underestimated the yield stress value that led to 

overestimating the volume changes in general. DU, 

GU, and USTRAT teams, generally, provided proper 

estimation for the yield stress and better matched the 

experimental results. The predictions made by the MST 

is not the best fit but reasonably good. This is 

consistent with the plane-fitting example, sometimes 

one must sacrifice the local best fit to achieve a n 

overall best fit.  

According to D'Onza et al. [2], none of the teams 

involved in the MUSE exercise utilized the oedometer 

test results when selecting parameter values in the 

BBM. However, in the present study, the oedometer 

test results (EDO-1) were used to calibrate model 

parameters in the BBM, based on an explicit 

formulation proposed by Zhang et al. [15] for 

calculating lateral stress under K0 conditions. D'Onza 

et al. [2] noted that predictions by all teams in the 

MUSE exercise for the oedometer tests typically 

yielded poorer matches with experimental results 

compared to isotropic and triaxial tests, likely due to 

the fact that oedometer test results were not considered 

in the parameter value determination process. 

Nonetheless, Fig. 17 demonstrates a strong correlation 

between the experimental results for EDO-1 and 

predictions generated using the MST approach, 

indicating the robustness and mathematical validity of 

this proposed method for calibrating BBM model 

parameters, particularly when considering oedometer 

test results. 
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Fig. 17 Comparisons between measured and predicted results 

for suction controlled oedometer test (EDO-01). 

9 Conclusions 

The following conclusions can be made from this 

paper: 

1. The development of the BBM was based on the 

conventional elasto-plasticity approach using 

incremental formulations. The use of incremental 

formulation resulted in significant challenges in in-

depth understanding of the BBM, and subsequent 

difficulties in model parameter calibration.  

2. When the incremental formulation is used, 

during the calibration process, neither the sequential 

approach nor the global optimization approach can 

produce accurate results. This is due to the requirement 

of an initial condition to calculate the increments 

necessary for the incremental formulation to initiate the 

calibration process.  

3. The use of incremental formulations also 

presents difficulties in establishing the objective 

function required for global optimization, which in turn 

makes it challenging to achieve accurate results using 

these methods. The paper demonstrates that even 

calibrating a simple planar model becomes difficult 

when using incremental formulations, and the 

calibration of a more complex model such as the BBM 

with numerous model parameters and constitutive 

relations becomes even more challenging. 

4. Given the complexity of unsaturated soil 

behaviour, many tests are typically necessary to 

calibrate the BBM. Most likely those tests are run with 

soil specimens with different initial stress histories. 

However, existing methods often assume that all soil 

specimens have the same initial stress histories and 

requires accurate determination of the yield stress. 

These assumptions, coupled with the use of 

incremental formulations that presume perfectly 

correct initial conditions, can lead to significant 

deviations of the calibrated BBM parameters from the 

correct results. 

5. The MSSA takes full advantage of the uniqueness 

of the state boundary surface (elastoplastic virgin 

loading surface), significantly simplifying the process 

of constitutive modelling. Based upon the MSSA, 

close-form solutions for the BBM are derived, which 

makes the establishment of object function for the 

BBM calibration straightforward.  

6. The MSSA can also be used to deal with large 

amounts of potentially confusing data and synthesize 

the data into a usable form, which makes the analysis 

of elastoplastic behaviour of unsaturated soils in a 

relatively simple way without undue complication. For 

example, it gives research the flexibility to determine 

the correct shape of the yield curve and its evolutions 

during yielding using soil specimens with non-identical 

stress histories.  In addition, based upon the MSSA, 

constant water content tests and oedometer tests can be 

easily analysed for constitutive modelling purposes. 

This significantly reduced the testing time and 

simplified the equipment needed for unsaturated soil 

research.  
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Notation 

 
The following symbols are used in this paper: 

C1, C2, C3, and C’ = constants  

e = voids ratio; 

e0 = initial voids ratio; 

ee=void ratio constitutive surface in the elastic zone; 

G = shear modulus; 

l = parameter that relates cohesion and suction; 

M = slope of theoretical critical state line; 

k = parameter describing the increase in cohesion with 

suction; 

N(s) = specific volume for p=pc; 

p = m−ua =net mean stress; 

pat = atmospheric pressure; 

pc= reference stress; 

m=total mean stress; 

p0= apparent preconsolidation pressure at a certain suction; 
*

0p = preconsolidation pressure in saturated conditions; 

q=1-3= deviatoric stress; 

r = parameter controlling the slope of the virgin compression 

line; 

s = ua−uw = soil suction; 

s0= maximum historical suction applied to the soil; 

ua= air pressure; 

uw = water pressure; 

v =specific volume; 

=  parameter that controls the non associated flow rule; 

= parameter that controls the slope of the virgin 

compression line for s0; 
e

qd  = deviatoric strain increment; 

v= volumetric strain; 

dv = volumetric strain increment; 
e

v = elastic strains; 

p

v = plastic strains; 

q = deviatoric strain; 

p

v = plastic volumetric strain; 

p

vp = plastic volumetric strain generated by a mean net stress 

increment; 
p

vs = plastic volumetric strain generated by a suction 

increment; 

=slope of the unloading-reloading line associated to the 

mean net stress; 

s= slope of the unloading-reloading line associated to soil 

suction; 

(s)= slope of the virgin expansion line associated to the 

mean net stress for s≠0; 

; 

s=slope of the virgin compression line associated to soil 

suction; 

(0)= slope of the virgin compression line associated to the 

mean net stress for s=0; 
e

vd = elastic volumetric strain;  

vd = total volumetric strain, 
0 01

v
v

dV de
d

V e
 = =

+
; 

p

vd = plastic volumetric strain;  

X= a vector containing the model parameters. 

F(X) = Objective function measures the difference between 

the theoretical and experimental results 

m and n = lower and upper limits of X. 

wi= weight of each experimental data points 

vmi = experimental specific volume at virgin states for a stress 

status  

vpi= predicted specific volume at virgin states for a stress 

status  

 

E3S Web of Conferences 382, 15001 (2023) https://doi.org/10.1051/e3sconf/202338215001
UNSAT 2023

23


