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Abstract. This paper extends the modified Cam-Clay model to describe the behaviour of unsaturated soils 

by replacing the effective stress with the scaled stress. The scaled stress accounts for the mechanical effect 

of capillarity by factoring Bishop’s stress with a power function of degree of saturation. The extended 

modified Cam-Clay model postulates the existence of a yield curve in the mean scaled stress 𝑝̅ – deviatoric 

scaled stress 𝑞̅ plane. Coherently with the modified Cam-Clay model, the stress-strain behaviour is predicted 

by means of an elastic law inside the yield curve. As the scaled stress state evolves onto the yield curve, the 

behaviour becomes elasto-plastic and this is modelled by a plastic flow rule combined with a volumetric 

hardening law. The extended modified Cam-Clay model is then validated against experimental data 

published in the literature. Results show that the proposed approach is capable of well predicting the 

mechanical behaviour of unsaturated soils during triaxial loading. Future work will be directed at further 

validating the present formulation along different stress paths as well as accounting for the combined effect 

of partial saturation and cementation within a critical state framework based on bounding surface plasticity.  

1 Introduction 

The prediction of the mechanical behaviour of partially 

saturated soils relies on the definition of appropriate 

stress variables [1]. Initial studies have adopted a single 

effective stress approach [2-5] in an attempt to extend 

Terzaghi’s principle [6] from saturated to unsaturated 

conditions. However, these single-stress formulations 

could not capture some features of the hydromechanical 

behaviour of partially saturated soils (e.g. wetting-

induced collapse). Subsequent mechanical laws [e.g. 7-

12] were formulated in terms of two independent stress 

variables, namely a tensorial stress variable (e.g. the net 

stress 𝜎𝑖𝑗 − 𝛿𝑖𝑗𝑢𝑎, where 𝜎𝑖𝑗 is the total stress, 𝑢𝑎 is the 

pore air pressure 𝛿𝑖𝑗 is the Kronecker delta) and a scalar 

stress variable (e.g. the matric suction 𝑠 = 𝑢𝑎 − 𝑢𝑤, 

where 𝑢𝑤 is the pore water pressure). These two stress 

variables were combined with work-conjugate strain 

variables (e.g. the Cauchy mechanical strain and the 

water ratio hydraulic strain) to predict the behaviour of 

partially saturated soils [13]. The adoption of two 

independent stress variables surmounted some of the 

previous limitations at the cost, however, of an increased 

number of model parameters and greater analytical 

complexity. In an attempt to overcome such difficulties, 

this paper adopts the single scaled stress of Gallipoli and 

Bruno [14] to describe the behaviour of partially 

saturated soils under both isotropic and triaxial loading. 

The scaled stress accounts for the mechanical effect of 

capillarity by factoring the average skeleton stress, also 

known as the Bishop’s stress, with a power function of 
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the degree of saturation [14]. To demonstrate the ability 

of the proposed approach to capture the behaviour of 

unsaturated soils during triaxial loading, the modified 

Cam-Clay model [15] is recast in terms of scaled 

stresses instead of effective stresses. The resulting 

model is then calibrated and validated against 

experimental data by Raveendiraraj [16]. Predictions are 

compared with those of two other unsaturated soil 

models (i.e. Alonso et al. [7] and Wheeler et al. [8]) 

formulated in terms of two independent stress variables. 

Results show that the extended modified Cam-Clay 

model is capable of predicting the mechanical behaviour 

of partially saturated soils with similar accuracy of more 

complex two stresses formulations. 

2 Extension of modified Cam-Clay to 
unsaturated soils  

2.1 Constitutive variables 

The scaled axial stress 𝜎𝑎 and scaled radial stress 𝜎𝑟 are 

respectively defined as the axial and radial Bishop’s 

stresses, i.e. 𝜎𝑎
′ = 𝜎𝑎 − 𝑢𝑎 + 𝑆𝑟(𝑢𝑎 − 𝑢𝑤) and 𝜎𝑟

′ = 𝜎𝑟 −

𝑢𝑎 + 𝑆𝑟(𝑢𝑎 − 𝑢𝑤), scaled by a power function of degree 

of saturation, i.e. 𝑆𝑟
𝑧, where the  exponent 𝑧 is a material 

parameter:  

 
  𝜎̅𝑎 = 𝑆𝑟

𝑧 · [𝜎𝑎 − 𝑢𝑎 + 𝑆𝑟(𝑢𝑎 − 𝑢𝑤)]                                            (1) 
            𝜎̅𝑟 = 𝑆𝑟

𝑧 · [𝜎𝑟 − 𝑢𝑎 + 𝑆𝑟(𝑢𝑎 − 𝑢𝑤)]                                          (2) 
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The exponent 𝑧 controls the rate with which the scaled 

stresses tend to the Terzaghi’s effective stresses as the 

degree of saturation tends to one. Moreover, the scaling 

factor 𝑆𝑟
𝑧 stems from the consideration that unsaturated 

soils can attain higher values of void ratio compared to 

saturated soils under the same stress levels,  as described 

by Gallipoli and Bruno [14]. Equations (1-2) lead to the 

following expressions of the mean scaled stress 𝑝̅ and 

deviatoric scaled stress 𝑞̅: 

 

  𝑝̅ =
𝜎̅𝑎+2𝜎̅𝑟

3
= 𝑆𝑟

𝑧 · [𝑝 − 𝑢𝑎 + 𝑆𝑟(𝑢𝑎 − 𝑢𝑤)]                (3) 

   𝑞̅ = (𝜎̅𝑎 − 𝜎̅𝑟) = 𝑆𝑟
𝑧 · 𝑞                                                                              (4) 

 

where 𝑝 and 𝑞 are the mean and deviatoric stresses, 

respectively. Note that the expression of mean scaled 

stress 𝑝̅, given by Equation (3), is the product of two 

terms, namely the capillary bonding factor 𝑆𝑟
𝑍 and the 

mean Bishop’s stress 𝑝′ = 𝑝 − 𝑢𝑎 + 𝑆𝑟(𝑢𝑎 − 𝑢𝑤). 

These two terms may evolve in opposite directions 

during wetting at constant net stress as saturation 

increases while suction reduces. In this case, the mean 

scaled stress can either increase (inducing collapse 

compression) or decrease (inducing swelling) 

depending on which of these two terms dominates, as 

shown in Gallipoli and Bruno [14] and Bruno and 

Gallipoli [17]. 

The strain variables are the volumetric strain 𝜀𝑣 and 

the shear strain 𝜀𝑠 expressed as follows: 

 
  𝜀𝑣 = 𝜀𝑎 + 2𝜀𝑟                                                                                                       (5) 

𝜀𝑠 =
2

3
(𝜀𝑎 − 𝜀𝑟)                                                                                              (6) 

 
where 𝜀𝑎 and 𝜀𝑟 are the axial and radial strain, 

respectively. In the modified Cam-Clay model [15], the 

increments of both the volumetric strain 𝑑𝜀𝑣 and shear 

strain 𝑑𝜀𝑠 are given by the sum of an elastic increment 

(i.e. 𝑑𝜀𝑣
𝑒 or 𝑑𝜀𝑠

𝑒) plus a plastic one (i.e. 𝑑𝜀𝑣
𝑝
 or 𝑑𝜀𝑠

𝑝
) as: 

 
  𝑑𝜀𝑣 = 𝑑𝜀𝑣

𝑒 + 𝑑𝜀𝑣
𝑝

                                                                                             (7) 
𝑑𝜀𝑠 = 𝑑𝜀𝑠

𝑒 + 𝑑𝜀𝑠
𝑝

                                                                                           (8) 

 

Similar to the modified Cam-Clay model [15], the 

present formulation also introduces a yield curve, an 

elastic law, a plastic potential and a volumetric 

hardening law, which are briefly recalled in the 

following section. 

2.2 Extended modified Cam-Clay model 

The extended modified Cam-Clay model postulates the 

existence of the following elliptical yield curve in the 

mean scaled stress 𝑝̅ – deviatoric scaled stress 𝑞̅ plane: 

 
  𝑓 = 𝑞̅2 − 𝑀2𝑝̅(𝑝̅0 − 𝑝̅) = 0                                                 (9) 

 

where 𝑀 is a material parameter representing the slope 

of the critical state line in the mean scaled stress 𝑝̅ –

deviatoric scaled stress 𝑞̅ plane, as given by the 

following relationship: 

 
  𝑞̅ = 𝑀𝑝̅                                                                                      (10) 

 

Note that the slope of the critical state line in the 

mean scaled stress 𝑝̅ – deviatoric scaled stress 𝑞̅ plane, 

as defined by Equation (10), coincides with the slope of 

the critical state line in the mean Bishop’s stress 𝑝′ –

deviatoric stress 𝑞 plane, as both these stress variables 

are scaled of the same amount 𝑆𝑟
𝑧. 

In Equation (9), the preconsolidation mean scaled 

stress 𝑝̅0 is the hardening parameter controlling the size 

of the yield curve, i.e. the length of the major axis of the 

yield ellipse.  

Upon virgin loading, the preconsolidation mean 

scaled stress 𝑝̅0 changes with the specific volume 𝑣 

according to the following semilogarithmic unified 

normal compression line: 

 
  𝑣 = 𝑁 − 𝜆 ln 𝑝̅0                                                                       (11) 

 

where 𝜆 is the slope of the unified normal compression 

line while 𝑁 is the specific volume at a unitary mean 

scaled stress. The semilogarithmic unified normal 

compression line defined by Equation (11) is similar to 

the double logarithmic one of Gallipoli and Bruno [14]. 

A choice of a semilogarithmic relationship, instead of a 

double logarithmic one, has however been made here for 

consistency with the modified Cam-Clay [15]. 

The increment of volumetric strain 𝑑𝜀𝑣 can therefore 

be calculated from Equation (11) as follows: 

 

  𝑑𝜀𝑣 = −
𝑑𝑣

𝑣𝑖
=

𝜆𝑑𝑝̅0

𝑣𝑖𝑝̅0
                                                     (12) 

 

where 𝑣𝑖 and 𝑑𝑣 are respectively the initial value and 

the increment of specific volume. Overconsolidated soil 

states are described in the semilogarithmic plane of 

specific volume 𝑣 – mean scaled stress 𝑝̅ by unloading-

reloading lines that start from the current 

preconsolidation values of specific volume 𝑣𝑜 and mean 

scaled stress 𝑝̅0: 

 

  𝑣 = 𝑣𝑜 − 𝜅 ln (
𝑝̅

𝑝̅𝑜
)                                                                 (13) 

 

where 𝜅 is the slope of the unloading-reloading lines. If 

the soil state moves along an unloading-reloading line 

inside the yield curve, the soil behaviour is reversible 

and the elastic increment of volumetric strain 𝑑𝜀𝑣
𝑒 is 

calculated as: 

 

  𝑑𝜀𝑣
𝑒 = −

𝑑𝑣𝑒

𝑣𝑖
=

𝜅𝑑𝑝̅

𝑣𝑖𝑝̅
                                                                                     (14) 

 

The elastic increment of the shear strain 𝑑𝜀𝑠
𝑒 is 

instead determined as: 

 

  𝑑𝜀𝑠
𝑒 =

𝑑𝑞̅

3𝐺
                                                                     (15) 

 

where 𝐺 is the elastic shear modulus given by the 

following relationship: 

 

  𝐺 =
3(1−2𝜈)

2(1+𝜈)

𝑣𝑖𝑝̅

𝜅
                                                            (16) 

 

where 𝜈 is the Poisson ratio. 
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As the soil state reaches the yield curve and evolves 

onto it, the mechanical behaviour becomes elasto-

plastic. The plastic volumetric strain increment 𝑑𝜀𝑣
𝑝
 is 

the difference between the total strain 𝑑𝜀𝑣 and elastic 

strain 𝑑𝜀𝑣
𝑒 calculated by Equations (12) and (14): 

 

  𝑑𝜀𝑣
𝑝

= 𝑑𝜀𝑣 − 𝑑𝜀𝑣
𝑒 =

(𝜆−𝜅)𝑑𝑝̅0

𝑣𝑖𝑝̅0
                                                      (17) 

 

Equation (17) defines the volumetric hardening law 

of the model, which can be alternatively expressed as: 

 

  
𝑑𝑝̅0

𝑑𝜀𝑣
𝑝 =

𝑣𝑖𝑝̅0

𝜆−𝜅
                                                                                                        (18) 

 

Assuming an associated flow rule with a plastic 

potential 𝑔 equal to the yield curve 𝑓, the plastic 

increments of volumetric strain 𝑑𝜀𝑣
𝑝
 and shear strain 𝑑𝜀𝑠

𝑝
 

are given as: 

 

  𝑑𝜀𝑣
𝑝

= 𝑑𝜒
𝜕𝑔

𝜕𝑝̅
= 𝑑𝜒𝑀2𝑝̅0 (

𝑀2−𝜂2

𝑀2+𝜂2
)                                         (19) 

𝑑𝜀𝑠
𝑝

= 𝑑𝜒
𝜕𝑔

𝜕𝑞̅
= 𝑑𝜒𝑀2𝑝̅0 (

2𝜂

𝑀2+𝜂2
)                                           (20) 

 

where 𝑑𝜒 is the plastic multiplier and 𝜂 is the stress ratio 

between deviatoric scaled stress 𝑞̅ and mean scaled 

stress 𝑝̅. The combination of Equations (18) and (19) 

allows to recast the volumetric hardening law as: 

 

  𝑑𝑝̅0 =
𝜕𝑝̅0

𝜕𝜀𝑣
𝑝 𝑑𝜀𝑣

𝑝
=

𝑣𝑖𝑝̅0

𝜆−𝜅
𝑑𝜒𝑀2𝑝̅0 (

𝑀2−𝜂2

𝑀2+𝜂2
)                                 (21) 

 

By subsequently imposing the consistency condition: 

 

  𝑑𝑓 =
𝜕𝑓

𝜕𝑝̅
𝑑𝑝̅ +

𝜕𝑓

𝜕𝑞̅
𝑑𝑞̅ +

𝜕𝑓

𝜕𝑝̅0
𝑑𝑝̅0 = 0                                          (22a) 

 

or equivalently:  
 

   𝑑𝑓 =
𝜕𝑓

𝜕𝑝̅
𝑑𝑝̅ +

𝜕𝑓

𝜕𝑞̅
𝑑𝑞̅ +

𝜕𝑓

𝜕𝑝̅0

𝜕𝑝̅0

𝜕𝜀𝑣
𝑝 𝑑𝜀𝑣

𝑝
= 0                              (22b) 

 

the following expression for the plastic multiplier 𝑑𝜒 is 

obtained: 

 

     𝑑𝜒 =
𝜆−𝜅

𝑣𝑖𝑝̅𝑀2𝑝̅0(𝑀2−𝜂2)
[(𝑀2 − 𝜂2)𝑑𝑝̅ + 2𝜂𝑑𝑞̅]          (23) 

 

Finally, the plastic increments of volumetric strain 

𝑑𝜀𝑣
𝑝
 and shear strain 𝑑𝜀𝑠

𝑝
 given by Equations (19-20) are 

recast as: 

 

   𝑑𝜀𝑣
𝑝

=
𝜆−𝜅

𝑣𝑖𝑝̅(𝑀2+𝜂2)
[(𝑀2 − 𝜂2)𝑑𝑝̅ + 2𝜂𝑑𝑞̅]                        (24) 

 𝑑𝜀𝑠
𝑝

=
𝜆−𝜅

𝑣𝑖𝑝̅(𝑀2+𝜂2)
[2𝜂𝑑𝑝̅ +

4𝜂2

𝑀2−𝜂2 𝑑𝑞̅]                                  (25) 

 

The above constitutive framework therefore requires 

calibration of six model parameters, i.e. the five 

parameters of the modified Cam-Clay model [15] 𝑁, 𝜆, 

𝜅, 𝜈, 𝑀 plus the single parameter 𝑧 accounting for 

partially saturated states. Calibration of parameter 𝑧 

requires tests on partially saturated soil samples with a 

minimum of one virgin isotropic loading at 𝑠 > 0 𝑘𝑃𝑎. 

All other model parameters can be easily determined 

from conventional saturated tests. Both model 

calibration and validation are presented in the following 

sections. 

3 Model calibration 

The model parameters 𝑁, 𝜆, 𝜅, 𝜈, 𝑀 and 𝑧 have been 

calibrated against the data set of Raveendiraraj [16] who 

tested a Speswhite kaolin soil with a liquid limit of 68% 

and a plastic limit of 34%, i.e. a plasticity index of 34%.  

Soil samples were statically compacted to 400 kPa at 

a water content of 25%, resulting in a dry density of 

about 1200 kg/m3. After compaction, the samples were 

subjected to a broad range of triaxial tests involving 

various types of stress paths, such as isotropic 

compressions at constant suction, wetting and drying at 

constant mean net stress and shearing at constant radial 

stress and suction. 

Part of these experimental data was used to calibrate 

the parameters of the extended modified Cam-Clay 

model. In the absence of a soil-water retention law (e.g. 

[18]), experimental instead of predicted values of degree 

of saturation were substituted inside the scaled stress 

expressions of Equations (3-4). This is, however, 

preferable during calibration and validation of the 

proposed mechanical model to avoid that the predicted 

behaviour may be influenced by the level of accuracy of 

the chosen retention law. 

Figure 1 shows the calibration of the parameters 𝑁, 

𝜆 and 𝑧 against isotropic loading paths at constant 

suctions of 0 (i.e. fully saturated conditions), 50, 150 and 

350 kPa. Inspection of Figure 1 indicates that, both 

unsaturated and saturated virgin soil states are well 

described by the unified isotropic normal compression 

line of Equation (11) expressed in terms of mean scaled 

stress. This is, however, an expected results as the 

normalising effect of the scaled stress variable and the 

regularisation of saturated and unsaturated behaviour 

onto a unique isotropic virgin line have already been 

extensively demonstrated by Gallipoli and Bruno [14] 

and Bruno and Gallipoli [17] for a broad variety of soils, 

ranging from both kaolin and bentonite clays to loess 

silts. 

The model parameter 𝜅 was instead calibrated 

against an isotropic unloading path from a mean net 

stress of 150 kPa to 75 kPa at a constant suction of 150 

kPa, as shown in Figure 2. The Poisson ratio was taken 

equal to 0.33 as indicated by Black et al. [19], who tested 

similar Speswhite kaolin samples as Raveendiraraj [16]. 

Finally, the model parameter 𝑀 was calibrated 

against critical state data plotted in the mean scaled 

stress 𝑝̅ – deviatoric scaled stress 𝑞̅ plane, as shown in 

Figure 3. Note that the resulting value of the parameter 

𝑀 is equal to that determined by Raveendiraraj [16] 

during calibration of the model by Wheeler et al. [8], 

whose stress variables are the mean Bishop’s stress 𝑝′ 

and the deviatoric stress 𝑞. As already mentioned, this is 

because the critical state line is identical for both sets of 

stress variables.  

Table 1 summarises the values of all calibrated 

parameters, which have then been used for the 

validation of the extended modified Cam-Clay model as 

described in the following section. 
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Fig. 1. Fitting of the unified isotropic normal compression 

line to experimental data by Raveendiraraj [16]. 

 

Fig. 2. Fitting of an unloading-reloading line to experimental 

data by Raveendiraraj [16]. 

 

Fig. 3. Fitting of the critical state line to experimental data by 

Raveendiraraj [16]. 

Table 1. Calibration of model parameters against 

experimental data by Raveendiraraj [16]. 

Model parameters 

𝜆 (-) 0.133 

𝑁 (-) 2.59 

𝑧 (-) 3.95 

𝜅 (-) 0.026 

𝜈 (-) 0.33 

𝑀 (-) 0.72 

4 Model validation 

Model predictions have been validated against 

experimental data not considered during calibration (i.e. 

blind prediction). Only triaxial paths performed by 

increasing the axial stress while maintaining constant 

both radial stress and suction have been considered as 

the viability of the scaled stress under isotropic paths has 

already been extensively validated by Gallipoli and 

Bruno [14] and Bruno and Gallipoli [17]. 

 Experimental rather than calculated values of 

degree of saturation were used for calculating the scaled 

stress variables, which is preferable as previously 

discussed. Nevertheless, for practical applications, a 

suitable retention law will need to be coupled with the 

present formulation to calculate the degree of saturation 

during a generic stress/suction path. The coupling of the 

proposed mechanical law with a soil-water retention 

law, similar to [18], is matter for future research. 

Figures 4 and 5 show the experimental data from two 

shearing stages performed at the constant radial net 

stress of 75 kPa and at the two constant suctions of 200 

kPa and 300 kPa, respectively. Experimental data are 

shown together with the corresponding model 

predictions in terms of deviatoric stress 𝑞 – shear strain 

𝜀𝑠 (Figures 4a and 5a) and volumetric strain 𝜀𝑣 – shear 

strain 𝜀𝑠 (Figures 4b and 5b). The predictions from the 

constitutive laws of Alonso et al. [7] and Wheeler et al. 

[8], as calculated by Raveendiraraj [16], are also 

reported. 

Figures 4 and 5 also include model predictions by 

considering a non-associated flow rule that scales the 

plastic shear strain increment 𝑑𝜀𝑠
𝑝
 by a factor 𝛼 as: 

 

𝑑𝜀𝑠
𝑝

=
𝛼(𝜆−𝜅)

𝑣𝑖𝑝̅(𝑀2+𝜂2)
[2𝜂𝑑𝑝̅ +

4𝜂2

𝑀2−𝜂2
𝑑𝑞̅]                                    (26) 

 

In Equation (26), the value of the factor 𝛼 is chosen 

to predict zero lateral strain during 𝐾0 loading paths 

according to Jaky [20], i.e. 𝐾0 = 1 − sin 𝜑′ = (6 −
2𝑀)/(6 + 𝑀). This assumption, firstly introduced by 

Ohmaki [21] and subsequently adopted by Alonso et al. 

[7], is particularly convenient because it allows to 

express the factor 𝛼 in terms of previously defined 

model parameters as: 

 

𝛼 =
𝑀(𝑀−6)(𝑀−3)

9(6−𝑀)
[

1

1−
𝜅

𝜆

]                                                                          (27) 

 

A value of 𝛼 = 0.37 is calculated from Equation 

(27) corresponding to the values of parameters 𝜆, 𝜅 and 

𝑀 indicated in Table 1.  

Inspection of both Figures 4a and 5a indicates that 

the extended modified Cam-Clay model underestimates 

the deviatoric stress at any given shear strain. This 

discrepancy is however mostly attributable to the 

associated flow rule of the original model rather than to 

the single scaled stress approach. Predictions are much 

improved by the introduction of the non-associated flow 

rule, leading to a level of accuracy similar to that of the 

models of Alonso et al. [7] and Wheeler et al. [8], 

formulated in terms of two independent stress variables. 
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Fig. 4. Model prediction against shearing at a constant 

suction of 200 kPa taken from Raveendiraraj [16]. 

 

 
Fig. 5. Model prediction against shearing at a constant 

suction of 300 kPa taken from Raveendiraraj [16]. 

  

 Inspection of Figures 4b and 5b shows that the 

extended modified Cam-Clay model well predicts the 

volumetric behaviour of the soil during shearing. The 

quality of the computed results improves when the non-

associated flow rule is introduced leading to even better 

predictions than those from Alonso et al. [7] and 

Wheeler et al. [8]. Note, however, that the experimental 

results considered in the present work are limited to ‘wet 

and loose’ soil samples that exhibit a strain-hardening 

behaviour under shearing. Future work will need to 

extend the present study to the prediction of the 

unsaturated strain-softening behaviour of ‘dry and 

dense’ soils. 

The above preliminary results suggest that a single 

scaled stress modelling approach may be viable for 

reproducing the behaviour of partially saturated soils. 

They also indicate that the choice of a different 

associated plasticity model from modified Cam-Clay 

[15] (e.g. a model incorporating kinematic and 

volumetric hardening with a rotated yield ellipse) may 

improve predictions. This aspect is, however, outside 

the scope of the present work and future research will be 

developed in this direction. 

5 Conclusions 

This paper has presented an extension of the modified 

Cam Clay model [15] to predict the mechanical 

behaviour of partially saturated soils by replacing the 

effective stress of the original formulation with the 

scaled stress of Gallipoli and Bruno [14]. The scaled 

stress is defined as the product of Bishop’s stress and a 

power function of the degree of saturation. The 

proposed framework therefore includes the five 

parameters of the modified Cam-Clay [15], which can 

be determined via conventional saturated tests, plus one 

parameter of the scaled stress of Gallipoli and Bruno 

[14], which must be determined via unsaturated testing. 

Similar to modified Cam Clay [15], the present 

approach postulates the existence of a yield curve in the 

mean scaled stress 𝑝̅ – deviatoric scaled stress 𝑞̅ plane 

inside which the soil behaviour is elastic. As the soil 

state reaches the yield curve and evolves onto it, the soil 

behaviour becomes elasto-plastic and strain increments 

are determined by means of an associated flow rule 

combined with a volumetric hardening law. Additional 

predictions have also been produced by introducing the 

non-associated flow rule proposed by Ohmaki [21]. This 

non-associated flow rule scales the plastic shear strain 

increment by a factor 𝛼, whose value is determined by 

imposing zero lateral strain under 𝐾0 loading.  

The extended modified Cam-Clay model has been 

calibrated and validated against experimental data by 

Raveendiraraj [16], who tested Speswhite kaolin 

samples under both saturated and unsaturated triaxial 

paths. Results show that the proposed model well 

captures the experimental values of deviatoric stress, 

shear strain and volumetric deformation. Interestingly, 

the quality of the prediction is comparable to that of 

more sophisticated mechanical laws expressed in terms 

of two independent stress variables. The calculated 

stress-stain response becomes even more accurate when 
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the non-associated flow rule is introduced suggesting 

that part of the discrepancies observed in the present 

study may be attributable to shortcomings of the 

reference saturated model. 

Future work will aim at further validating the 

proposed modelling approach against different stress 

paths and accounting for the simultaneous effect of 

partial saturation and cementation similar to [22-23]. 

These developments may also incorporate a more 

realistic critical state framework based on bounding 

surface plasticity. 
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