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Abstract. Land subsidence associated with using natural groundwater resources for serving the growing 

population needs has been receiving extensive research attention in the literature over the past few decades. 

The water content fluctuation in the of subsurface soil layers significantly impacts the land subsidence. The 

key objective of this study is to predict changes in water content profiles in soil layers over a long period of 

time using a deep learning-based approach. A convolution neural network algorithm that is commonly used 

in Artificial Intelligence (AI) applications is modified in the present study for processing in-situ 

measurement water content profiles. The approach used in the proposed AI method has a distinct advantage 

for generating dynamic predictions based on the extracted spatiotemporal characteristics of the data. In 

addition, three different algorithms are compared with respect to time series prediction, including long-

short-term memory (LSTM), multiple-layer perceptron (MLP) networks and autoregressive integrated 

moving average (ARIMA).   
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1 Introduction 

The growth of plants and the agricultural productivity 

that is required for humans and animals’ survival on our 

planet is dependent on the soil water content. In 

addition, soil water content information is a key 

parameter in the rational understanding of the soil-plant-

atmosphere water cycle [1–2]. In many regions of the 

world, groundwater levels have been continuously 

reducing due to using this valuable resource for 

supporting human needs. Due to this reason, there is a 

significant decrease in soil water content contributing to 

a reduction in water storage capacity resulting in 

significant soil or land subsidence.  

Empirical formulas and linear regression equations 

are widely used to predict land subsidence based on soil 

water content measurements. Recently, multivariate 

linear relationships between soil water content and 

rainfall, as well as the temperature and saturation 

difference for estimating land subsidence have been 

investigated by several researchers. For example, Chen 

et al. [3] developed relationships for predicting soil 

moisture, precipitation, and drought periods. Along 

similar lines, Su-fang et al. [4] also developed a linear 

regression model. Estimating or predicting nonlinear 

variations based on linear regression models are 
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typically associated with large errors and are found to be 

unsatisfactory because of their low accuracy. More 

importantly such methods are not capable of processing 

extensive data to provide reasonable and generalized 

relationships that can be used for both for small- and 

large-scale problems. 

In recent decades, there is proliferation in the use of 

artificial intelligence (AI) models in all fields including 

geotechnical engineering for addressing challenging 

problems because rapid advancements in computation 

technology [5-7]. Deep learning (DL), a subset of AI is 

receiving more significant research attention compared 

to conventional AI models because it has the capability 

of learning many more complex features. Several 

successful applications of DL have been reported in the 

literature especially during the last decade [8-10]. The 

convolution neural network (CNN) approach is one of 

the most popular DL algorithms that is receiving wide 

attention because it is capable of recognition of images 

and rapidly gather extensive data. Based on image or 

vibration responses acquired on site, CNN approach has 

been used in geotechnical engineering applications, for 

example for health monitoring, crack detection [11], 

damage detection [12], and landslide mapping [13]. 

The purpose of this paper is to investigate the water 

content profile using a DL approach. By adjusting the 
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Fig. 1. Schematic of the setup for in-situ installation. 

 

CNN algorithm, time series and spatial location data can 

be processed for suggesting early warning of risks based 

on underlying features from the data. In this study, long-

short-term memory (LSTM), multiple-layer perceptron 

(MLP) networks, autoregressive integrated moving 

average (ARIMA), and CNN algorithms are compared 

to examine the performance of models in both time and 

space dimensions. 

2 Methodology of CNN 

2.1 Data pre-processing  

Different types of sensors are typically embedded in the 

boreholes to gather data related to the measurement of 

water content. It is possible to construct a time-space 

matrix from measuring data from each datalogger and 

sensor package, as illustrated in Figure 1, using time and 

space dimension information. Using a time 

measurement frequency of 1 day, where n represents the 

number of monitoring periods. Narrow time intervals 

are more effective to understand changes with a higher 

sensitivity. However, such approaches generate 

extensive data that must analysed; in addition, the field 

measurements based can be costly based on the type of 

sensors used. The dimension of space is typically 

defined by the number of reading points along the 

borehole depth (in Figure 1, it is five).   

2.2 Structure of the CNN 

The spatiotemporal characteristics of the monitored 

water content data is used in this study for the purpose 

of water content prediction. As discussed in earlier 

section, AI model based on CNN structures can handle 

spatiotemporal features from images and texts from grid 

data (such as Figure 1). CNN has demonstrated 

outstanding data learning capabilities due to its unique 

architecture. As summarized in Figure 2, the CNN 

architecture used in this study is a combination of 

convolutional and pooling layers, as well as several fully 

connected layers. 

3 Model development for prediction 

3.1 Inputs and outputs 

A long-term prediction approaches have the advantage 

of having enough time for applying precautions actions; 

however, accuracy is likely to decrease with an increase 

in prediction steps. Higher accuracy can be achieved 

with extensive data; however, the training time must be 

increased. One of the challenges is associated with field 

conditions that may interfere with data continuity. 

Therefore, in this study the key objective was directed 

towards predicting water content for the next 7 days 

based on prior 7-days of interpreted data from in-situ 

spatiotemporal characteristics. 

3.2 Division of data 

In many scenarios, several AI prediction models 

perform well on training sets, but poorly on test sets. 

This phenomenon is called overfitting, which will result 

in poor generalization of the model. Although there are 

many techniques for overfitting control, none have been 

able to totally avoid it. As one of the overfitting 

controllers, K-CV divides all the original data into K 

subsets, and K - 1 subsets serve as training sets, with the 

remainder serving as testing sets [14]. To ensure both 

training and testing of each sample, the process repeats 

K times. It is thus possible to eliminate randomness of 

database division and preserve as much as possible of 

the original database's distribution characteristics. 

Combining K-CV with the prediction model improves 

generalization ability.
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Fig. 2. Convolutional neural network architecture. 

3.3 Indicators of performance evaluation 

Model accuracy is generally assessed by performance 

evaluation. The root-mean-square error (RMSE) and 

mean absolute percentage error (MAPE) were used as 

selected demonstrating the validity of predictions in 

comparison with measurements in this study. Eqs. 1 and 

2, respectively summarize the mathematical 

relationships of RMSE and MAPE: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑥̂𝑖)

2𝑁
𝑖=1

𝑁
 (1) 

𝑀𝐴𝑃𝐸 =  
∑ |

𝑥𝑖 − 𝑥̂𝑖

𝑥𝑖
|𝑁

𝑖=1

𝑁
 

(2) 

 

where 𝑥𝑖 is the predicted water content, 𝑥̂𝑖 is the 

observed data of water content, and N represents the 

total number of datasets. 

3.4 Procedure for prediction 

Figure 3 illustrates the three steps of deep neural 

network prediction: data preparation, training, and 

testing of the model. It is necessary to collect data 

regarding the water content, then to fit those data into 

the time–space matrix. As a result of interferences in 

monitoring, some data may be missing. The average 

value from adjacent reports can be used to rectify this, 

as well as other methods of input information. Training 

and testing subsets are divided using K-CV. To 

complete the training process, labels are added to 

samples. Images of some objects can be extracted from 

using shallow edge-based image features and deep 

shapes based on their training objectives in image 

recognition. CNN extracts time and space relations as 

features in water content prediction. It is then possible 

to compare the predicted results based on the input 

dataset and calculate the accuracy of the trained CNN. 

In this study, Python is used to run the prediction model. 

 
Fig. 3. General procedure for water content prediction. 

4 Program for field monitoring 

4.1 Borehole location 

Figure 4 shows the borehole location at 38°9'41.3604"N 

and 48°26'42.3342"E. A single borehole would be 

sufficient to represent the entire Ardabil plain, based on 

previous studies in the field [15]. 

 

 
Fig. 4. Location of study area. 
 

Five Decagon EC-TM sensors are inserted into the 

borehole (Figure 1), which can simultaneously measure 

volumetric water content [16].  The drilling process was 

also accompanied by field sampling at 5-m intervals. To 

determine the index properties of soil in different 

depths, various tests were conducted (e.g., index 

properties, hydraulic conductivity, contact filter paper 
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Fig. 5. Volumetric water content time series for all sensors.

method, hanging column tests). Table 1 summarizes the 

results of the index properties tests. 

Table 1. Results of index tests. 

 

Figure 5 summarizes volumetric water content and 

time series that were gathered at daily intervals between 

the beginning of December 2017 and the end of 

December 2022. In addition, Figure 6 shows the 

volumetric water content profiles at various depths 

highlighting representative values. The volumetric 

water content profiles over time typically increase in 

deeper layers suggesting more water availability 

compared to shallower layers. 

 

 
Fig. 6. Volumetric water content profiles for different 

years. 

5 Results 

5.1 Parameters for CNN 

CNN implementation should consider size of 

convolution, pooling filters and training epoch 

hyperparameters. There is a wide variety of filter shapes 

that are used in the literature. There are fewer 

parameters in the network with a smaller kernel size, 

resulting in lower computation costs. Training data can 

be better captured when a kernel has a large 'local 

receptive field'.  

By choosing larger shapes for pooling, we can 

significantly decrease the dimension of the data, which 

likely results in loss of information. In order to balance 

efficiency and effectiveness, the convolution filter 

kernel size is set to (5 9 5). Based on the data size, we 

choose (2 9 2) as a typical maximum pooling shape. 

Three dimensions define the input data for the model: 

the first represents the channels, the second represents 

the readings, and the third represents the time period. It 

is possible to reshape the input matrix, the same size as 

the original. In layer 6, the output matrix is converted 

into a vector, then flattened, which will result in a more 

efficient CNN model. A fully connected layer 

transforms the vector into the model output. 

The use of several epochs leads contributes to 

inefficiency and an overfitted model. In such cases, the 

convolutional neural network model is effective on the 

training set but might show poor performance on the 

testing set due to the increased number of epochs. The 

training epoch of 200 is chosen for the assigned project, 

where CNN with small epochs cannot capture features 

in training samples. 

5.2 Water content time-series 

Figure 7 summarizes time series of water content results 

from CNN. The results suggest perfect fitting with 

relatively low errors. In other words, CNN is effective 

in extracting complex nonlinear relationships with 

respect water content time-series based on 

spatiotemporal characteristics. 

5.3 Water content profiles 

Figure 8 summarizes the variation of water content with 

respect to depth profiles at various times. The 

summarized results suggest that CNN predicts water 

content profile close to the field measurements. The 

promising comparisons also suggest that CNN is 

capable of making long-term forecasts in the space 

dimension based on water content profiles, implying 

competence to capture spatial features. 
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(a) 

 
(b) 

Fig. 7. Comparison between measured and predicted volumetric water content time series, a) sensor1, b) sensor5. 

 

 
(a) 

 
(b) 

Fig. 8. Comparison between measured and predicted volumetric water content profiles for 1st June of, a) 2021, b) 2022. 

6 Comparisons 

In this section, comparisons are provided using three 

different algorithms: namely, MLP, LSTM, and 

ARIMA in estimating water content time series with 

CNN model. MLPs are used for classification and 

regression tasks, in which hidden neurons are arranged 

in layers to extract data features [17]. In many fields of 

geotechnical engineering, LSTM has been successfully 

applied to sequential data [18]. An ARIMA forecasting 

model is another popular one, based on the integration 

of moving averages and autoregressions. The water 

content at different depths is viewed independently by 

all three algorithms when considering spatial relations. 

The MLP is capable of making multiple predictions in a 

single model, while other methods can make multiple 

predictions separately. The MLP, LSTM, and ARIMA 

performance indicators are illustrated in Table 2. Most 

algorithms detect higher prediction errors in long-term 

predictions. MLP results are discredited because the 

RMSE and MAPE are the highest with values of 1.19 

and 16.34%. respectively. An LSTM model can almost 

match measured measurements of water content, with an  

RMSE of 0.73, but it is still higher than the predictions 

of the convolutional neural network model. LSTM 

consumes the largest amount of computational time, 

with 5463 seconds, approximately 10 times more than 

CNN. CNN provides the most efficient computation, 

which takes 52 seconds. In spite of the low efficiency of 

LSTM, the results predicted by LSTM are satisfactory. 

It is likely that the architecture of long short-term 

memory is the cause of the low efficiency. As long as 

the efficiency is resolved, it is worth examining whether 

it is feasible to capture spatiotemporal features 

thereafter. 

Table 2. Comparison of different methods results. 

Algorithms RMSE MAPE (%) 

This Study 0.59 5.06 

LSTM 0.73 8.37 

ARIMA 1.01 11.01 

MLP 1.19 16.34 

7 Summary and Conclusions 

The land subsidence and water content profiles 

prediction are important in many fields that include 
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agriculture, geotechnical, and water resources 

engineering. For this reason, in this paper, we present a 

method that can automatically learn spatiotemporal 

features for reliable prediction of water content profiles 

based on CNN algorithms. To establish the feasibility 

and applicability of the proposed approach, an in-situ 

project is undertaken. Various conclusions derived from 

the study summarized in this are summarized below: 

 - Unlike other networks, CNN architecture is 

capable of handling complex spatiotemporal 

characteristics. Water content profile prediction uses the 

two dimensions of an image to represent the space and 

time dimensions of the observed data and then employs 

CNN's deep-learning structure to recognize the image. 

 - In the prediction of water content profiles, CNN 

performs better than MLP, LSTM, and ARIMA. Other 

algorithms require more training time and do not 

achieve the same prediction accuracy as CNN. The 

differences between profiles at different depths are 

usually treated as separate sequences by MLP, LSTM 

and ARIMA, resulting in inferior performance since for 

each sequence, it increases training epochs and ignores 

spatial relationships. 

 - This paper proposes a CNN model that is 

particularly useful in real-time monitoring and early 

warning strategies. In other words, CNN can use the 

more recent in-situ data and predict water content profile 

in a dynamic fashion. Such approaches are promising 

for use in engineering and environment projects and use 

control strategies prior to reaching threshold limits and 

alleviate risks and hazards.  
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