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Abstract. This paper presents a fully coupled plasticity model for the rigorous analysis of fluid flow and 
solid skeleton deformation in variably saturated porous media. The flow deformation behaviour of 
unsaturated soils is described through the simultaneous solution of governing partial differential equations, 
including the equilibrium equation and the continuity equations of pore fluids. The coupling between solid 
and fluid phases is established based on the effective stress concept with the effective stress parameter as a 
function of suction. The elasto-plastic behaviour of geomaterials is formulated using the bounding surface 
theory. The fully coupled flow deformation framework along with the UNSW bounding surface constitutive 
law are implemented into COMSOL Multiphysics commercial software to simulate the results of several 
laboratory tests conducted on soils with different degrees of saturation under various drainage conditions 
and loading paths. The close agreement between the numerical solutions and experimental data from the 
literature indicates the good performance of this new elastic-plastic unsaturated model and emphasises its 
capability to capture the different characteristic features of response of soils with a variety of saturation 
degrees and over-consolidation ratios. 

1 Introduction 

Experimental and theoretical investigations of the 
hydro-mechanical behaviour of unsaturated geo-
materials have been a subject of great interest amongst 
geotechnical researchers in the past few decades [e.g., 1-
5]. As a multiphase porous system, the response of a 
partially saturated soil subjected to the mechanical and 
hydraulic loadings is generally governed by the 
deformation of solid skeleton, the simultaneous flow of 
water and air through the porous medium, and the 
coupling between the fluid flow and soil deformation. 
The interrelations between the suction and the effective 
stress, and the evolution of soil water characteristic 
curve with the matrix deformation, are additional 
mechanisms contributing to the complexity of the 
hydro-mechanical response in unsaturated soils. 

The physical processes involved in the flow 
deformation problems are mathematically described by 
a set of coupled partial differential equations, including 
the force equilibrium equation and the mass 
conservation law. Due to the complexity and the highly 
non-linear nature of the governing equations, the 
analytical solutions are difficult, if not almost 
impossible, to obtain, and the numerical simulations are 
frequently employed as an effective tool for the hydro-
mechanical analysis of partially saturated deformable 
porous media. COMSOL Multiphysics [6] provides a 
platform for tackling the complex coupling systems in 
an efficient and reliable manner. It renders coupled 
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modelling capabilities, suitable for the numerical 
modelling of the hydro-mechanical problems in partially 
saturated geo-structures available to practising 
engineers. 

This paper presents a fully coupled framework based 
on the theory of bounding surface plasticity to predict 
the flow deformation response of unsaturated porous 
materials. After introduction, the governing partial 
differential equations, the main concepts of the UNSW 
bounding surface model, and its implementation in 
COMSOL are briefly described. The capability of the 
model implemented is investigated via comparing the 
simulation results with the experimental data available 
in the literature. 

2 Formulation 

2.1 Governing equations 

The flow and deformation phenomena in partially 
saturated geo-materials can mathematically be 
expressed by the following set of partial differential 
equations [5]: 

 
     divሾ𝐃ୣ୮ሺ∇𝐮ሶ ሻ െ 𝜓𝑝ሶ௪𝛅 െ ሺ1 െ𝜓ሻ𝑝ሶ௔𝛅ሿ ൅ 𝐅ሶ ൌ 𝟎      (1) 

div ቂ
௞ೝೢ𝐤

ఓೢ
ሺ∇𝑝௪ ൅ 𝜌௪𝐠ሻቃ ൌ 𝜓𝑑𝑖𝑣𝐮ሶ ൅ 𝑎ଵଵ𝑝ሶ௪ െ 𝑎ଵଶ𝑝ሶ௔   (2) 

div ቂ
௞ೝೌ𝐤

ఓೌ
ሺ∇𝑝௔ ൅ 𝜌௔𝐠ሻቃ ൌ ሺ1 െ𝜓ሻ𝑑𝑖𝑣𝐮ሶ െ 𝑎ଶଵ𝑝ሶ௪ ൅

𝑎ଶଶ𝑝ሶ௔                                                                                    (3) 
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where 𝐃ୣ୮ is the elasto-plastic stiffness matrix, u is the 
soil skeleton displacement vector, 𝑝௪ and 𝑝௔ are the 
pore water and air pressures, respectively, 𝛅 is the 
Kronecker delta vector, F is the body force per unit 
volume, 𝜓 ൌ 𝑆௥ െ 𝑛 𝜕𝑆௥ 𝜕𝜀௩⁄ , 𝑆௥ is the saturation 
degree, n is the porosity, 𝜀௩ is the volumetric strain, 𝑘௥௪ 
and 𝑘௥௔ are the relative permeabilities of pore water and 
air, respectively, k is the intrinsic permeability of soil, 
𝜇௪ and 𝜇௔ are the dynamic viscosities of water and air, 
respectively, g is the gravitational acceleration vector, 
𝜌௪ and 𝜌௔ are the mass densities of water and air, 
respectively, 𝑎ଵଶ ൌ 𝑎ଶଵ ൌ െ𝑛𝜕𝑆௥ 𝜕𝑠⁄ , 𝑠 ൌ 𝑝௔ െ 𝑝௪ is 
the matric suction, 𝑎ଵଵ ൌ 𝑐௪𝑛௪ ൅ 𝑎ଵଶ, 𝑎ଶଶ ൌ 𝑐௔𝑛௔ ൅
𝑎ଶଵ, 𝑐௪ and 𝑐௔ are the water and air compressibility 
coefficients, respectively, and 𝑛௪ and 𝑛௔ denote the 
volumetric contents of water and air phases, 
respectively.  

In this formulation, the effective stress 
representation by Khalili and Khabbaz [7], in which the 
effective stress parameter (𝜒) depends on suction, is 
adopted: 

 
                            𝛔ᇱ ൌ 𝛔୬ୣ୲ െ 𝜒𝑠𝛅                                (4) 

where 

                    𝜒 ൌ ൝
1                  for 𝑠 ൑ 𝑠௘

ቀ
௦

௦೐
ቁ
ି଴.ହହ

      for 𝑠 ൐  𝑠௘  
                    (5) 

 
𝛔ᇱ is the effective stress tensor, 𝛔୬ୣ୲ ൌ 𝛔 െ 𝑝௔𝛅 is the 
net stress tensor, 𝛔 is the total external stress tensor, and 
𝑠௘ is equal to air entry value (𝑠௔௘) for the drying path and 
to air expulsion value (𝑠௘௫) for the wetting path. 

In addition, the soil water characteristic curve is 
defined using Brooks and Corey [8] equation: 

 

                     𝑆ୣ୤୤ ൌ ൝
1              for 𝑠 ൏ 𝑠௘

ቀ
௦೐
௦
ቁ
ఒ೛

      for 𝑠 ൒  𝑠௘  
                    (6) 

 
where 𝑆ୣ୤୤ ൌ ሺ𝑆௥ െ 𝑆௥௘௦ሻ ሺ1െ 𝑆௥௘௦ሻ⁄  is the effective 
saturation degree, 𝑆௥ is the saturation degree, 𝑆௥௘௦ is the 
residual saturation degree, and 𝜆௣ is the pore size 
distribution index. 

2.2 Bounding surface plasticity model 

The elastic-plastic stiffness matrix (𝐃ୣ୮) is formed 
based on the bounding surface plasticity theory. 
Specifically, the constitutive law, referred to as the 
UNSW bounding surface plasticity model, is adopted to 
simulate the stress-strain behaviour of cohesive and 
granular soils subjected to complex monotonic and 
cyclic loading paths [e.g., 5, 9]. The model permits a 
smooth transition between elastic and elasto-plastic 
responses and captures accumulation of plastic strains in 
the so-called “elastic region” [5]. Within this context, 
the shape of the bounding surface is described by: 

 

         𝐹ሺ𝑝̅ᇱ, 𝑞ത, 𝜃̅, 𝑝̅௖ᇱ ሻ ൌ ൤
௤ത

ெ೎ೞ൫ఏഥ൯ ௣̅ᇲ
൨
ே

െ
୪୬ሺ௣̅೎ᇲ ௣̅ᇲ⁄ ሻ

୪୬ோ
ൌ 0        (7) 

 
in which 𝑝̅ᇱ, 𝑞ത and 𝜃̅ are the mean effective stress, 
deviatoric stress and Lode angle on the bounding 

surface, 𝑝̅௖ᇱ  is the isotropic pre-consolidation pressure 
which varies with suction and plastic volumetric strain 
(𝜀௩
௣) [5], 𝑀௖௦ is the slope of critical state line (CSL) in 

the 𝑞 െ 𝑝ᇱ plane, and 𝑁 and 𝑅 are material constants 
controlling the shape of bounding surface. 

The critical state in the 𝑞 െ 𝑝ᇱ plane is represented 
by a line passing through the origin, with the slope of 
𝑀௖௦. In the 𝜐 െ ln𝑝ᇱ plane, the critical state is defined as 
a line parallel to the limiting isotropic compression line 
(LICL), with a constant shift along the recompression 
line. The isotropic compression line for unsaturated soils 
is given by: 

 
                    𝜐୐୍େ୐ ൌ 𝑁୐୍େ୐ሺ𝑠ሻ െ 𝜆ሺ𝑠ሻlnሺ 𝑝̅௖ᇱ ሻ                (8) 
 

where 𝜐୐୍େ୐ is the specific volume on the LICL, 𝑁୐୍େ୐ is 
the intercept of LICL at 𝑝ᇱ ൌ 1 kPa, and 𝜆 is the slope 
of LICL. 

The loading surface assumes the same shape as the 
bounding surface, with the centre of homology located 
on the origin of stress coordinate system, for first time 
loading, and moving to the last point of stress reversal, 
for unloading/reloading conditions. The current stress 
state always lies on the loading surface and its image on 
the bounding surface can be found using a mapping rule 
[10], such that the normal to the loading surface at stress 
point 𝛔ᇱ and to the bounding surface at image point 𝛔ഥᇱ 
are the same. 

The plastic potential determines the direction of 
plastic strain increment vector and can be stated as: 

 

𝑔ሺ𝑝ᇱ, 𝑞, 𝜃,𝑝଴ሻ ൌ 𝑡̅𝑞 ൅
஺ெ೎ೞሺఏሻ௣ᇲ

஺ିଵ
൤ ቀ

௣ᇲ

௣బ
ቁ
஺ିଵ

െ 1൨  for 𝐴 ് 1  

                                                                                        (9) 

𝑔ሺ𝑝ᇱ, 𝑞, 𝜃,𝑝଴ሻ ൌ 𝑡̅𝑞 ൅ 𝑀௖௦ሺ𝜃ሻ𝑝ᇱln ቀ
௣ᇲ

௣బ
ቁ      for 𝐴 ൌ 1  (10) 

 
where 𝑝ᇱ, 𝑞 and 𝜃 are the mean effective stress, 
deviatoric stress and Lode angle at the current stress 
point, 𝑝଴ is a dummy parameter controlling the size of 
the plastic potential, 𝑡̅ is the loading direction multiplier, 
and 𝐴 is a material constant. 

The hardening modulus at the current stress includes 
two terms: 

 
                                 ℎ ൌ ℎ௕ ൅ ℎ௙                                (11) 

 
where ℎ௕ is the plastic modulus at the image point on 
the bounding surface, and ℎ௙ is some arbitrary modulus 
at the stress point on the loading surface, depending on 
the distance between the current stress and the image 
point. These hardening moduli are defined as: 

 

               ℎ௕ ൌ െ
𝜕𝐹
𝜕௣̅೎ᇲ

൬
𝜕௣̅೎ᇲ

𝜕𝜀𝑣
𝑝 ൅

𝜕௣̅೎ᇲ

𝜕𝑠
௦ሶ

𝜀ሶ 𝑣
𝑝൰

௠೛

ቛ𝜕𝐹 𝜕𝛔ഥ′⁄ ቛ
                (12) 

      ℎ௙ ൌ 𝑡̅ ൬
𝜕௣̅೎ᇲ

𝜕𝜀𝑣
𝑝 ൅

𝜕௣̅೎ᇲ

𝜕𝑠
௦ሶ

𝜀ሶ 𝑣
𝑝൰

௣ᇲ

௣̅೎
ᇲ ቀ

௣̅೎ᇲ

௣ො೎
ᇲ െ 1ቁ 𝑘௠൫𝜂௣ െ 𝜂൯       (13) 

 
where 𝑚௣ ൌ ሺ𝜕𝑔 𝜕𝑝ᇱ⁄ ሻ ‖𝜕𝑔 𝜕𝛔ᇱ⁄ ‖⁄ , 𝑝̂௖ᇱ  defines the size 
of loading surface, 𝜂௣ ൌ ሾ1െ 2ሺ𝜐 െ 𝜐௖௦ሻሿ𝑀𝑐𝑠, 𝜐 is the 
specific volume at 𝑝ᇱ, 𝜐௖௦ is the specific volume on the 
critical state line corresponding to 𝑝ᇱ, 𝜂 ൌ 𝑞 𝑝ᇱ⁄ , and 𝑘௠ 
is a material parameter. 
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Accordingly, the elastic-plastic stiffness matrix is 
expressed in the following general form as: 

 

                               𝐃ୣ୮ ൌ 𝐃ୣ െ
𝐃౛ 𝐦 𝐧౐ 𝐃౛

௛ା𝐧౐ 𝐃౛ 𝐦
                                 (14) 

 
where 𝐃ୣ is the elastic stiffness matrix, 𝐧 ൌ
ሺ𝜕𝐹 𝜕𝛔ഥᇱ⁄ ሻ ‖𝜕𝐹 𝜕𝛔ഥᇱ⁄ ‖⁄  is the unit normal vector to the 
bounding surface at the image point, and 𝐦 ൌ
ሺ𝜕𝑔 𝜕𝛔ᇱ⁄ ሻ ‖𝜕𝑔 𝜕𝛔ᇱ⁄ ‖⁄  denotes the unit normal vector to 
the plastic potential at the stress point. 

2.3 Implementation in COMSOL 

The numerical solution of the governing differential 
equations is obtained through implementing the elasto-
plastic model proposed into COMSOL software. To this 
end, the physical processes involved in the hydro-
mechanical analysis of partially saturated soils, namely: 
the mechanical deformation, and water and air flow in 
the porous medium, are accounted for through adopting 
the relevant modules and physics interfaces in 
COMSOL. They include the generic “Solid Mechanics” 
and “Darcy’s Law” physics interfaces. These interfaces 
are then coupled manually in order to solve a 
simultaneous system of equations. 

Moreover, in order to add the UNSW bounding 
surface plasticity model into COMSOL, a dynamic link 
library (DLL) for this constitutive law is created in C 
language, which is accessed using the External Material 
feature. 

The fully coupled flow deformation framework 
developed in COMSOL, along with the constitutive 
model implemented, constitute a robust computational 
tool for the hydro-mechanical analysis of variably 
saturated multiphase geo-structures based on the 
plasticity theory. The intention is to make available the 
use of advanced numerical models for unsaturated soils 
for practical applications. 

3 Model application 

In this section, the fully coupled plastic model proposed 
is validated through simulating the results of 
experimental tests conducted under a range of saturation 
and drainage conditions. 

3.1 Drained triaxial tests on Weald clay 

Model performance in capturing the response of 
saturated soils during drained loading is examined using 
the results of compression triaxial tests on normally 
consolidated and heavily over-consolidated samples of 
Weald clay [11]. The initial conditions for samples used 
in the simulations, including the initial mean effective 
pressure and the initial void ratio, were: 𝑝଴ᇱ ൌ 207 𝑘𝑃𝑎 
and 𝑒଴ ൌ 0.632 for the normally consolidated sample, 
and 𝑝଴ᇱ ൌ 34.5 𝑘𝑃𝑎 and 𝑒଴ ൌ 0.617 for the over-
consolidated sample. The material parameters used in 
the analyses are summarized in Table 1. 

Comparisons between the model results and 
experimental data are presented in Figures 1 and 2. It is 

seen that the proposed framework can reproduce the 
drained strength and volumetric behaviours of both 
normally consolidated and over-consolidated clays with 
acceptable accuracy. 

Table 1. Material properties of Weald clay. 

Property Value Unit 
Critical state parameter (𝑀௖௦) 0.96 - 
Poisson’s ratio (𝜈) 0.3 - 
Slope of isotropic compression line 
(𝜆) 

0.093 - 

Slope of elastic swelling line (𝜅) 0.025 - 
𝜐௖௦ at 𝑝ᇱ ൌ 1 𝑘𝑃𝑎 (Γ) 2.06 - 
𝑁 4.5 - 
𝑅 2.714 - 
𝐴 1.3 - 
𝑘௠ 6 - 

 

 

Fig. 1. Deviatoric stress vs. axial strain for variably 
consolidated samples of Weald clay. 

 

 

Fig. 2. Volumetric strain vs. axial strain for Weald clay 
samples. 

3.2 Undrained triaxial tests on Cardiff kaolin 
clay 

To demonstrate the capability of proposed flow 
deformation plasticity model to capture the response of 
saturated soils subjected to undrained loading, the 
results of the triaxial compression tests on a soft kaolin 
clay reported in [12] are analysed. The tests involved 
samples with three different over-consolidation ratios 
equal to 1, 2 and 5, with the material parameters 
presented in Table 2. The initial of each sample was: 
𝑝଴ᇱ ൌ 414 𝑘𝑃𝑎 and 𝑒଴ ൌ 0.93 for the sample with 
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𝑂𝐶𝑅 ൌ 1, 𝑝଴ᇱ ൌ 193 𝑘𝑃𝑎 and 𝑒଴ ൌ 0.97 for the sample 
with 𝑂𝐶𝑅 ൌ 2, and 𝑝଴ᇱ ൌ 76 𝑘𝑃𝑎 and 𝑒଴ ൌ 0.94 for the 
sample with 𝑂𝐶𝑅 ൌ 5. 

Table 2. Material properties of Cardiff kaolin clay. 

Property Value Unit 
Critical state parameter (𝑀௖௦) 1.05 - 
Poisson’s ratio (𝜈) 0.15 - 
Slope of isotropic compression line (𝜆) 0.14 - 
Slope of elastic swelling line (𝜅) 0.05 - 
𝜐௖௦ at 𝑝ᇱ ൌ 1 𝑘𝑃𝑎 (Γ) 2.676 - 
𝑁 1.44 - 
𝑅 2.9 - 
𝐴 1 - 
𝑘௠ 4 - 

 
Model simulation results in terms of the effective 

stress path, and the deviatoric stress evolution with the 
axial strain are shown in Figures 3 and 4. The good 
agreement between model predictions and experimental 
data for all three cases emphasises the ability of 
developed numerical model to describe the undrained 
behaviour of clays. 

 

 

Fig. 3. Undrained effective stress path for Cardiff kaolin clay. 

 

 

Fig. 4. Deviatoric stress vs. axial strain for Cardiff kaolin 
clay. 

3.3 Unsaturated triaxial compression tests on 
Bourke silt 

The application of the model to the analysis of variably 
saturated soils is indicated using the results of a series of 
suction controlled triaxial tests performed on samples of 
silt from Bourke region of New South Wales, Australia 

[13]. These tests involve: 1) pre-consolidating the 
samples to an isotropic stress of 200 kPa, 2) unloading 
them to the initial net stress of 50 kPa, and then 3) 
performing drained triaxial compression tests at 
constant suction values of 100 and 300 kPa. 

Table 3 summarises the corresponding bounding 
surface and unsaturated model parameters for Bourke 
silt. Furthermore, the variations of two material 
parameters 𝑁୐୍େ୐ሺ𝑠ሻ and λ(s) with suction are presented 
in Table 4. 

Table 3. Material properties of Bourke silt. 

Property Value Unit 
Critical state parameter (𝑀௖௦) 1.17 - 
Poisson’s ratio (𝜈) 0.25 - 
Slope of elastic swelling line (𝜅) 0.006 - 
𝑁 3 - 
𝑅 1.82 - 
𝐴 2 - 
𝑘௠ 100 - 
Air entry value (𝑠ୟୣ) 18 kPa 
Residual saturation degree (𝑆୰ୣୱ) 0.16 - 
Pore size distribution index (𝜆௣) 0.41 - 
Intrinsic permeability (k) 3.89 ൈ 10ି଺ 𝑚ଶ 
Water dynamic viscosity (𝜇௪) 10ି଺ kPa s 
Air dynamic viscosity (𝜇௔) 1.8 ൈ 10ି଼ kPa s 

 

Table 4. Parameters 𝑁୐୍େ୐ሺ𝑠ሻ and 𝜆ሺ𝑠ሻ defining the isotropic 
compression line for Bourke silt. 

Suction, s (kPa) 100 300 
Slope of isotropic compression line 
(𝜆ሺ𝑠ሻ) 

0.09 0.09 

Intercept of ICL at 𝑝ᇱ ൌ 1 𝑘𝑃𝑎 
(𝑁୐୍େ୐ሺ𝑠ሻ) 

2.058 2.068 

 
The results obtained from the numerical modelling 

of this set of tests along with the experimental data are 
displayed in Figures 5 and 6. It is observed that the 
presented model can predict both deviatoric and 
volumetric responses of the soil with a reasonable 
accuracy compared to the test data. As expected, the 
suction effect has led to an increase in the soil strength 
and more volumetric strain under the applied deviatoric 
load. 

 

 

Fig. 5. Variation of deviatoric stress with deviatoric strain for 
Bourke silt. 
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Fig. 6. Volumetric strain vs. deviatoric strain for Bourke silt. 

4 Conclusions 

In this paper, a bounding surface plasticity framework 
for the hydro-mechanical analysis of flow deformation 
phenomena in deformable variably saturated porous 
media is presented. The model is formulated based on 
the effective stress principle, with the effective stress 
parameter defined as a function of suction. The 
processes involved in this fully coupled phenomena 
(including the geo-mechanical deformation, and 
coupled water and air flow) were described 
mathematically using the mass and momentum balance 
equations. The interaction between the various 
processes in the system is established through the 
effective stress equation and the water retention curve. 
To capture the elasto-plastic deformation behaviour of 
geo-materials, the UNSW bounding surface plasticity is 
adopted. The stiffening effect of suction on the response 
of the solid skeleton is accounted for in the definition of 
isotropic compression line, and consequently, the 
parameter controlling the size of bounding surface. 

The model is implemented in the commercially 
available COMSOL software for practical applications. 
The model implemented provides a robust 
computational tool for analysing coupled flow 
deformation problems in unsaturated porous media 
within an elastic-plastic setting 

The performance of the model was investigated 
through comparing the numerical simulations with 
experimental data from the literature. Good agreement 
between the results highlights the capabilities of the 
model in capturing the different aspects of the behaviour 
of soils for a range of saturation states and loading 
conditions. 
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