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Abstract. In the ongoing research, an approximate, grading entropy based, advanced interpolation method 
is applied to establish empirical functions between the grading curves and the model parameters of sands. 
The space of the grain size distribution curves with N fractions is isomorphic to the space of the unit-sided 
simplex with dimension N-1. The traditional interpolation over the simplex with dimension N-1 is 
problematic since the number of the sub-simplexes (and the interpolation points) may increase exponentially 
with N. To overcome this difficulty, the function is approximately interpolated, which means that the 
interpolation is made on some 2-dimensional sections of the simplex and is extended to the whole simplex, 
using the grading entropy map. Two kinds of 2-dimensional sections can be used based on either fractal 
distributions or partly fractal partly on some maximal gap-graded distributions. In this paper the experiments 
were made on the artificial mixtures of natural sand grains earlier. Two kinds of functions were 
approximately interpolated for the minimum dry density using the measured data. One kind of function was 
determined for the parameters of an SWCC model directly from the level lines previously graphically 
interpolated from fractal distribution data.  

 

1 Introduction 

1.1 Space of grading curves 

To characterise a grading curve, an abstract fraction 
system is defined. The diameter limits are doubled with 
the serial number j (j =1, 2. , Table 1): 
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where d0 is the smallest diameter which may be equal to 
the height of the SiO4 tetrahedron (d0=2-22 mm).  

The relative frequency of xj of grading curves fulfil: 
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where the integer variable N is the number of the 
fractions between the finest and coarsest non-zero ones. 
 The relative frequencies xi can be identified with the 
barycentre coordinates of the points of an N-1 
dimensional, closed simplex. The space of the grading 
curves with N fractions can be identified with the N-1 
dimensional, closed simplex.  

 
* Corresponding author: imre.emoke@uni-obuda.hu  

1.2 Grading entropy and diagrams 

The grading entropy S is the sum of two parts [1, 2]): 
                           SSS 0  (3) 
where S0 is base entropy, S is entropy increment. The 
base entropy and its normalized form are the weighed 
(normalised) means of the fraction entropies: 
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where S0k is the k-th fraction entropy (Table 1), S0max and 
S0min are the entropies of the largest and the smallest 
fractions, respectively. The entropy increment S and its 
normalized form B:  
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 Any grading curve can be represented as a point in 
the entropy diagram using the normalised or non-
normalised grading entropy coordinates (Fig. 1(b)) 
using the smooth entropy map. The inverse image (Fig. 
2) of a regular value is an N-3 - dimensional sphere, the 
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critical values of the map (maximum line of the 
diagram) is the optimal line. A point of it, the optimal 
point or optimal grading curve which has fractal 
distribution, with the following relative frequencies:  
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where parameter a is the root of the equation:  
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The optimal grading curve is a kind of mean grading 
curve for all the grading curves for given A value. 

             
(a) 

 
(b) 

Fig. 1. The entropy diagrams. (a).  The normalized entropy 
diagrams for simplexes with N varying from  2 to 7. Note the 
fixed maximum (optimal) line and the N-dependent edge 1-N. 
(b) The optimal lines separate in the non-normalised diagram. 

 

   
(a)                      (b) 

Fig. 2. Inverse images for an N=4 simplex [2]. (a) The 
inverse image of three regular entropy diagram points (N-3=1 
dimensional spheres). (b) The optimal line.  
Table 1. Fractions in terms of  a fixed d0, serial numbers and 

fraction eigen-entropies 

j 1 ... 23 24 
Limits d0 to 2 d0 ... 222 d0 to 223 d0 223 d0 to 224 d0 
S0j [-] 1 ... 23 24 

1.3 Interpolation, goal of paper 

The direct interpolation of a function over the space of 
the grading curves (Fig. 3(a)) needs c(2N-1) interpolation 
points, this number is exponentially increasing in terms 
of the number of the fractions N (see Table 2). To 
overcome this difficulty, an approximate interpolation 

method is suggested, based on the grading entropy 
concept, needing ~c N to ~c N2 data. The paper briefly 
presents the method and its application to the minimum 
dry density and, to the parameters of the Fredlund-Xing 
soil water characteristic curve equations [3] for sands.  

2 Approximate interpolation 

2.1 Some definitions 

In topology the fibration is defined for topological 
spaces as follows:  

                            F → E → B (8) 

where the first map is the inclusion of  fiber F into the 
total space E and the second map π: E → B is a 
projection of the total space onto the base space B.  

The fibration is locally trivial if in small regions of 
the base space B the total space E behaves just like a 
projection from corresponding regions of B × F to B.  
 A subspace I in E is a section of the fibration if there 
is a continuous map g: B→ I and the map g(π) is the 
identity of B. A locally trivial fibration is trivial if the 
base space is contractible. In this case E is 
diffeomorphic to B x F or I x F, E can be decomposed 
such that one fiber is attached to each section point. 

2.2 Interpolation using the entropy map  

The simplex (total space) maps to into entropy diagram 
(base space B). The fiber F is the inverse image (Fig. 2).  

We can interpolate on the entropy diagram (or 
equivalently on a section I of the fibration in the total 
space E). The function is extended onto the fibers by the 
constant map point-wise. The extended function – 
according to the continuity of the composite functions –  
is continuous, but approximate over the total space. 
 The entropy map is twofold for the triangle diagram 
(n=2), having two sections as shown in Fig. 3. The 
optimal line maps into the upper boundary of the entropy 
diagram and the related grading curves reflect a kind of 
mean behaviour. It is the part of the boundary of both 
sections. The other part of the boundary is either the 
edges 1-2, 2-3..(N-1)- N or the edge 1-N, resp.  
 The smin iso-lines on the entropy diagram are 
different if section 1 or section 2 is mapped (upper/lower 
part of the triangle diagram, resulting in near 
linear/curved lines, respectively, Fig. 3).  

 

Table 2. Number of sub-simplexes 

 N 
2N-1 (# of sub-simplexes) 

 
(N+1)N/2 (# of continuous 

sub-simplexes 
2 3 3 
3 7 6 
4 15 10 
7 127 28 

10 1023 55 
14 16383 105 
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(a) 

 
(b) 

 
(c)                             (d) 

Fig. 3. The image of the smin iso-lines of the 2-dimensional 
simplex by the entropy map. (a) The triangle diagram and the 
direct interpolation of the smin iso-lines using data sampled at 
the intersection points of the coordinate lines [1]. (b) The 
optimal line, the section1 and section 2 definition. (c, d) The 
image of the smin iso-lines from Section 1 and 2. 

3 Materials and methods   

3.1 SWCC data measurements and processing 

The Fredlund – Xing (1994) equation reads [5]: 

m
n
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r

a
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  (9) 

where ua – air pressure, uw – pore water pressure,  –
volumetric water content, a [kPa], n, m – non-linear 
model parameters,  r,  s are linear model parameters.  

The measurements were performed on seven sand 
fractions and their artificial, optimal mixtures with 
A=2/3 (see Tables 3, 4, [7 - 10]). In the suction range of 
ua-uw  ≤ 50 kPa sand boxes were used, in the higher 
suction range axis translation technique was used. For 
the model fitting, a nonlinear method was applied [6]. 
 Using the identified parameters, section 1 
interpolation was made where not only the fractal 
gradings related to N=7, but also the fractal gradings 
N<7 were also used (ie., optimal points of the 
continuous sub-simplexes were also used, Table 3, [3]). 
In this work the so determined isolines were 

approximated by simple parametric functions in terms 
of the non-normalised grading entropy coordinates. 

3.2 Dry density measurements  

The measurements were performed on five sand 
fractions and their artificial, optimal mixtures by 
Lőrincz earlier (see Table 5, [11 - 15]).  
 The minimum dry density level lines were 
interpolated in two cases, either from the of 50 fractal 
distributions with various N, or from  9 / 5 maximal gap-
graded / maximal fractal distributions ([11 - 15]).  
 In this work the so determined isolines were 
approximated by simple parametric functions in terms 
of the non-normalised grading entropy coordinates. 
.  

Table 3. SWCC measuring – A=2/3 optimal (fractal)  
mixtures [7]. 

N  Maximal 
fraction j 

Notation  Fractions in 
mixture  

2  2 22 1-2 
 3 23 3-3 
 4 24 3-4 
 5 25 4-5 
 6 26 5-6 
 7 27 6-7 

3  3 33 1-3-3 
 4 34 3-3-4 
 5 35 3-4-5 
 6 36 4-5-6 
 7 37 5-6-7 

4  4 44 1-3-3-4 
 5 45 3-3-4-5 
 6 46 3-4-5-6 
  

7 
47 4-5-6-7 

5  5 55 1-3-3-4-5 
 6 56 3-3-4-5-6 
 7 57 3-4-5-6-7 

6  6 66 1-3-3-4-5-6 
 7 67 3-3-4-5-6-7 

7  7 77 1-3-3-4-5-6-7 

Table 4. Fractions [7]. 

Fraction               d   [mm] S0  [-] 
1 0.03 – 0.06 12 
2 0.06 – 0.125 13 
3 0.125 – 0.25 14 
4 0.25 – 0.50 15 
5 0.50 – 1.0 16 
6 1.0 – 2.0 17 
7 2.0 – 4.0 18 

Table 5. Fractions of Lőrincz [1] 

Fraction  d   [mm] S0  [-] 
A: 0.06 – 0.125 13 
B: 0.125 – 0.25 14 
C: 0.25 – 0.50 15 
D: 0.50 – 1.0 16 
E: 1.0 – 2.0 17 
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Fig. 4. Parameter a,   fractal interpolation points, Eq. 10 

 

 

Fig. 5. Parameter n, fractal interpolation points.  Fredlund-
Xing model. Eq. 11 

 

 

Fig. 6. Parameter m, fractal interpolation points and 
approximate isolines.  Fredlund-Xing model. (Eq. 12) 

 
Table 6. Fredlund-Xing model. Parameter values for the m 
equation. 

 C1 C2 C3 C4 
S0 > 15 -2.04454 -2.23865 0.265252 14.13297 
S0 < 15 1.563788 -0.5288 -0.16316 -1.24706 

4 Results    

4.1 SWCC 

The entropy coordinates were computed here by 
assuming that the fraction  d  = 0.03 to 0.06 mm has a 
base entropy of S0  = 12. The iso-lines of the parameters 
a, n, m of the SWCC model of Fredlund-Xing were 

possible to be graphically interpolated on the entropy 
diagram, see e.g., in [7 to 10].  
 In this work the so determined isolines were 
approximated by simple parametric functions in terms 
of the non-normalised grading entropy coordinates (Figs 
4 to 6). The m-equation was approximated in two parts, 
with the same parametric function: 

  401101 CSSCSCSC= m  (10) 

Different parameter values were valid in the range of S0 
> 15 or S0 < 15, respectively, as shown in Table 6. The 
equations suggested for parameters a and n: 

 

 (11) 

 

99.276.2
00 3100)27.17exp( SSSn  (12) 

4.2 Minimum dry density 

The entropy coordinates of the data base of Lőrincz ([1, 
11 to 15]) were computed here by assuming that fraction  
d  = 0.06 to 0.125 mm has a base entropy of S0  = 13.   
 Two sections were used. In the first case, fractal 
gradings of the continuous sub-simplexes of the 4-
dimensional simplex were used for the measurement. 
The isolines shown in Fig.7 were determined directly 
from the following regression equation:  

 min 00.0195 0.0318 0.2482s S S  (13) 

In the second case, the 4-dimensional version of 
section 2 (see Fig. 3) was used, the interpolation points 
were selected on the optimal line and on the gap-graded 
edge 1-N.  The iso-lines shown in Fig. 7(b) were 
computed from the following regression equation: 

2 2
min 0.7126 0.5668 0.5232 0.3067s A A B B  (14) 

Eq. 14 can be applied in the “lower half” of the simplex 
where the largest fraction is dominant (see Fig. 3 and 
Table 4).  

4.3 Preciseness by the inverse image 

To test the variability of the SWCC or the minimum dry 
density related to a fixed entropy diagram point, a set of 
grading curves were generated as the inverse image of 
the entropy diagram point.   

Concerning the variability of the SWCC-s related 
to a fixed entropy diagram point, results can be seen in 
Fig. 8. The drying and wetting curves are similar, when 
the fine content is larger, the SWCC is keeping more 
water, the difference is about 0.2 of total saturation 
volumetric water content at 10 kPa. 

The variability of the dry density related to two 
fixed entropy diagram points is presented in [13]. 
According to the results, the preciseness is determined 
by the size of the inverse image of the entropy diagram 
point.  
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(a) 

 
(b) 

Fig. 7. N=5, smin iso-lines (a) constructed from optimal (fractal, 
mean) mixture data (Eq. (13), (b) constructed from maximal 
gap-graded and maximal optimal mixture data (Eq. 14). 
 

5 Discussion    

5.1 Dry density 

Comparing the linear level lines for section 1 
interpolation in case of N=3 and 5 (see Fig. 3. and Fig. 
7(a)), the similarity is apparent. Comparing the curved 
level lines for section 2 interpolation in case of N=3 and 
5  (see Fig. 3. and Fig. 7(b)), the similarity is also 
apparent. The relationship seems to be similar for any N, 
to be practically independent of the value of N. 

Concerning section 1 interpolation, linear relation 
is found  for not only the tested fractal mixtures with (R2 

> 0.9) but also for two additional data bases  for 
continuous mixtures (see [17], where it was mentioned 
that the linear relation supports the idea raised in 
Edwards statistical mechanics approach [16] that the dry 
density and the entropy are closely related). 

The linear relation is not valid for gap-graded 
mixtures. However, it is known from earlier study [15] 
that gap-graded mixtures are slightly denser in the 
loosest state than the optimal ones at a given A.  

5.2 Minimum number of interpolation points 

If the interpolation is based on mean (fractal) gradings 
of the whole simplex, and on some 2-fraction mixtures, 
then the minimum number of data used for the 
interpolation is equal to ~5+5N and ~ 5+5 for section 1 
and 2 interpolation, respectively ([15]).  

 The similarity of the level lines for section 1 or 
section 2 interpolation may explain that the minimum 
number of the interpolation points is hardly changing 
with N which  has some significance since for a unit-
sided simplex, representing the space of the grading 
curves, the ratio of surface/volume increases with N and, 
the number of sub-simplexes increases exponentially 
with N (see Tables 8, 2, [15]). In case of section 1 
interpolation, according to the experiences, optimal 
points of the continuous sub-simplexes can also be used 
as ~c N2 interpolation point. 

 
 
Table 7. Definition of lower half of the simplex (see 
e.g., [9, 15]) where Eq. 14 can be applied. 

A [-] Relative frequency of largest fraction 

 
Minimum [%] 

Optimal grading 
Maximum [%] 

Edge 1-N 
0.06 2.5 6 
0.14 3 14 
0.26 7.5 26 
0.38 10 38 
0.5 20 50 

0.63 30 63 
0.74 50 74 
0.86 70 86 
0.94 90 94 

 

Table 8. Surface/volume ratio for the n-dimensional simplex  

Dimension, n  1 2 3 
Volume, V 1 0.43 0.12 
Surface,  K 0 3 1.73 

K/V 0 6.93 14.69 
 

 
(a) 
 

 
(b) 

Fig. 8. Inverse image at entropy coordinates A=2/3, B=1,2, 
N=4.  (a) Grading curves. (b) SWCC-s of the grading curves. 
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5.3 Type of the entropy diagram  

The normalised grading entropy coordinates are not 
unique, zero fractions may change their value, but this 
is not the case for the non-normalised grading entropy 
coordinates, which are unique. The normalised and non-
normalised diagram representations are equivalent in 
case of applying zero fractions up to fixed maximum and 
minimum diameters [4, 17, 18].  The representation is 
simpler and theoretically more precise in the non-
normalized diagram since no zero fractions are needed. 
 
6 Conclusions    
In this paper some analytical functions were elaborated 
to describe the non-linear parameters of the Fredlund-
Xing model [4] in terms of non-normalised grading 
entropy coordinates, based on the previously 
interpolated level lines. In further research, the 
preciseness will be analysed and some regression 
equations will be elaborated directly from measured 
data.  
 In this paper it was found that the dry density level 
lines are similar in dimensions 2 and 4, indicating that 
level lines interpolated in the triangle above and below 
the optimal line may qualitatively characterize the level 
lines of the larger dimensional simplexes determined by 
section 1 (continuous mixtures) and section 2 (near 
maximal gap-graded) interpolations.  
 Especially, linear level lines were found for fractal 
and continuous mixtures with R2>0.9. This linear 
relationship supported the idea that dry density and 
entropy are closely related, as indicated by Edwards' 
statistical mechanics, the link will be further 
investigated for fractal gradings.  

A quadratic function was elaborated to describe 
the minimum dry density from near maximal gap-
graded and fractal mixtures, the preciseness will be 
investigated.  

The suggested interpolation method can be used 
for the approximation of any parameter of the 
complicated critical state models of sands, this and the 
use for silts and plastic soils will be investigated.  

The work by M. Datcheva is supported by Grant No 
BG05M2OP001-1.001-0003, financed by the Science and 
Education for Smart Growth Operational Program (2014–
2020) and co-financed by the European Union through the 
European Structural and Investment Funds. 

References 
1. J. Lőrincz; E. Imre; V. P. Singh. Chapter in 

Granular Materials. Rijeka: InTech 
doi: 10.5772/intechopen.69167, (2017) 

2. E. Imre (2023) The approximate interpolation in 
terms of the grading curve. ESB 2021 Conference 
(submitted). 
 
 

3. E. Imre; J. Lőrincz, Q. Trang, S. Fityus, J. Pusztai, 
G. Telekes, T. Schanz, KSCE Journal of Civil 
Engineering 134, 257-272 (2009) 

4. E. Imre, Á. Bálint, Á. L . Nagy, J. Lőrincz, J., Zs. 
Illés, D. Barreto, F. Casini, G. Guida, S. Feng, 
Examination of saturated hydraulic conductivity 
using grading curve functions, in Proc. of ISC6, 
Budapest, Hungary, 26-29 September 2021, 
https://doi.org/10.53243/ISC2020-373 (2021) 

5. D.G. Fredlund, A. Xing, Can. Geot. J. 31, 521-532 
(1994)  

6. E. Imre, C. Hegedűs, S. Kovacs, L. Kovacs, 
Reducing numerical work in non-linear parameter 
identification, arXiv:2102.08210 (2021) 

7. E. Imre, K. Rajkai, R. Genovese, C. Jommi, J. 
Lőrincz, L. Aradi, G. Telekes, Soil water-retention 
curve for fractions and mixtures, in Proc. UNSAT-
ASIA, Osaka, 451-45 (2003) 

8. E. Imre, K. Rajkai, T. Firgi, Q. Trang, G. Telekes, 
Closed-form functions for the soil water-retention 
curve of sand fractions and sand mixtures, in Proc. 
of 4th Unsat 2006, Carefree, 2408-2419 (2006) 

9. E. Imre, K. Rajkai, E. Genovese, S. Fityus, The 
SWCC transfer functions of sands, in Proc. of 4th 
Asia Pacific Conf on Unsaturated Soils. Newcastle, 
Australia, 23.-25.11.2009, 791-797 (2009) 

10. E. Imre, K. Rajkai, T. Firgi, I. Laufer, R. Genovese, 
C. Jommi, Modified grading curve – SWCC 
relations, in Proc. E-UNSAT, Naple, 39-46 (2012) 

11. E. Imre, J.  Lőrincz, J P. Rózsa. Characterization of 
some sand mixtures, in Proc. 12th IACMAG Goa, 
India, 2064-2075 (2008)  

12. E. Imre, J. Lőrincz, E. Gerendai, R. Szalkai, Y. 
Lins, T. Schanz, Some notes concerning the dry 
density testing standards. 18th ICSMGE. Paris, 
349-352 (2013) 

13. E. Imre, J. Lőrincz, M. Hazay, M. Juhász, K.  
Rajkai, T. Schanz, Y. Lins, V. Singh, Z. 
Hortobágyi, Sand mixture density, in. UNSAT2014, 
Sydney Australia, 2-4.07.2014, 691-697. 

14. E. Imre, G. Kecskés, K. Rajkai, T. Schanz,  Z. 
Hortobágyi, V.P. Singh, S. Fityus, Sand behaviour 
in terms of the grading curve, in Proc. 16th 
ECSMGE 2015, 3753-3758. 

15. E. Imre (2015) Soil physical characteristics to solve 
water flow problems. Thesis submitted at Budapest 
University of Technology and Economics 
Habilitation Committee and Doctoral Shoool of the 
Faculty of Civil Engineering (in Hungarian).  

16. A. Baule, F. Morone, H.J. Herrman, H.A. Makse, 
Rev. M. od. Phys. 90(1):015006 (2018) 

17. E. Imre, D. Barreto, M. Datcheva, V. P. Singh, W. 
Baille, S. Feng, S. Firgi, Minimum dry density in 
terms of grading entropy coordinates, (accepted 
17ARC 2023)  

18. S. Feng, P. J. Vardanega, E. Ibraim, I. Widyatmoko, 
C. Ojum, Géotechnique 69, 646–654 (2019) 

 

E3S Web of Conferences 382, 25003 (2023) https://doi.org/10.1051/e3sconf/202338225003
UNSAT 2023

6


