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Abstract. This paper presents the derivation of the incremental constitutive relations of the Glasgow 

Coupled Model (GCM), an established elasto-plastic model for unsaturated soils intended to represent their 

mechanical and water retention behaviour. The set of incremental equations derived defines an initial value 

problem (IVP) that needs to be solved at each integration step once the initial (or previous) state and the 

increments of suction and strain are known. To solve this IVP effectively, a small reformulation of the GCM 

(not involving any modification of the model, but simply presenting it differently) has been adopted with 

the aim to facilitate the development of a robust algorithm capable to identify unambiguously the correct 

model response activated by a given stress path (i.e. elastic, mechanical yielding, water retention yielding 

or simultaneous mechanical and water retention yielding). Subsequent to the description of this algorithm, 

the paper presents an explicit substepping integration scheme with automatic error control able to integrate 

the incremental constitutive equations of the model for each possible response, including unsaturated and 

saturated conditions. The numerical capabilities of the substepping scheme in terms of accuracy and 

efficiency are then demonstrated in the context of the performance maps proposed originally for saturated 

soil models.  

1 Introduction 

The Glasgow Coupled Model (GCM) is a coupled 

mechanical-water retention constitutive model for 

unsaturated soils developed by Wheeler et al. (2003) [1]. 

The model was originally proposed for isotropic stress 

conditions and was then extended to include the effects 

of deviatoric stresses. Firstly, for the simplified triaxial 

stress conditions [2] and later for the general stress state 

conditions [3]. In both cases the formulation proposed 

assumed the Modified Cam Clay (MCC) as underlying 

model for saturated conditions. Extensive work on the 

use of the GCM has been carried out since its 

development in 2003, demonstrating its capabilities in 

representing relevant features of unsaturated soil 

behaviour such as the existence of two unique normal 

compression planar surfaces for specific volume 𝑣 and 

degree of saturation 𝑆𝑟 when soil states are at the 

intersection of mechanical (M) and wetting retention 

(WR) yield surfaces [4], the unification of the 

representation of the occurrence of plastic compression 

in unsaturated soils during loading, wetting (collapse 

compression) and drying (irreversible shrinkage) as 

yielding on a single M yield curve [5] and the consistent 

representation of transitions between saturated and 

unsaturated conditions via the existence of two unique 

expressions to predict the occurrence of saturation and 

de-saturation in the soil [6].  

While all these findings have facilitated better 

understanding of the behaviour of unsaturated soils and, 

more in particular, of the range of applications of the 
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GCM, a robust algorithm capable to numerically 

integrate the incremental constitutive relations of the 

GCM in an efficient manner has been a challenging task 

because of the coupled nature of its mathematical 

formulation. In this context, [7] presented a complete 

explicit substepping integration scheme with automatic 

error control which main features and capabilities are 

briefed and further investigated in this conference paper, 

including supplementary numerical examples.  

2 Reformulation of the GCM 

With the aim of simplifying the numerical integration of 

the GCM, certain aspects of the model are reformulated 

in this section. This reformulation does not involve any 

modification of the model, simply a change in how it is 

presented. As in [4], the version of the GCM considered 

here predicts no elastic changes of 𝑆𝑟 (the gradient of 

elastic scanning curves in the water retention plane is 

zero i.e. κs = 0 in the original model of [1]). This 

consideration is to ensure consistent behaviour across 

transitions between unsaturated and saturated states [4].  

2.1 Stress variables 

To represent the “average soil skeleton stress” [8] of a 

soil under unsaturated conditions, the GCM uses the 

“Bishop’s” stress tensor defined by:  

𝛔∗ = 𝝈 − 𝒎𝑇(𝑆𝑟𝑢𝑤 − (1 − 𝑆𝑟)𝑢𝑎)   (1) 
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where 𝛔 is the total stress tensor, 𝒎𝑇 = (1,1,1,0,0,0) an 

auxiliary vector, 𝑆𝑟 the degree of saturation, 𝑢𝑎 the pore 

air pressure, 𝑢𝑤 the pore water pressure. 

Similarly, the stress variable for the water retention 

behaviour is the modified suction defined by:  

𝑠∗ = 𝑛(𝑢𝑎 − 𝑢𝑤)      (2) 

where 𝑛 is the porosity.  

2.2 Mechanical yield curve 

For the simplified stress conditions of the triaxial test, 

the expression of the mechanical yield curve (M) of the 

GCM fM is: 

𝑞2

(𝑝0
∗)

2 + 𝑀2 [(
𝑝∗

𝑝0
∗)

2

−
𝑝∗

𝑝0
∗] = 0    (3) 

where p* is the mean Bishop’s stress, q is the deviatoric 

stress, 𝑝0
∗ is the mechanical yield stress (or 

preconsolidation stress) 𝑀 is the slope of the critical 

state line in the q:p* plane.  

Under unsaturated conditions, the mechanical yield 

stress 𝑝0
∗ increases with decreasing degree of saturation 

according to the following expression:  

𝑝0
∗ = 𝑝′0𝑒𝑥𝑝 (

𝑘1

𝜆𝑠
(1 − 𝑆𝑟))     (4) 

where 𝑝′0 is the saturated mehcanical yield stress. 𝑘1 

and 𝜆𝑠 are soil constants as defined in the original [1].  

Equation 3 indicates that the mechanical yield curve 

is elliptical in shape of aspect ratio M when plotted in 

the q:p* plane (see Figure 1a). The size of this ellipse is 

given by the current value of the mechanical yield stress 

𝑝0
∗ which varies with the degree of saturation according 

to Equation 4 as illustrated in Figure 1b. In particular, 

when the soil becomes saturated, the mechanical yield 

curve reverts to the conventional ellipse of the MCC (as 

indicated in Figure 1 for Sr = 1). Equation 4 resembles 

the expression proposed by Jommi and Di Prisco [9], 

with the difference here that the variation of Sr is 

represented within the GCM constitutive framework.  

Representing the mechanical yield condition in the 

GCM in terms of Bishop’s stresses and degree of 

saturation means that there is no movement of fM until 

the soil state reaches the surface (see Figure 1) which 

differs with the original presentation of the GCM in [1], 

where coupled movements of the mechanical yield 

surface (expressed there in terms of Bishop’s stresses 

and modified suction s*) occur during yielding on water 

retention yield surfaces. The new formulation presented 

here has advantages in with regards to the identification 

of which is the correct model response activated by a 

stress path. In addition to this, Equation 4 also provides 

a very simple representation of the transitions between 

saturated and unsaturated conditions as discussed in 

Lloret-Cabot & Wheeler [10]. 

2.3 Water retention yield curves 

The water retention behaviour is described by two 

yield functions, the wetting fWR and drying fDR retention.  

 

Fig. 1. Typical mechanical yield curves of the GCM for a 

general value of Sr and for Sr =1 (a) in the p*:q plane; (b) in 

the p*:Sr plane. 

Variations of s* occurring inside fWR and fDR result in no 

changes of Sr (i.e. dSr = d𝑆𝑟
𝑒 = 0). Yielding on fWR 

causes plastic increases of Sr (i.e. dSr = d𝑆𝑟
𝑝

> 0) and 

yielding on fDR produces plastic decreases of Sr (i.e. dSr 

= d𝑆𝑟
𝑝

< 0). The expression of the wetting retention 

yield curve is:   

𝑓WR =
𝑠1

∗−𝑠∗

𝑠1
∗ = 0       (5) 

where s1
* is the wetting yield stress controlling the 

occurrence of yielding on fWR (equivalent to p0
* for 

mechanical yielding) and varies with the occurrence of 

mechanical yielding according to: 

𝑠1
∗ = 𝑠10

∗ (
𝑝′0

𝑝′00
)

𝑘2
= 𝑠10

∗ 𝑒𝑥𝑝 (
−𝑘2

𝜆−𝜅
∆𝑣𝑝)   (6) 

where k2 is a coupling parameter, p′0 is the mechanical 

hardening parameter and ∆𝑣𝑝 indicates plastic decreases 

of specific volume from a reference state. s10
* and p′00 

are, respectively, the values of s1
* and p′0 at the reference 

states when 𝛥𝑣𝑝 = 0. 

The expression of the drying retention yield curve is: 

𝑓DR =
𝑠∗−𝑠2

∗

𝑠2
∗ = 0      (7) 

where s2
* is the drying yield stress for fDR which varies 

according to:   

𝑠2
∗ = 𝑠20

∗ (
𝑝′0

𝑝′00
)

𝑘2
= 𝑠20

∗ 𝑒𝑥𝑝 (
−𝑘2

𝜆−𝜅
∆𝑣𝑝)  (8) 

where s20
* and p′00 are, respectively, the values of s2

* and 

p′0 when ∆𝑣𝑝 = 0. 

 

E3S Web of Conferences 382, 15007 (2023) https://doi.org/10.1051/e3sconf/202338215007
UNSAT 2023

2



Equation 5 (and Equation 7) indicate that fWR forms 

a straight line when plotted in the lns*:lnp0′ plane which 

is parallel to fDR (see Figure 2). The positions of these 

straight lines and their gradient with respect to lnp0′ are 

given by Equations 6 and 8. The current values of the 

parameters s10
* and s20

* (which correspond, respectively, 

to the values of s1
* and s2

* at a reference state with p′0 = 

p′00) fix the position of fWR and fDR respectively, and the 

gradient is given by k2. Therefore, the parameters s10
* 

and s20
* are referred hereafter as the hardening 

parameters of the water retention response. Equations 5-

8 are still active under fully saturated conditions, 

because they track the influence of mechanical yielding 

on the potential occurrence of desaturation on drying 

(i.e. air-entry point) and re-saturation on wetting or 

loading (i.e. air-exclusion point). 

The spacing between fWR and fDR is assumed constant 

when plotted in terms of lns* (i.e. s2
*=R‧s1

*, where R is a 

soil constant [4]). This spacing defines the elastic 

domain of the water retention behaviour (see Figure 3). 

Yielding on the drying retention yield curve reduces the 

values of Sr and causes a coupled movement of the 

wetting retention yield curve [1]. Equivalent comments 

apply when yielding on fWR. 

 

Fig. 2. Water retention yield curves in lns*:lnp0′ plane. 

2.4 Model responses 

To represent the mechanical and water retention 

behaviour in unsaturated soils, the GCM considers the 

following six possible responses:  

1.  Purely elastic behaviour. 

2.  Yielding on only fWR. 

3.  Yielding on only fDR. 

4.  Yielding on only fM. 

5.  Simultaneous yielding on fM and fWR. 

6.  Simultaneous yielding on fM and fDR. 

Desaturation occurs whilst on fDR and saturation occurs 

whilst on fWR (see [4], [6], [11] for more details).  

3 Formulation of the problem 

The numerical integration of the incremental 

relationships of a constitutive model defines an initial 

value problem (IVP) that can be solved knowing the 

initial (or current) state, the model parameters and, for a 

strain-driven formulations, a given pair of ∆ɛ and ∆s ( 

denotes a finite variation). In the context of the GCM, 

this IVP is written in terms of two mechanical equations 

(Equations 9 and 10 representing Bishop’s stress – strain 

relations) and two water retention equations (Equations 

11 and 12 including relations between modified suction 

and degree of saturation): 

∆𝝈∗ = 𝑫𝒆∆𝜺 − ∆𝜆𝑀𝑫𝒆𝒂𝑴     (9) 

∆𝑝0′ = ∆𝜆𝑀𝐵𝑀       (10) 

∆𝑆𝑟 = −∆𝜆𝑅𝑎𝑅       (11) 

∆𝑠R0
∗ = −∆𝜆𝑅𝐵𝑅       (12) 

where the subscript M indicates mechanical response 

and the subscript R indicates retention response (fWR or 

fDR), ΔλM and ΔλR are the respective plastic multipliers, 

p0' and 𝑠R0
∗  are the respective hardening parameters, aM 

is the gradient of fM, aR is the gradient of fWR (or fDR), BM 

and BR are a scalar functions.   

3.1 Elastic and elasto-plastic behaviour  

Elastic behaviour under saturated or unsaturated 

conditions is a particular case of the IVP defined by 

Equations 9-12. Elastic behaviour is represented in the 

GCM in terms of the secant bulk 𝐾̄ and shear 𝐺̄ moduli 

as further described [7].  

Yielding on one water retention curve alone involve 

no mechanical yielding and consequently p0' remains 

unchanged (i.e. ΔλM = 0). Similarly, yielding on the 

mechanical yield curve alone means that ΔλR = 0 (and, 

hence, ΔSr = 0) which simplifies the expression for ΔλM 

(see [7]). The two remaining cases (simultaneous 

yielding on fM and fR) require the derivation of an 

expression for ΔλM and ΔλR which can be found by 

imposing consistency condition on both yield curves as 

detailed in [7].   

3.2 Identification of the model response 
activated by the trial stress path  

Once the model response is known, all variables are 

updated using the appropriate set of incremental 

relations. In such update, the algorithm automatically 

checks if the stress path intersects a yield curve and finds 

the corresponding intersection if necessary, using the 

Pegasus algorithm [12] extensively tested for saturated 

soil models ([13]-[14]). 

Figure 3 illustrates the various steps carried out by 

the algorithm to decide how to integrate the given 

increments of ∆ɛ and ∆s correctly. The case illustrated 

corresponds to simultaneous yielding on fM and fDR (a 

similar algorithm applies for the other cases). A 

maximum of three different trials is needed to handle 

correctly this problem, meaning that the algorithm needs 

to break ∆ɛ and ∆s in three parts. All other cases (i.e. 

initial stress point on one or two yield curves) are a 

simplified version of this one and follow a similar logic.  

Figure 3 is in two parts. Part a shows the full sequence 

of steps in the lnp0′:lns* plane and Part b illustrates their 

counterparts in the Sr:lnp* plane. The current stress point 

is indicated by i and is found inside the three yield 

curves of the model (ifWR is not plotted for clarity, but its 
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location is to the left of point i). Trial 1 (indicated by t1) 

is purely elastic (ΔSr = 0 and Δp0' = 0) and ends up 

outside both ifDR (see Figure 3a) and ifM (see Figure 3b). 

It is then required to know which of these two yield 

curves is hit first by trial 1. This problem involves 

finding two scalars (α1 for fDR and α2 for fM), both 

between 0 and 1. The scalars indicate the portion of ∆ɛ 

and ∆s required to move, elastically, the stress point i to 

the corresponding intersection point (indicated as iR1 for 

fDR and iM1 for fM). The lower value between α1 and α2 

corresponds to the yield curve hit first by trial 1. In the 

example here, fM is the yield curve hit first (i.e. α2 < α1). 

This means that a purely elastic update of the stress point 

from i to the intersection point iM1 is carried out using 

the corresponding portion of the given increments (i.e. 

α2∆ɛ and α2∆s). The next step is to compute Trial 2 

(indicated as t2) starting from iM1 (also indicated as iM in 

Figure 3) and now assuming yielding on only fM. Note 

that Trial 2 uses the not yet integrated part of the 

increments of strains and suction i.e. (1-α2)∆ɛ and (1-

α2)∆s. Given that yielding on only fM is the model 

response assumed in computing t2, the mechanical 

hardening parameter p0' is not constant (see Figure 3a) 

but Sr is (see Figure 3b). A second intersection problem 

arises, now with ifDR (Figure 3). This second intersection 

problem involves finding a scalar β (also between 0 and 

1) that defines the portion of (1-α2)∆ɛ and (1-α2)∆s 

required to move, under yielding on only fM, the stress 

point from iM to iR (also indicated as iY in Figure 3 as the 

stress point lies on both yield curves). Once β has been 

found, the stress point is updated from iM to iR assuming 

yielding on only fM and using the relevant portion of 

strain and suction increments i.e. β(1-α2)∆ɛ and β(1-

α2)∆s.  

 

Fig. 3. Water retention yield curves in lns*:lnp0′ plane. 

In moving the stress point from iM to iR, yielding on only 

fM is occurring and, consequently, ifM yields to YfM as 

indicated by the thicker light dashed line in Figure 3b. 

At this stage, the stress point is on both yield curves. A 

final trial 3, now assuming yielding on only fDR, needs 

to be computed to determine whether the portion not yet 

integrated of strains and suction increments (i.e. (1-β)(1-

α2)∆ɛ and (1-β)(1-α2)∆s) activates yielding on only fDR 

or simultaneous yielding on fM and fDR. Interestingly, the 

algorithm knows at this point that yielding on only fM is 

not possible because trial 2 fell outside fDR when 

assuming yielding on only fM. In this example, trial 3 

ends up outside YfM meaning that this final portion of ∆ɛ 

and ∆s, moving the stress point from iY to i+1, has to be 

integrated assuming simultaneous yielding on fM and 

fDR. The stress path followed to integrate the full size of 

∆ɛ and ∆s is indicated in the figure by a thick black solid 

line and the final positions of fM and fDR at i+1 are 

indicated by a lighter thick solid line. 

4 Second order accurate explicit 
substepping integration scheme 

This section presents a second order accurate explicit 

substepping integration scheme for the numerical 

integration of the GCM (typically referred to as the 

second order accurate modified Euler with substepping.  

Given a pseudo-time step/substep i(∆T) with 0 < 
i(∆T) ≤ 1, the forward Euler and modified Euler updates 

for σ*, p0′, Sr and sR0
*are described in the following by 

adopting the Butcher tableau (Dormand and Prince, 

[15]). The coefficients for the two methods are 

summarised in Table 1. The subscripts i and i+1 denote 

quantities evaluated at pseudo-times iT and i+1T= iT + 
i(∆T) respectively:  

𝑠𝑖+1 = 𝑠𝑖 + ∆𝑖 𝑠     (13) 

𝑣𝑖+1 = 𝑣𝑖 𝑒𝑥𝑝(− ∆𝑖 𝜀𝑣)    (14) 

𝑠𝑖+1 ∗ = 𝑠𝑖+1 𝑣𝑖+1 −1

𝑣𝑖+1      (15) 

𝝈𝑖+1 ∗ = 𝝈𝑖 ∗ + ∑ 𝑏𝑘𝑛𝑠
𝑘=1 ∆𝑘 𝝈∗   (16) 

𝑝𝑖+1
0′ = 𝑝𝑖

0′ + ∑ 𝑏𝑘𝑛𝑠
𝑘=1 ∆𝑘 𝑝0′   (17) 

𝑆𝑖+1
𝑟 = 𝑆𝑖

𝑟 + ∑ 𝑏𝑘𝑛𝑠
𝑘=1 ∆𝑘 𝑆𝑟   (18) 

𝑠𝑖+1
R0
∗ = 𝑠𝑖

R0
∗ + ∑ 𝑏𝑘𝑛𝑠

𝑘=1 ∆𝑘 𝑠R0
∗    (19) 

where the coefficients kb are summarised in Table 1, ns 

is the number of stages of the integration scheme, and 

∆𝑘 𝑠∗ = 𝑠𝑖+1 ∗ − 𝑠𝑖 ∗    (20) 

∆𝑘 𝝈∗ = 𝑫𝑘
𝒆 ∆𝑖 𝜺 − ∆𝑘 𝜆𝑀 𝑫𝑘

𝒆 𝒂𝑘
𝑴 (21) 

∆𝑘 𝑝0′ = ∆𝑘 𝜆𝑀 𝐵𝑘
𝑀    (22) 

∆𝑘 𝑆𝑟 = − ∆𝑘 𝜆𝑅𝑎𝑅     (23) 

∆𝑘 𝑠R0
∗ = ∆𝑘 𝜆𝑅 𝐵𝑘

𝑅    (24) 

∆𝑖 𝑠 = (∆𝑇)𝑖 ∆𝑠     (25) 

∆𝑖 𝜺 = (∆𝑇)𝑖 ∆𝜺     (26) 
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for k = 1, …, ns and where De, aM, ∆λM, ∆λR, BM and BR 

are evaluated at k using: 

𝑠̂𝑘 = 𝑠𝑖 + ∑ 𝑎
𝑘𝑗

(∆𝑇)∆𝑖 𝑠𝑘−1
𝑗=1    (27) 

𝑣̂𝑘 = 𝑣𝑖 𝑒𝑥𝑝(− ∑ 𝑎
𝑘𝑗

(∆𝑇)∆𝜀𝑣
𝑖𝑘−1

𝑗=1 )  (28) 

𝑠̂𝑘 ∗ = 𝑠̂𝑘 𝑣̂𝑘 −1

𝑣̂𝑘       (29) 

𝝈̂𝑘 ∗ = 𝝈𝑖 ∗ + ∑ 𝑎
𝑗𝑘−1

𝑗=1 ∆
𝑗

𝝈∗    (30) 

𝑝̂𝑘
0′ = 𝑝𝑖

0′ + ∑ 𝑎
𝑗𝑘−1

𝑗=1 ∆
𝑗

𝑝0′   (31) 

𝑆̂𝑘
𝑟 = 𝑆𝑖

𝑟 + ∑ 𝑎
𝑗𝑘−1

𝑗=1 ∆
𝑗

𝑆𝑟    (32) 

𝑠̂𝑘
R0
∗ = 𝑠𝑖

R0
∗ + ∑ 𝑎

𝑗𝑘−1
𝑗=1 ∆

𝑗
𝑠R0

∗    (33) 

and the coefficients kja are summarised in Table 1.  

Table 1. Coefficients for the forward Euler and modified 

Euler integration schemes [15]. 

kc kja k 𝑏̂(2nd) kb (1st) 

0  1/2 1 

1 1 1/2 0 

5  Verification  

A numerical test (Test 1) is carried out to study how the 

error in σ* and Sr propagates during the numerical 

integration. Adopting the same terminology used in [7], 

the error incurred by the numerical scheme in a single 

substep (or step in case of no substepping) is indicated 

by e whereas E indicates the cumulative error over a 

number of substeps. The numerical test considered here, 

assumes axisymmetric conditions and an initial 

unsaturated stress state lying on both fM and fWR, at zero 

deviatoric stress. The soil constants and initial state 

considered are summarised in Tables 2 and 3, 

respectively. The tolerance is assumed equal to 10-12. 

Table 2. Values of soil constants for the GCM simulations. 

𝜆 = 0.15 𝑘1 = 0.70 𝜆𝑠 = 0.12 𝜐 = 0.33 (*) 

𝜅 = 0.02 𝑘2 = 0.80 𝑅 = 1.4 -- 

𝛮 = 2.73 𝛮∗ = 2.90 𝛭 = 1.20 -- 

(*) where υ is the Poisson’s ratio 

Table 3. Initial state for GCM simulations. 

𝑝∗ = 200𝑘𝑃𝑎 𝑝0
∗ = 200𝑘𝑃𝑎 𝑆𝑟 = 0.65 

𝑠∗ = 109.1𝑘𝑃𝑎 𝑠1
∗ = 109.1𝑘𝑃𝑎 𝑣 = 2.20 

𝑞 = 0𝑘𝑃𝑎 -- -- 

Test 1 studies the error for a finite decrement of suction 

‒∆s at constant volume. The error is computed 

comparing the numerical approximation against the 

analytical solution. The size of the assumed input 

increments of strains and suction are varied to study how 

such variation in size influences the error in the solution. 

In particular, the decrement of suction analysed varies 

from ‒∆s = 10-04 to 10.0 kPa (with ∆εv = 0).  

Accuracy is assessed by plotting the error in σ* and 

Sr against the size of the input suction variations using 

logarithmic scales. This representation provides a form 

of verification of the integration scheme, because the 

gradient obtained for the best-fitted straight line through 

a particular set of error results should be in 

correspondence with the order of accuracy of the 

numerical integration method (e.g. [16], [17]).  

Figure 4 illustrates the behaviour of e in terms of 

Bishop’s stress (Figure 4a) and degree of saturation 

(Figure 4b). Similar results were obtained for the 

mechanical hardening parameter and the water retention 

hardening parameter. Symbols indicate the computed 

relative error and the dashed lines indicate the best-fitted 

straight line through the computed relative error for the 

corresponding integration scheme. The respective 

gradients of each best-fitted straight line plotted in both 

plots match the expected order of accuracy of the 

method, suggesting that both substepping schemes work 

correctly at a single step/substep level.  

 

 

Fig. 4. Relative error for single-step explicit integration 

schemes against suction decrement size for a single elasto-

plastic suction decrement (at constant volume): (a) Bishop’s 

stress σ*; (b) degree of saturation Sr. 

Once a substepping integration scheme has been 

verified at a single step level, the verification process 

should study the numerical performance over several 

substeps in terms of the cumulative error E, as defined 

in [16] in the context of the performance maps. Various 
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performance maps can be plotted to study specific 

computational aspects of the substepping integration 

process. For example, Figure 5 illustrates and 

demonstrates that, in fact, the variation of cumulative 

error with the number of substeps follows 

approximately a straight line of gradient -2 for the 

modified Euler substepping integration scheme (see [16] 

for further details).  

 

Fig. 5. Cumulative relative error behaviour against number of 

substeps for an elasto-plastic suction decrement at constant 

volume. 

6 Conclusions 

The formulation of the modified Euler substepping 

scheme to integrate the incremental constitute relations 

of the GCM has been presented and its numerical 

performance has been studied for a simple numerical 

test involving wetting at constant volume. The results 

show that both, the error over an individual step/substep 

and the cumulative error over multiple substeps, behave 

as expected. This applies to the relative error of both the 

mechanical (stresses and mechanical hardening 

parameter) and water retention (degree of saturation and 

water retention hardening parameter) components of the 

problem.  
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